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On Thermally Maintained Circulation 

tn a Closed Ocean Basin 
1 

P. P. Niiler, A. R. Robinson, and S. L. Spiegel 

Pierce Hall, Harvard University 

ABSTRACT 
I 
A three-dimensional model of a thermohaline-maintained circulation is presented for a 

closed basin of finite depth on the beta plane. The circulation, which conserves potential 
vorticity, consists of a westward drift at all levels in the open ocean and a return fl ow that 
is accomplished in a swift eastward-flowing current. A comparison is made to Worthington's 
recent water-mass analysis of deep circulation in the North Atlantic Basin. 

Introduction. Worthington (1965) has recently performed a water-mass anal-
ysis of a substantial portion of the deep Gulf-Stream system. The circulation 
consistent with his analysis is an approximately semicircular gyre with a strong 
north-south asymmetry. This circulation pattern was recognized by the present 
authors as strikingly consistent with the conservation of potential vorticity 
(Robinson 196 5) in the entire motion. We demonstrate this fact by presenting 
a class of theoretical circulations of similar form. These Bows are of interest 
in their own right, since, to the best of our knowledge, they represent the 
first analytical solutions for nonlinear, three-dimensional circulation in an 
enclosed basin of variable density. It is further remarkable that such diverse 
attacks on the deep-circulation problem yield similar results. The approach 
via water-mass analysis has the advantage of dealing directly with real oceanic 
data; the advantage in the mathematical formulation li es in our ability to 
provide details of the circulation patterns (e.g. vertical-velocity distributions) 
that are consistent with the field equations for the conservation of mass, mo-
mentum, heat, and salt. 

We model the deep water of an ocean basin as a Boussinesq fluid on an 
enclosed beta plane of finite depth. W e neglect diffusive processes and hence 
allow no interchange of momentum or heat with the region above the thermo-
cline. The quasilinear, and quasigeostrophic,2 three-dimensional problem is 

1. Accepted for publication and submitted to press 9 August 1965. 
2 . Here the vertical component of vorticity in the potential-vorticity equation is evaluated with 

velocity components that are geostrophic. 
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solved for the case of a semicircular basin of constant depth, where the po-
tential vorticity is conserved in a relatively simple manner. The principal 
results indicate a slow westward drift at all levels, with a swift returning 
current over the northern arc of the basin. 

We are cognizant of the fact that such a simple model cannot represent 
the full complexity of (diffusive) processes that drive the circulation of a real 
ocean basin. However, it does represent the manner in which vorticity, once 
introduced by diffusion from the horizontal or vertical boundaries of the basin, 
tends to be conserved and hence is a significant isolatable process in the theory 
of oceanic circulation. 

2. Basic Equations of the Model. We consider a semicircular ocean basin 
that has as the bounding diameter the latitudinal circle designated by 0o. Let 
the basin be of constant depth, H, and extend a maximum distance, R, north 
from 0o latitude [ cf. Fig. 1]. (The symbol Ro denotes the radius of the earth.) 

H 

Figure r. Model of semicircular ocean basin. 

We use the beta plane, Boussinesq approximation to the equations of motion, 
and write the Coriolis parameter as f' =Jo+ (3 y, where y is the distance meas-
ured north from the latitudinal circle 0o. Let the circular-polar coordinates 
be r', cp, z, and, in dimensionless units, we measure distance in 

r = r'/Rcp, C = z/H. 

The corresponding dimensionless velocity components will be 

v = urp/Uo, w = (R/HUo)uz. 

In the conservation equations we also use the dimensionless pressure, p, and 

density anomaly, 0, defined as 

(3) 

where Lle is the total vertical density difference in the ocean basin. 
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We now defin e 

Uo == gHiJ e/eoJoR, e == Uo/JoR, /3* = (R/R o) cotan (@o), 

f == I + f3*rsincp, 

and write the conservation equations as 

e v·Vv+- +Ju =- -- , uvl 1 8 p 
r r 8cp 

e - - ap 
- ac' 

-:C-v0 = o. 

[ 23,3 

(4) 

(s) 

At this point we note that Uo is a presently convenient quantity for the 
scaling of the velocity field, but is not, in fact, the anticipated amplitude of 
the motion. The baroclinic part of the latter quantity is based on the horizontal 
density difference. This scaling will become clear in § 3. 

We shall seek solution of the equations under the condition that the normal 
component of velocity vanishes at a level surface, C = I, the bottom, C = o, 
and the vertical walls enclosing the semicircular basin. The virtue of this 
geometry is its simplicity; its value as a model of subthermocline flow is moot. 
The flow is maintained by density differences across the surfaces of the basin. 
A detailed examination of (S) reveals a third-order system of equations that 
has as a first integral the potential-vorticity function. In addition to the density-
boundary condition, we need to specify the potential-vorticity integral. In 
fact, simple forms of this integral will prove to be relevant for dealing with a 
closed-circulation problem. 

The potential-vorticity equation is most simply derived after a quasi-
Lagrangian transformation of the equations that interchanges the dependent 
and independent roles of 0 and C. The resulting equations are [ vide Robinson 
1965 for details of the transformation and derivation of (7)] 

UV] e v ·V,,v+-; +Ju = -8ll/r8cp, (6) 
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c = aII;a0, (6) 

ac 
f}() u = - 01fJ/or, 

where II = p + 0 C. In the above, "h is the horizontal component of vector 
de! operator taken at constant (), and a stream-like function, 1P, has been 
defined to satisfy the transformed form of the mass-continuity equation. The 
vertical component of the vorticity equation can now be integrated to yield 
the potential-vorticity equation, 

[ 
1 a I a ] ac e -- rv - -- u +f =- P(1P,0). 
ror rorp f}() 

(7) 

The free functional of integration, the potential vorticity, P(1P, 0), in general 
depends on both of its arguments. Here we choose 

p = I +C1j), C=O,I,-1, (8) 

where all possible choices of linear functions of 1P are expressed in (8). We 
remark that a primary effect of the ()-dependence of P (ignored here) is to 
determine the vertical-density stratification that is uncoupled to the motion 
field . Since we are primarily interested in the horizontal streamline structure 
of the solution, (8) was chosen as the simplest mathematical structure. At 
the same time, the dependence of P on 1P couples the functional dependence 
to the motion field, and such a choice qualitatively illustrates the effect of this 
coupling. The 0-dependence of P has been discussed elsewhere (Spiegel, 
personal communication3). 

3. Circulation in a Closed Basin. Since our problem is now homogeneous 
with respect to the boundary conditions, the motion is driven by the inhomo-
geneous term in the potential-vorticity equation. The solution that we exhibit 
is based on the assumption that f3 * < I , which is consistent with the validity of 
the {)-plane approximation to the equations. For the case of interest in com-
paring our results with Worthington's, /3* = 1/4, (cf. § 4 below). Hence 
a power-series expansion of the equations and boundary conditions in /3* is 
allowed. We define the variables 

3. From Ph. D. thesis in preparation. 
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II = - 02/2 + (J*II, + 0((3*2
), V = {J* V 1 + ...... .... . . , 

' = 0+(3* ( ,+ ... ... .. . , 1P = /3* 'I/Jr + .. .. ..... .. . ' (9) 
u = /3* u, + . ...... . . . .. ' w = (3* 2

w2 + ... . .. ... .. . 

Substituting the expansion (9) into (6) and (8), we obtain the quasigeostrophic 
potential-vorti city equation, 

e -- r - Il, +- - II, - CII, + -- = - r sm<p, 
[ 

1 a a I a2 
] a2 II, . 

r 8r 8r r 2 O<p2 802 
(1 o) 

where II, satisfies the boundary conditions 

W 2 
= 2_ [all, a2 II, _ aII, a2II,J = 

0 0 at = 0 ,1 . 
r O<p 8r80 8r 8<p80 

(II) 

In ( 1 o) and ( 1 1) we have made an error of o ( s/J *), which is to be small. 
The boundary conditions for W 2 should be satisfied at two levels of(; how-
ever, to the order of expansion here considered, 0 = C + o ((J*) and the fir st-
order solution formally must satisfy the boundary conditions at constant 0. 

The substitution 
II, = n, (r, 0) sin <p (12) 

is consistent with the problem as posed. This allows the boundary conditions 
(11) to be integrated as (for details, see Robinson 1965: § 3.2): 

8:n, 
n, = k, 80 at 0 = 1 , 

an, 
0 n, = ko - at = o . 

80 

The constants, k,,o, will be related to details of subsequent solutions for :n, . 
The quasigeostrophic state of the circulation is calculated from 

- COS<p 
u, = - -- n,, 

r 

v, = sin <p8n,/8r, 

( , = - sin<p&n, /80. 

The solution for :n, can be represented as 
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where :n, is any solution of 

ii100-Cii1 = - I' ( I 6) 

and satisfies boundary conditions ( 13). We have used the definition Z, (o::nr) 
as the first-order Bessel function of the complex argument o:: r which is 

' n ' bounded at r --+ o. The complete set of functions, <pn (0), on the interval [ o, 1 J is 

and An are generated from 

, _An[-k,+ ko] 
tan ''n - -'--'=--------= , o::~ + (A; - C)/ c = o . 

I + kok,A; 

The coefficients .An are determined from satisfying the mass-conservation 
condition at r = 1 (i.e. no normal velocity), whence 

I I 

.An = - ~<pn:n,(0)d0/ ~<p;(0)d0. 
0 0 

At this time we point out that, for a typical ocean basin, c < < 1 . Hence, 
essentially two distinct types of circulation can occur in the basin that con-
serves potential vorticity. If all an determined from (18) are imaginary (A~ > C), 
( 1 5) implies a boundary layer of o ( c1i 2

) at r --+ 1, the northern arc of the basin. 
A theorem has been proved (Spiegel, personal communication) that this class 
of solutions corresponds to a slow westward drift at all levels in a major portion 
of the basin, with a swift return flow over the northern arc [ cf. Fig. 2]. If, 
however, ko, k, are chosen such that an is real for some n = q (it can be shown 
that there are at most two o::q that can be real for any choice of ko, k,), then 
for c small, Z, ( o::q r) represents a series of small horseshoe-like gyres over the 
major portion of the ocean. Fig. 3 illustrates the lowest eigenfunction in this 
case. In general, the lowest eigenfunction will dominate all the flow in the 
basin, with the strongest gyre in the northern part of the basin. For certain 
values of ko, k,, this is not the case, and a complicated superposition of Figs. 2a 
and 3 will result. These complex-valued eigenvalues are particularly intriguing, 
because they give rise to motion of an intermediate scale in the interior basin; 
this motion has a wave length of the order of I oo km with a strong bias to 
the north-south components of circulation ( cf. Crease 1962 for measurement 
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Figure 2 . Schematic presentati on of solution. 

of moti ons of this scale). W e full y reali ze that the latter remarks are speculative 
in nature, and there is very littl e reason to believe that such small- scale circula-
ti on is reall y part of a coherent structure that spans the whole basin. On the 
other hand, the ghost of this simplifi ed phenomenon may haunt the much 
more complex real ocean fl ows. 

4. Deep Circulation in the North Atlantic Basin. To relate our results to 
W orthington's water-mass analysis, we consider the part of the basin in the 
North A tlantic that is directl y south of the Gulf-Stream system. T he latit udinal 

F igure 3. H orizontal transport of cx1 (real) eigenfunction. 
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circle of 30° is the diameter, and the northern arc is composed of the 4000-m 
sea-bottom topography on the eastern coast of North America, extending to 
40°N. The eastern portion of the arc is completed by the Newfoundland 
Ridge at 53°W. W e consider the circulation of the water mass that lies between 
2°C and I 2°C in this basin. The values of the parameters are 

/3*~1 /4, 

Under these numbers the upper bound for the magnitude of the deep flow 
is of the order of 20 cm/sec in the major portion of the gyre, and the returning 
flow is of the order of 200 cm/sec at its maximum. The width of the returning 
current is of the order of I oo km. The total transport is of the order of 30 x 106 

m3/sec. Actual calculations for the detailed structure of the flow reveal that 
these velocity and transport estimates are high by at least a factor of two or 
three. Moreover, the numerical values of the field quantities depend on the 
choice of ko, k,, and C. In particular, note that the characteristic horizontal 
density difference (and therefore the thermal wind shear) is a function or 
these quantities. 

Fig. 4 represents Worthington's schematic circulation derived from water-
mass analysis and geostrophic calculations. T o infer this pattern, Worthington 

80° 70° 60° 50° 40° 

400m TOPOGRAPHY 
// 

I 

50° 

40° 

30° 

20° 

Figure 4. Transport of water that l ies between 2° C and 12°C i~ the Gulf-Stream system. Each 
transport lin e represents 106 m3/sec accordmg to Worthmgton (1965). 
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has expli citl y assumed that water transported to the east by the Gulf Stream 
returns to the west at the same temperature range. Thus, his empirical analysis 
is consistent with potential-vorti city conservati on, and the resemblance to our 
results, though striking, is understandable. 
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