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An Investigation of Stable Waves along a Velocity 

Shear Boundary in a Two-Layer Sea with a 

Geostrophic Flow Regime 1 

Alyn C. Duxbury 

Bingham Oceanographic L aboratory 
Yale University 

ABSTRACT 

The physical characteristics of a certain class of stable perturbations in an ideali zed 
oceanic current regime are investigated theoretically and compared wit h some observed 
features of the Gulf Stream. The mathematical model envisages an idealized two-layer 
fluid with a deep lower layer that remains essentially in static balance. T he upper layer, 
when in equilibrium, is characteri zed by a region of uniform geostrophicall y balanced 
current (hence of nonuniform thickness); adjoining this is a second region of uniform thick-
ness that is at rest. Under disturbed conditions, the kinematic (shear ) boundary that 
delineates the two regions is subject to transverse excursions (or meanderings) associated 
with the verti cal displacement of the interface between the upper and lower layers. 

Only those disturbances with energy confi ned to the region of the shear boundary have 
been investigated in this study . Two classes of shear boundary waves occur : inertio-gravita-
ti onal and quasi-geostrophic. Stable modes for both classes are fo und to exist over the range 
0 . 1 to IO in the internal Froude number . However, the range of wave lengths for stable 
waves is dependent upon the internal Froude number. M oreover , it is only those fl ow-
regimes for which the internal Froude number exceeds unity that staJionary meanders in the 
stream are possible. Although the fr ee perturbations are dynamically stable, they are of 
dispersive character (the phase-speed being wave-length dependent). This implies that a 
general disturbance of the current boundary, as represented by a combination of many 
different modes, cannot remain in a permanent form. This aspect, together with the pos-
sibilit y of resonant coupling wi th the atmosphere, can lead to a growth, with time, of the 
disturbance and is suggestive of Gulf Stream meanders. The analysis shows that the quasi-
geostrophic modes have characteristics that are most consistent wi th observed meanders 
of the Gulf Stream. 

Introduction. A simplified model representative of a geostrophically balanced 
flow-regime in the ocean has been analyzed dynamically to determine under 

1 This study was conducted in partial fulfillm ent of the requirements for a Ph. D. degree at the 
Agricultural and Mechanical College ofTexas under Professor Robert 0 . Reid , Department of Oceanog-
raphy and Meteorology. 
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what conditions stable shear waves can exist along the edge of a stream. The 
model chosen for this analysis is identical to the one proposed by Iwata ( 1961); 
however, there are some important differences in the approach and results in 
the present study. 

The problem of determining the governing factors that cause the velocity 
shear boundaries of oceanic streams to meander (such as the Gulf Stream and 
Kuroshio) has been investigated before. Haurwitz and Panofsky (1950), using 
perturbation techniques, investigated a barotrophic model of the Gulf Stream. 
Their investigation centered upon the role played by cross-stream velocity 
profiles in determining the stability or instability of the shear boundary waves. 
They determined that the proximity of the velocity shear boundary to the 
edge of the continental slope controlled the stability of the meanders. Even 
though their analysis incorporated realistic cross-stream velocity profiles, their 
omission of density stratification leaves some doubt as to the applicability of 
their results to the Stream. 

Stommel (1953) investigated the stability of a broad surface current for a 
two-layer system. In his analysis, the current was considered to be uniform 
and of infinite width. The basic flow was considered to be representative of 
a geostrophic equilibrium, which requires that the depth of the upper layer 
increase to the right of the flow (in the northern hemisphere). However, in 
his analysis, Stommel treated the upper layer depth as uniform. His results 
indicate that, for F 2 = f/2/g'D > 1 (supercritical internal Froude number), 
some perturbations are unstable, depending upon their wave length. Un-
fortunately, his approximation of uniform depth implies that the results are 
restricted to values of F2 < < 1 . Hence the instability predicted by theory tran-
scends the conditions of its applicability. 

The object of the present study is to show that stable waves can exist 
in the presence of a velocity shear boundary for conditions of F 2 greater 
than, as well as less than, unity. The character of these stable boundary 
waves and the range of wave lengths for which these exist is studied in 
some detail. 

LIST 

B 
h 

,c 
D,Do 
D1 
E 
F 
f 
G 
g 

OF SYMBOLS 

(eH +e'H')/e', eq. (17). 
Turning point for Z,, eq. (60). 
Phase-speed (a/k). 
Equilibrium depth of upper layer for y < o and y = o, respectively. 
Equilibrium depth for region 1 or 2. 

W/2W', eq. (84). 
Internal Froude number (U/Vg'Do)-
Coriolis parameter. 
Transform of Z,, eq. (53). 
Gravity. 
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g' Effective gravity for internal disturbances, 

j 

K 
Kn 
k 
M 
m 

N 
n 
P,P' 
Pa 
P'b 

p 
Q,Q' 
s 
T 
t 
u 
u, V 

u1, v1 
F1 
w 
X1, r1 

Zo 

(X 

I'(x) 
y 

'YJ 
1 
µ 

e, e' 

g' = (LJe/e')g. 

Thickness of the disturbed upper and lower layers, respectively. 
Thickness of disturbed upper layer for region I or 2. 

Perturbation of vertical thickness for region I or 2. 

v=x. 
Subscript denoting region I or 2; y < o,y > o. 
A parameter with dimensions [L- 1], eq. (49). 
Modified Bessel function. 
Longitudinal wave number. 
Exponential parameter, eqs. (68) and (77). 
mz = -Mz. 
Variable wave number of eq. (55). 
Integer index ( o, I, 2, ... ), indicating wave mode. 
Pressure in upper and lower layer, respectively. 
Atmospheric pressure. 
Pressure at bottom. 
Integer index (o, 1, 2, . .. ). 

Quadratic operator for upper and lower layer, respectively. 
Slope of equilibrium interface, region I (y < o). 
Wave period. 
Time. 
Basic state velocity of upper layer, region I (y < o). 
x- and y-directed velocity, respectively. 
x- and y-directed perturbation of velocity for region I or 2, respectively. 
Basic state velocity for region I or 2 (U, o, respectively). 
Function of (X and z, defined by (69) and (64). 
x- and y-dependent amplitudes of the x- and y-directed perturbation 
of velocities respectively. · 
x- and y-coordinates (x taken in direction of basic fl.ow). 
y-dependent amplitude of the perturbation of vertical thickness. 
Transformation variable, eq. (54); and also z-coordinate. 
Transformation variable evaluated at y = o, eq. (70). 

A characteristic parameter, eq. (62). 
Gamma function, I'(x+ r) = xI'(x). 
Relative frequency, w/f. 
Displacement of vortex sheet. 
Wave length. 
Relative wave length, kU!f. 
Energy density (on a per-unit-area basis). 
Density of upper and lower water layer, respectively. 
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<J Wave frequency, 2n/T. 
<J> Kummer function, eq. (63). 
<p Latitude. 
lJ' Tricomi function, eq. (64). 
tp dI'(a)/da. 
Q Earth's angular velocity. 
w1 Symbolizes w, <J (1 = 1, 2, respectively). 
w <1 - kU. 
C Vorticity. 

THEORY 

1. Choice of a Model. As in Stommel's analysis, a uniform geostrophically 
balanced flow of the upper layer in a two-layer system is considered. However, 
it is recognized that even in the abstraction of the model, the current cannot 
be of indefinite width in both directions. The following three possibilities exist 
in regard to the termination of the uniform flow-regime on the left side of 
the current: (i) parallel to the flow there exists a rigid lateral boundary at 
which D (depth of upper flowing water) has some specific value Do; (ii) a 
free boundary occurs at which D = o (i.e. the interface between layers ter-
minate at the free surface of the fluid); and (iii) the moving layer terminates 
abruptly at the lateral junction of the moving layer and a stationary layer of 
the same density. 

(i) The first of these geometrical configurations was investigated by Reid 
and Duxbury (1960) in an attempt to extend the Stommel theory to suitably 
large values of the internal Froude number by making due allowance for the 
nonuniform layer depth. The results of that study indicate that the pertur-
bations are stable for all values of F 2 • This is consistent with the results of 
Haurwitz and Panofsky (1950) for a similar case in which the velocity shear 
occurs at a rigid boundary (see Introduction). 

(ii) The second possibility is a special case of (i) in which the edge-wave 
analysis by Reid (1958) is pertinent. As in case (i), it is shown that all free 
disturbances of regular behavior at the free boundary are dynamically stable. 
However, note that there exists no allowance for lateral transfer of energy 
across the lateral boundary in either case. 

(iii) The third geometrical configuration comes somewhat closer to reality 
and is the one presented in this analysis. This model (Figs. 1-3) allows for 
a sharp boundary of the current and at the same time retains the two-layer 
system throughout. Thus the combined influence of stratification and lateral 
shear of the flow is incorporated and allowed to enter into the dynamic analysis 
in its true light. 

It should be borne in mind that the present analysis does not attempt to 
take into account a continuously varying lateral distribution of velocity for 
the basic flow. Instead, the attention is focused on the limiting case of an 
abrupt change in the velocity of the basic flow . 
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The present model is not developed specifically for the Gulf Stream, Kuro-
shio, or any other major surface current, but the highly idealized system 
analyzed here can be lik ened to such currents. Throughout the text, the Gulf 
Stream is referred to as a prototype of the model, primarily as a matter of 
convenience in determining whether reasonable results could be obtained from 
the model. 

2. Formulation of the Problem. A diagram of the two-layer model is shown 
in Figs. 1 -3. The upper and lower layers are presumed to be of uniform 
density, e and e', respectively, where e' > e-For convenience in notation, all 
variables with prime relate to the lower layer. The instantaneous thicknesses 
of the two layers are denoted by H and H'. In general, these quantities are 
functions of x,y, and t, the horizontal position coordinates,and time, respectively. 
The x-axis is taken in the direction of uniform mean fl ow, U, which exists 
in region I of the upper layer. The plane, y = o, is identifi ed with the equilib-
rium state of the kinematic shear boundary between the fl owing and stationary 
parts of the upper layer. The subscripts , and 2 are employed to denote the 
regions on either side of this boundary, y < o and y > o, respectively. 

The important assumptions employed in the development are as foll ows: 

(A) The pressure distribution in the vertical direction is given by the hydro-
static relation; 

(B) The Coriolis parameter (vertical component of the earth's vorticity) 
is considered constant; 

(C) The curvature of the earth is neglected, implying that the gravity 
vector is everywhere normal to the planes Z = constant; 

(D) Attention is confined to baroclinic (internal) disturbances in a system 
with D'o )) Do; 

(E) The domain of the fluid is considered unbounded with respect to the 
x- and y-coordinates (except for the internal kinematic boundary); 

(F) The disturbances of the system from the state of equilibrium are con-
sidered to be suitably small; 

(G) The equilibrium state is considered to be representative of a state of 
geostrophic balance, with the lower layer at rest; 

(H) Fluid friction and external driving forces are ignored. 

The basic equations of motion for free disturbances of the upper layer, 
referred to a cartesian coordinate system rotating with the earth, are: 

du l aP 
- -fv+ - - = o 
dt e ax ' 

dv l aP 
-+fu+ - -=O (2) 
dt eay ' 

where d/dt = a/at+u(a/ax) +v(a/ay), and the pressure, P, is considered to 
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Figures r, 2, and 3 (top to bottom). Diagram of the two-layer model: the equilibrium state is in-
dicated by full lines, the disturbed state by dashed lines. For the equilibrium state, the 
upper layer of region I has a uniform geostrophically balanced flow, U, while region 2 

is at rest. The plane y = o represents a velocity shear boundary (vortex sheet) in the un-
disturbed state. 
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be governed by the hydrostatic relation 

aP 
az = -eg. (3) 

The quantities u and v are the general x- and y-components of fluid velocity 
for the upper layer relative to the earth, (! is the density of the same layer; 
and f is the Coriolis parameter ( 2 Q sin <p, where Q is the angular speed of 
the earth and <p is the latitude). It is understood that the velocity components 
are independent of z within each layer. Similar equations apply for the lower 
layer in terms of u', v', w', e', P'. As noted in (B) above, f will be considered 
constant as an approximation for disturbances of reasonably limited scale. The 
z-coordinate is taken positive upward, the reference being chosen at the sea 
bed, which is presumed horizontal. 

For the two-layer system, with P = P' at the interface, the hydrostatic 
relation yields 

P = Pa +eg(H +H' -z), 

P' = Pa+egH+e'g(H' -z), 
(4) 

for the upper and lower layer, respectively. As noted, Hand H' are the in-
stantaneous layer thicknesses; thus H +H' is the total depth of fluid. The 
term Pa is the atmospheric pressure at the sea surface, which is presumed to 
be uniform (as implied in condition H). It follows at once that 

aP fJH aH' 
ax= eg~+eg ox' . .. , 

aP' fJH fJH' 
ax = (!g~+e'g ax' ... , 

(5) 

with similar relations being implied for the y-derivatives. 
In addition to relations ( 1) and ( 2 ), the velocity components must satisfy 

the following integral forms of the equation of continuity for the upper and 
lower layers, respectively: 

o(uH) a(vH) aH 
+ + at = 0' 

a(u'H') o(v'H') aH' 
ax + a J + 8f = O. 

(6) 

(7) 

The pos1t1on of the vertical vortex sheet, which represents the internal 
boundary of the basic flow in the upper layer, is subject to transverse excursions 
associated with internal disturbances. However, it is presumed that no lateral 
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mixing of the fluids occurs across this interface; i. e. the boundary of the basic 
flow maintains its integrity. This implies that 

v,={:t+u,:x}'Y/, at J = 'f/, 

v,={i_+u,i_}'Y/ at y=.,,,, at ax ' ·, 
(8) 

where 'Y) represents the lateral displacement of the vortex sheet from its equilib-
rium position (y = o) . Since the motion under investigation is considered 
independent of depth (within each layer), it follows that 'Y/ is also independent 
of depth and hence depends upon x and t alone. Both relations in (8) pertain 
to the conditions at position 'Y/, but with u and v evaluated for regions I and 
2, separately. 

A second condition at the vortex sheet requires that the pressure be con-
tinuous. In view of (4), this requires that 

Hr (x,y, t) = H 2 (x,y, t), 

H'r (x,y, t) = H', (x,y, t), 
(9) 

where both relations apply at y = 'Y/. One of these relations represents merely 
an implicit definition for 'YJ(x, t); the other is an additional coupling condition. 
In the general problem of combined internal and surface-wave modes, all of 
the conditions represented in (8) and (9) are relevant. If attention is confined 
to internal modes only (e.g. by condition D), then one of the conditions in 
(9) becomes redundant, since H' is related directly to H. 

In addition to the above specific conditions on the variables u, v, H, etc., 
certain qualitative conditions should be stipulated in order to make the formu-
lation of the general problem more definitive: 

(I) Only those disturbances with regular behavior at all x and y within 
regions I and 2, separately, will be considered admissible; 

(]) The possibility of energy being propagated to or from the system at 
y = ± oo will be excluded; in addition, the system approaches equilibrium 
there. 

Condition (I) in essence excludes solutions that possess singularities at any 
point within the region to which the solution pertains. At the position of the 
vortex sheet, the velocity gradient is undefined at the outset; however, the 
condition of regularity with respect to the quantities u, v, and H should be 
required here. Condition (]) restricts the scope of the study to disturbances 
whose energy is confined to a finite region in the vicinity of the vortex sheet, 
in the same sense that the energy of the Kelvin tide-wave is confined to the 
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region of a fixed boundary. In essence, it is the wave-guide characteristics 
of the stream boundary that are of concern in this study. 

3. Equilibrium State. Clearly, if the lower layer is at rest, as presumed for 
the equilibrium state, then from (5), with a P' ;a X = 0' it follows that 

(Io) 

Accordingly, 

( I I) 

with a similar relation implied for the y-derivative, where L'.le = e' - e. 
A simple steady-state regime for the upper layer, satisfying ( r ), ( 2), and 

( r r ), is that for which 

u = f/(y), V = O, H = D(y), ( I 2) 

where the functions D(y) and f/(y) are related by the geostrophic relation 

f
r, , dD 
r +g dy = o, 

where g' is the effective gravity, g(e' - e) /e' . This also satisfies continuity 
within the limitations imposed by (B). The form selected for f/(y) in the 
present model is the step function 

f/(y) = {
u, 
o, 

where U is a constant. Thus ( r 3) yields 

D (y) = {Do - sy, 
Do, 

where 

JU 
S= -

g' 

y < o, 

y > o, 

y < o, 

y > o, 

is a constant slope of the interface and D 0 is the equilibrium depth of the 
upper layer at y = o. It should be evident that the boundary conditions are 
satisfied automatically. 

There is an inconsistency in the model that deserves some comment. This 
pertains to the -conflict of relation ( r 5) with the earlier stipulation of finite 
total depth of the fluid . It is evident that, for a total equilibrium depth or 
Do +D'o at y = o, the width of the stream is limited to the value D '0 /s. It is 
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supposed in the su?sequ~nt development that D 0 can be chosen arbitrarily 
larg~ so that th~ sttpulatt~n of_( I 5) holds for the effective range of y that is 
pertinent to a given locali zed disturbance. This point is demonstrated later in 
the work on page 2 7 4. 

4. Transformation of the Basic Equations. By employing relati ons (5) and 
the definition 

B = (eH+e'H')/r/ , 

it is readily shown that the equations of motion for the upper and lower layers 
can be rendered into the form 

,aH aB 
Q{u}-Jv+g a:;+g ox= o, 

,aH oB 
Q { V} + ju + g ay + g i) J = 0, 

( I 8a) 

and 

Q' { ,\ f , iJB u 1 -v +g -= o i)x , 

Q' { '} fi , oB 
V + U +g OJ = 0 . 

( 18b) 

The symbols Q and Q' are introduced to designate the operations 

A useful alternative continuity relation involving B is obtained from the 
sum of (6) and (7) after multiplying these by (! and e', respectively: 

i) i) aw~ 
i) x (eHu +e' H ' u') + i) J (eHv + (! 1 H'v') + [)t = 0. (20) 

It is apparent from the definition ( I 7) that e' B is simply the total mass of 
fluid in a column of unit cross-sectional area extending from the sea bed to 
the free surface. Hence ( 20) is simply a statement of the mass budget for the 
total column. Moreover, in view of (4), the bottom pressure (at z = o) is 

Thus B can be regarded as an equivalent depth in the sense that it is a measure 
of the pressure at the sea bed, for a given value of Pa. 
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The above relations govern both barotropic and baroclinic type disturbances 
' of the system. The baroclinic perturbations are characterized by a nearly in-
variant value of B and a nearly zero net mass transport for the total depth. 
These conditions are consistent with (20). Thus the order of magnitude of 
u' and v' are 

-H 
u'~ H,(u-P), (22) 

for the baroclinic pisturbances. Accordingly, it follows from (18a) and (18b) 
that 

aB , H a(H-D) 
g ox~ -g (H+H') ox 

aB , H a(H-D) 
g-ay~ - g(H+H') oy 

Hence for the condition of a relatively thin upper layer (H/H' (( l ), such as 
generally exists in the ocean, it is justifiable to neglect the gradient of B in 
( l 8a). 

Thus, for baroclinic disturbances in a system with a deep lower layer, the 
governing equations for u, v, and H are 

Q{u}-fv+g'~~ = o, 

Q { V} +Ju+ g' = 0 > 

oH o(uH) o(vH) 
- +---+---=O 
at ax a y · 

(26) 

The solutions appropriate to regions 1 and 2 must be matched such that (8) 
and (9) are satisfied. However, since H' is determined by H for the condition 
of constant B, only one of the relations in (9) is pertinent. Moreover, since 
the other relation is simply an implicit equation for 'YJ, it follows that con-
dition (8) can be expressed in the form 

Qr{Hr-H2} = o, 

Q2{Hr-H2} = o, 

at (Hr -H2) = o, where the operators Qr and Q2 are given by (19), with the 
particular values of u and v appropriate to regions 1 and 2, respectively. 

5. The Perturbation Equations. Relations (24) to (28) are nonlinear with 
respect to the dependent variables u, v, and H. However, if the departures 
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from the state of equilibrium are suitably small, then the linear approximations 
of these relations in terms of the perturbation variables are applicable. 

In this connection, it is convenient to introduce the notations 

Uj = 11'1 + Uj, 

VJ = Ol+VJ, 

H1 = Di +h1, 

l 
f 

where the subscript J ( = 1, 2) denotes the region of the upper layer to which 
the particular set of functions pertains, and where u1, v1, and h1 represent 
perturbations superimposed on the basic state. The terms P1 and D1 designate 
the quantities 

11'1 = u, 0 

D1 = Do - sy, Do 
(30) 

for i = l, 2, respectively, where s is given by ( 1 6 ). These correspond to the 
equilibrium state for the two regions, although it is emphasized that the re-
striction on y implied in relations (14) and (15) does not apply to P1 and D1. 

Specifically, the set of functions u1, v1, and h1 for 1 = l have physical 
meaning for y < 17(x, t), and those corresponding to 1 = 2 have physical 
meaning for y > 1/ (x, t), where 1/ is the position of the vortex sheet in the 
disturbed state. For undisturbed conditions the perturbations u1, v1, h1, and 1/ 
vanish, hence (30) is consistent with (14) and (15) under these conditions. 
The use of the double-value reference state near y = o, as implied by (29) 
and (30) for disturbed conditions, is simply an artifice that allows u1, v1, and 
h1 to be continuous functions at and near y = o. Any discontinuities in the 
system are confined to the position of the vortex sheet at y = 17(x, t), where 
the two sets of functions must be taken such that the kinematic boundary 
conditions are satisfied. 

The perturbations u1, v1, and h1 for both regions are to be regarded as 
functions of x, y, and t in general. However, it is supposed that the magnitudes 
of these quantities are small for any x, y, and t, in the sense that 

Under these conditions, the differential relations ( 24) to ( 26) can be reduced 
to the following linear system when second order terms, namely those involving 
products of the perturbation variables, are neglected: 

(32) 

(33) 
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(34) 

For region 2, these equations have a particularly simple form, since /7, vanishes 
and D2 has the constant value Do. 

The lateral excursion of the boundary can be expressed in terms of the 
variables h1 and h2 by means of the condition H, = H, at y = 'YJ· Use of (29) 
and (30) gives 

'YJ = (h1 -h,)/s, (35) 

where h1 and h2 are evaluated at y = 'YJ· However, if h1 = h, is expressed by 
a Taylor series expansion about y = o and if second order terms are neglected, 
it follows that the first approximation for 'Y/, which is consistent with relations 
(32) to (35), is simply (35) with (h1 - h2) evaluated at y = o. 

The latter relation allows the evaluation of 'YJ(x, t) if the functions h1(x ,y, t) 
are known, but it does not impose any condition on the functions u1, v1, 

and h1• The coupling of the perturbations for regions I and 2 is provided by 
conditions (27) and (28). An expansion of the functions in these relations 
about y = o, with subsequent neglect of second order terms, yields the fol-
lowing linear boundary conditions at y = o: 

( !!__ + /71 !_) (h1 - h,) - sv1 = 0 
ot ox (36) 

for 1 = I and 2. With (35) and the definition of 171, relations (36) can be 
expressed in the alternative form 

( • • ) uo'YJ 
V1 -V2 = Ox' 

(37) 

where V1 and v, are evaluated at y = o. The first of these relations shows 
clearly that v1 is not continuous at the shear boundary. However, the Row 
normal to the shear interface is continuous and equal to the rate of displacement 
of the interface in the direction of its normal. 

In addition to the above conditions, the admissible perturbations satisfying 
(32), (33), and (34) will be limited to that class for which 

D1u,, D1v1, h1 
as and 

(38) 

(39) 
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as y + oo. These conditions rule out the possibility of lateral transfer of 
energy to or from the system, since Dvh must vanish for I y I oo under the 
above conditions. 

6. Normal Mode Relations. In lieu of any initial conditions or boundary 
conditions in respect to x = ± oo, attention is confined to those normal mode 
solutions that are of simple harmonic form in x and t. Specifically, the variables 
t11, VJ, and h1 are considered to be of the form 

Uj = X1(y)ei<kx-at), 

'Vj = y1 (y) ei (kx-at), 

h1 = Z1 (y) ei (kx-at), l 
where k and a are the wave number and angular frequency, respectively, and 
X1, Y1, and Z1 are complex functions of the real variable y. Thus each of 
the variables is associated with a common longitudinal wave length ..:l = 2n/k, 
wave period T = 2 n /a, and phase-speed c = J.JT = o/k, but each differs in 
phase and in respect to variation with y. Regular behavior at x = ± oo is as-
sured if k is restricted to real values. Stable solutions are those that have regular 
behavior for all t (i.e. real a). It remains to determine the conditions for which 
stable perturbations satisfying relations (32) to (40) can exist. 

Substitution of relations (40) into relations (32) to (34) gives the following 
relations to be satisfied by the functions X1, Y1, and Z1: 

where 

-iw1X1-fY1+ig'kZ1 = o, 

. V fX ,dZ1 
-zw111+ 1+g dy =O, 

iw1Z1+ikDX1+ ~(D1Y1) = o, 

WJ = {a-kU, 
a, 

J = I 

j = 2. 

(42) 

(43) 

(44) 

They-dependent functions for the two regions are coupled by condition (36), 
which takes the form 

iw1 (Zr - Z2) +sY1 = o, (45) 

where the Y1 and Z1 are evaluated at y = o. Moreover, conditions (38) and 
(39) require that X1, Y1, and Z1 tend to zero for large values of y. The above 
relations (41) to (45) formally determine the functions X1, ~i, and Z1 for 
given values of the parameters k, g', s, and U, except for an arbitrary constant 
factor. 
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The functions X1 and Y1 represent the y-dependent (complex) amplitudes 
of the longitudinal and transverse perturbations of flow. These can be related 
directly to Z1 and its derivative by simple algebraic manipulation of relations 
(41) and (42). The result is 

(47) 

The function Z1(y) represents they-dependent amplitude of the perturbation 
of thickness of the upper layer. If this is real for all y, this would imply that 
the disturbance of layer thickness is in phase along a line x = a constant at 
any given t. In other words, the phase lines, transverse to the basic current 
U, advance in a direction parallel to ·the basic flow (upstream or downstream, 
depending on the sign of a/k). Under these conditions, relations (46) and (47) 
indicate that X1 is real provided that w1 is real and that Y1 is imaginary. 
This implies in turn that the longitudinal perturbation of flow is in phase 
with Z1 and the transverse flow is n /2 radians out of phase with Z1, under 
the condition that Z1 is real. This is the situation in respect to the solutions 
investigated in the subsequent sections. 

If relations (46) and (47) are employed in (43), the following second order 
residual equation involving Z1 only is obtained: 

where 
K1 = (w 21 - / 2)/g' + (kf/w1) (dD1/dy). 

Now, since dD1/dy has the constant value -s for 1 = 1 and o for f = 2, in 
the present model, it follows that K1 is simply a parameter independent of y 
for either region. The only variable coefficient is D1 for 1 = 1 . Both K1 and 
k have the dimensions of reciprocal length. 

It remains to find solutions of (48) for each region that satisfy the coupling 
condition (45) and the restriction Z1 for large values of y. 

Iwata (1961) employed a relation similar to (48) in his analysis of a model 
of the type dealt with in this paper. Note, however, that his analysis was re-
stricted to the case for which w21<( J2 , thus simplifying the expression for K, . 
This can be shown to be equivalent to the restriction of quasi-geostrophic 
perturbations (geostrophic vorticity approximation). This restriction is not 
imposed in the present analysis. 
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7. Formal Solution of the Perturbation Equations. The solutions of the per-
turbation equations that are of primary concern are those for which k differs 
from zero, since these correspond to meanders of finite longitudinal wave 
length. However, there is one special class of solution with k = o that should 
be mentioned before proceeding. This is the class of steady-state solutions for 
which Z depends upon y alone (hence a = o, k = o) . Relations (41) and (42) 
reveal that ri = o and X1 = - (g' /f) dZ1/ dy for this case, since w1 vanishes 
for both regions. Moreover, (43) and (45) are satisfied identically for any 
distribution of Z1 as a function of y. This class of solution is simply a steady 
geostrophic fl ow condition superimposed on the basic geostrophically balanced 
regime. Allowance for a permanent variation in the basic state would be. 
pertinent to situations for which the selected basic state does not correspond 
to one of stable equilibrium. 

The differential equations governing the functions Z,(y) and Z2(y) must be 
treated separately. Using (48) and the pertinent definitions, the particular re-
lations for Z, and Z2 can be expressed as follows: 

where 

d2Z, dZ, 
(D0 -sy)-- -s- + (K-k 2 D 0 +k 2 sy) Z, = o, 

dyi dy 

d2Z2 
-d +m2 Z2 = o, ryz 

w 2 - / 2 fsk K= --,- - - , 
g w 

m = {a2-J2 -kJ'/2 
g' Do J . 

(49) 

(so) 

The first of these differential equations can be brought into a form more com-
parable to the second by introducing the following transformations:2 

Z, = z-'/,G (z), 

2k 
z = - (Do-sy). 

s 

The resulting relation, for G(z), is 

where 

JzG 
-- +N2 G=o, 
dz2 

(53) 

(54) 

(55) 

2 In the subsequent development, the symbol z is employed exclusively in the sense defined by (54); 
hence there should be no confusion with the vertical coordinate. 
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(56) 

The essential distinction between (50) and (55) is that m 2 is merely a constant 
parameter while N 2 is a function of the independent variable y. 

The general solution of (50) for m2 > o (real m) is simply 

Z2 = A' 2 cos my+ B'z sin my, 

and for m 2 = - M 2 ( M real) 

(57) 

(58) 

where the coefficients are arbitrary constants. Solutions of type (57) or (58) cor-
respond, respectively, to the condition a2 greater than or less than (/2 +g' D 0k>). 
The Kelvin boundary wave belongs to the second type. 

An examination of the function N 2 reveals that this vanishes for z = h, 
where 

(59) 

attention being confined to the domain z > o (positive D within region 1 ). 

For o < z < h, N 2 is positive, while for z > h, N 2 is negative. Hence it would 
be expected that the solution of (55) for a given value of K/sk will display 
an oscillatory behavior in the range o < z < b and be of monotonic character 
for z > b. Moreover, if 2kDo/s exceeds h, then the function G, hence Z,, 
will be of monotonic character in the meaningful range of z for region 1. 

Thus the ratio kDo/sh (or alternatively k2 Do/K) plays,a key role in determining 
the behavior of Z1 (y) for y < o. 

Use of the transformation (53) and the resulting relation (55) is particularly 
helpful in determining the asymptotic properties of the possible Z1 functions 
by employing the W.K.B. method (Morse and Feshback, 1953; Eckart, 
1960). On the other hand, the investigation of the general solution of (49) 
is facilitated by employing the alternative transformation 

(60) 

This converts (49) to the standard form of a confluent hypergeometric equation 
(Rainville, 1952): 

d2 F dF 
z-+(c-z)- -cx.F=o 

dz• dz ' 
m which c = 1 , and 

(62) 
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One solution of cq. (61) is the Kummer function <!>(IX., c; z); for c = 1 this 
has the form 

I oo I 

<!>(1X.,1;z)= 1+I'( )L -( ')2 I'(1X.+p)zP. 
IX. p = r p . (63) 

A second solution of(61) for c = 1, which is linearly independent of<l>(IX., 1; z), 
is the Tricomi function, P(IX., 1; z), defined by 

'P(IX., 1; z) = - I'(IX.) {<!>(IX., z) In z + 

p I'(IX. +p) } 
+ ~/ (p!) 2 I'(1X.)[1Jl(1X.+p)-21Jl(1 +p)], 

where 1J1(1X.) = dI'(1X.) /d1X. (Erdelyi et al., 1953). It is apparent that <I>= 1 at 
z = o, while 1P has a logarithmic singularity at z = o. For large z, these 
functions have the following asymptotic behavior: 

<1>-+- 1-eZzlX-i 
I'(IX.) ' (65) 
lf'-+z-lX. 

The general solution for Zi is 

Zi = Aie-zl•<fJ(IX., 1_; z)+Bie-zl2 1P(1X., 1; z). (66) 

However, in view of the asymptotic behavior for large z, it is apparent that 
.Ai must be zero if Z, is to vanish at large z (large negative y). Likewise, if 
Z, is to vanish for large positive y, then relation (58) with A2 = o must be 
adopted as the admissible solution for region 2. Thus 

Z, = Bi W(1X., z), 

where 
W(IX., z) = e-z/• lf'(IX., I; z). 

Relation (67) holds for z > zo while (68) holds for y > o, where 

2kDo 
Zo = -- > O. 

s 

(67) 

(68) 

(69) 

(70) 

The function W(IX., z), oscillatory in the range o < Z < b for negative values 
of IX., decays monotonically to zero for z > b. If IX. is a negative integer, 
then W(1X., z) can be represented in terms of the Laguerre function; if IX. = 
±(2n+ 1)/2, W(IX., z) can be expressed in terms of the modified Bessel 
function Kn(z/2). These relations and the pertinent recursion relations for 
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TABLE I. SAMPLE TABULATIONS OF W(a:, z). 

°' = 
z -4 - 3 -2 - 1 -0.5 0 0.5 1 

0.10 14.4 - 4.08 1.53 - .856 - .230 .951 1.76 1.92 
0.15 10.2 - 3.20 1.32 - .790 -.102 .931 1.54 1.55 
0.2 6.84 - 2.49 1.122 -.724 .008 .905 1.37 1.35 
0.3 1.08 - 1.19 .766 -.602 .147 .861 !.15 1.05 

I 

0.4 -3.17 - 0.14 .459 -.491 .243 .819 .989 .857 
0.6 - 8.16 1.31 -.0296 -.296 .362 .741 .774 .613 
0.8 - 9.72 2.11 - .375 - .134 .430 .670 .629 .471 
1.0 -9.10 2.42 - .606 0 .468 .607 .521 .360 
1.5 - 3.28 1.94 - .827 .236 .486 .477 .342 .210 
2.0 ,2.93 0.73 - .736 .368 .458 .368 .237 .133 
3.0 7.37 - 1.34 - .223 .446 .355 .223 .1207 .088 
4.0 3.24 -1.89 .271 .406 .254 .135 .0643 .0280 
6.0 -5.98 -0.30 .696 .249 .117 .0498 .0196 .0072 
8.0 -4.25 1.36 .622 .1282 .050 .0183 .0063 .0023 

10.0 1.78 1.85 .418 .0606 .0207 .0067 .0021 .0007 
15.0 6.31 .89 .1295 .0110 .0014 .0008 .0001 .0000 
20.0 2.67 .216 .0146 .0008 .0002 .0000 
30.0 0.134 .006 .0002 

facilitating the evaluation of W(cx., z) and its first derivative are given in 
Appendix A, p. 281. Tables r and n show in tabulated form the behavior 
of the W(cx., z) function. 

Again attention must be drawn to the mathematical treatment of the fore-
going equations in the work by Iwata ( r 96 r ). Note the different form in 
the expression for the Tricomi function in his work, the counterpart of eq. 
(64) presented here. 

8. The Associated Flow. Use of relations (46) and (47) with (72) yields the 
following expressions for the amplitudes of the velocity components associated 
with a departure from equilibrium: 

-ig'kBx , 
Yr = -( f -) [f W(cx., z) - 2W W (ex., z)], wz- 2 

g'kBr 
1 

Xr = (w
2 
-J

2
/wW(cx., z) - 2/W (ex., z)], 

for region 1, where W'(cx., z) denotes the derivative dW/dz. On the other 
hand, relation (68) yields the following expressions for region 2: 

_ -ig'kB2 [ M] -My 
Y2 - (a2-j2) f-ak e , 

g'kB. [ M] -M 
X. = (a•-J•) a - f k e 11. 

(72) 
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TABLE II. ZEROS OF W (rx, z) FOR rx < O. ENTRIES CORRESPOND TO THE VALUES 

zp , FOR W HICH W (rx , Zp) = 0 FOR THE INDICATED VALUE OF rx .• THE LARGEST 

RooTS, Zp , ARE ENTERED I N COLUMN I, THE NEXT LARGEST IN COLUMN 2, ETC. 

P= 
(% l 2 3 4 5 6 7 

- .5 0.20 
-1.0 1.00 
- 1.5 2.1 .10 
-2.0 3.4 .59 
-2.5 4.7 1.30 .JO 
-3.0 6.3 2.3 .42 
-3.5 7.8 3.3 .94 .IO 
-4.0 9.4 4.5 l.72 .32 
-4.5 11.0 5.8 2.6 .76 .09 
-5.0 12.7 7.1 3.6 1.42 .27 
-5.5 14.2 8.6 4.6 2.1 .63 .08 
-6.0 16.0 IO.I 5.7 3.0 1.20 .23 
-6.5 17.7 11.4 6.9 4.0 1.80 .55 .06 
-7.0 19.2 12.8 8.2 4.9 2.55 1.03 .20 

• Entries of z.p are reliable to about ± z 0 / 0 • 

It remains to determine the relationship between the constants B, and Bz 
as well as the relationship between a, k and the other parameters of the model. 

9. The Characteristic Equation. The above relations for X1, r,, and z, will 
satisfy the coupling conditions (45) for 1 = 1 and 2 provided that 

and 

(74) 

These determine the ratio B2/B, and impose the following characteristic 
relationship between a and k: 

{w- (w!'~~z) v- 2
W ~t:::n} {a+ (af~~z) [1-a~]} = W<J. 

(7 5) 

Recall that w=a-kU 

l Zo = 2kDo/s (76) 

s = Uf/g', 

while M 2 = - m• or I <JZ -!· 
M = lk2 - g' Do ' (77) 
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and from (51) and (62) 

IX = ( l - OJ
2 
,-Ji+ L). 

2 g sk OJ 

Relations (76) and (77) imply that the functions W(ix, zo) and W' (ix, z0) are 
determined by a, k and by the model parameters f, g', U, and Do. Accordingly, 
the combined relations (75) to (78) imply that 

a = Sn(k,f, g' ,, U, Do), (79) 

the function Sn being multivalued for fixed values of the arguments. 
The system of eqs. (75) to (78), which collectively represent the charac-

teristic relationship, can be put into a more convenient form for analysis by 
introducing the dimensionless variables 

OJ 

y = l' (Boa) 

Uk g' sk F 2 z0 

µ = 7 = F = -
2

- , (80 b) 

where 
u 

F= ~ . 
Vg'Do 

(Soc) 

The parameter y is a relative "Doppler" frequency,µ is a relative longitudinal 
wave number, and F is the internal Froude number. The actual frequency a 
is simply (y + µ)f. The relative phase-speed is c/ U = l + y/µ. Thus meanders 
that are stationary relative to the earth would correspond to the condition 
y = -µ, while meanders that are carried along with the basic fl.ow would 
correspond to the condition y = o. 

Note that Zo can be expressed as 2µ/ F 2 • Also, it is not difficult to show 
that M / k takes the form 

= { l - [(y + µ)2 - l J Fi/µ2}'/2, (8 l) 

while ix can be expressed as 

IX=; { l _ y2; l + H· 
Moreover, at the expense of some algebraic manipulations, relation (7 5) can 
be rendered in the form 

{µy(CE- 1) + (E-y) (y +µ) [(y +µ) 2 - 1J}2 = 

= [y(y +µ) (CE- 1)] 2 {µ2-[(y+µ) 2 - 1] F 2}, (83) 
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where 

C = 2a; - I, 

E( ) _ W(a:, Zo) 
a:, Z o ·- 2 W ' (a:, z

0
) • 

The latter function can be calculated directly for specified values ofµ, F, 
and a:, using the identity z0 = 2µ/ Fz. 

Formally eqs. (82) and (83) constitute an implicit characteristic relationship 
for y in terms of the parameters µ and F alone. However, for each µ and F 
there exists a countably infinite set of admissible y. These multiple roots cor-
respond to the different physical classes and to the different geometrical modes 
in respect to the functions X1, Y1, and Z1. The different y and the associated 
functions X1, Y1, and Z1 for given µ and F represent the eigen values and 
eigen functions of the system as controlled by the geometry and inertial aspects 
of the basic state. 

Relation (83) represents an eight-degree polynomial m y: 

8 

L Any8- n = o, (85) 
n=o 

in which the coefficients An depend upon the parameters a:,µ, and F. The 
detailed relations for these coefficients are given in Appendix B (p. 282). Re-
lation (82) can also be expressed in the form of a third degree polynomial in y: 

y3 + [( 2a; - I)µ - I] y - µ = 0. (86) 

In this case the coefficients do not involve F and the roots y for given a; are 
easily constructed. Graphs of y versus µ for selected values of a:, as deter-
mined from (86 ), are shown in Fig. 4 for negative values of y. The admis-
sible values of y (and a:) are those that satisfy both (85) and (86) for com-
monµ and F. 

The polynomial form of the characteristic equation, (8 5), was analyzed by 
computer methods in this work. The coefficients were first found in terms 
of three values of Fz (0.1, 1.0, 10.0), 16 values of a:, and 30 values of zo or 
rather µ. This produced 1,020 separate polynomials that were then solved 
for the real roots y, which were related to the particular F2 , a:, and µ that 
made up the coefficients of each equation. Not all of the roots of (8 5) are 
real; moreover, the number of real roots depend on the relative wave length, 
µ, for given Fz and a; . Graphs of - y versus µ were then constructed, each 
graph representing 30 of these polynomials. Each graph was divided along 
itsµ axis into mode-number (n) zones. The modal number was determined 
by the number of zero crossings of the W(a:, z) function for z larger than a 
particular z, or for µ larger than a particularµ. The number of zeros (n) 
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Figure 4. Graph of -y versusµ for different values of the parameter C( as evaluated from eq. (86). 

correspond literally to a transverse wave number. The 34 graphs obtained 
in this manner from the polynomial are not included in this article. These 
graphs were then superimposed on the graphs of eq. (86) (Fig. 4) to determine 
the admissible values of y and a for common µ and F. Each point obtained 
in this manner was labeled with its corresponding modal value n, and contours 
of n were then drawn to produce the eigen values and functions of the problem. 
Figs. 5-7 are the results of these manipulations. 

r o. Condition Imposed by Real M . The stipulation of monotonic character 
of the disturbance in region 2 requires that M be a .real number. It is clear 
from (8 r) that this is the case if 

[(y+µ)'- r] < (jr-
This condition imposes an upper and lower bound or cut-off on the admissible 
y values for given µ and F. Specifically, (87) requires that 

(88) 
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where 

Values of y that fall outside the indicated limits would be associated with an 
oscillatory profile, relation (5 7 ), corresponding to the superposition of an m-

-~ 

F1 
=- .lO 

COIITOVRS OP' n 

Figure 5. Graph of the admissible negative real values of the relative frequency y = (a-kU)/f versus 
the relative wave numberµ= kU/f for the case, F2 = U>/g'D0 = 0 . 1 . Each curve cor-
responds to a distinct value of n, which represents the number of zeros of Z in region 1. 

cident and reflected wave train in region 2, with wave length 2n/Vk2 + m2
, 

which impinges at an angle tan-1 m/k to the shear boundary. 
The curves shown in Figs. 5-7 have been restricted to the range delineated 

by relation (89). 

INTERPRETATION OF THE MODEL 

1. Properties of the Different Wave Modes. In the interpretation of Figs. 
5-7 it is important to bear in mind that y is a relative frequency of the waves 
-namely, the frequency apparent to an observer moving with the mean cur-
rent U in region 1, in a system of units where f has unit value. The angular 
frequency with respect to a fixed point on the earth is <1 = f(µ + y) = kU + Jy, 
and the longitudinal wave number is simply k = (f/U)tt. 
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It is also important to note that while the multiple values of y versus µ 
as given in Figs. 5-7 are admissible roots of the pair of relations (85) and 
(86), all of these roots are not necessarily associated with meaningful disturb-
ances of the system. In particular, -y = 1 (w = - f) is a valid root of the 
characteristic equations. However, relations (7 I) indicate that Bi must vanish 
if the fl.ow is to remain finite for the case w 2 = / 2 • The roots <J = ± f also 

f1 
Figure 6. Graph of the admissible negative real values of the relative frequency y = (a- kU)/f versus 

the relative wave number µ = kU/f for the case, F2 = U2/g'D0 = 1.0. Each curve cor-
responds to a distinct value of n, which represents the number of zeros of Z in region 1. 

emerge from the characteristic equation for F2 < I (Figs. 5 and 6 ). These 
correspond to -y = l ±µ. Relations (72) indicate that B, must vanish for 
<1 2 = J2 if the fl.ow in region 2 is to remain finite. 

In order to obtain determinate solutions for the special cases w2 = J• and 
a• = / 2 , it is necessary to return to the basic relations ( 41) to ( 4 5) and set 
WJ = ±J and Z; = o (for J = l or 2). The first two equations lead to the 
common result X; = ± i Y; (sign to agree with the choice w1 = ±J). Relation 
(43) yields Y; = A; e±kY/D;, where A; is a constant. Again the sign cor-
responds to the choice w; = ±j. Clearly there is only one choice of sign, 
depending upon the region. For region 1 (y < o), the negative sign is ruled 
out if the fl.ow is to remain finite at large /y/. For region 2 (y > o), the positive 
sign is ruled out. 

This indicates the following situation with regard to the modes in question: 
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+/ { 

-f 

Zr = o, x. = iYr, r, = A,ekY/D(y) 

Z2 :;z= o, general solution for region 2, 

trivial (except for µ = 2),3 
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Figure 7. Graph of the admissible negative real values of the· relati ve frequency y = (a-kU)/f 
versus the relati ve wave numberµ= kU/ffor the case, F" = U' /g'Do = 10.0. Each curve 
corresponds to a distinct value of n, which represents the number of zeros of Z in region 1. 

-/ { z, * o, general solution for region I 
a = 

Z2 = o, X2 = iY2, Yi = A2 e-kY/D 0 , 

a = +f trivial (except for µ = 2).3 

The valid modes w = + f (a = f + k U) and a = -f indicate that a rotary 
inertial motion can exist on one side of the shear boundary, with a general 
disturbance on the other. 

Referring to Figs. 5-7 it is apparent that the different wave modes seem 
to fall into one of two types: those with /y/ > I and those with /y/ < r (cor-
responding to /w/ >for /w/ </, respectively). As can be seen from relations 
(46) and (47), the waves with /w/ «J have a nearly geostrophic relation for 
the flow, while those with /w/)) / have a flow associated with ordinary in-

3 Figs. 5 and 6 indicate a special situation for point - y = 1, µ = z, in which three curves in-
tersect. 
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ternal gravity waves. Thus the general classification quasi-geostrophic and 
inertio-gravitational seems appropriate for distinguishing the two classes of 
wave modes. 

An exception occurs for the fundamental zero-order mode. This behaves 
like the quasi-geostrophic class for small µ and like the inertio-gravitational 
class for large µ. 

Now that the nonapplicable modes have been identified, it is important 
to establish whether the remaining modes can be ranked in importance in 
terms of their modal value (n), and their physical properties (inertia-grav-
itational type as opposed to quasi-geostrophic type). A comparison of the 
modal curves of this analysis (Figs. 5-7) with t~e modal curves as deter-
mined by the rigid boundary problem ~Reid and Duxbury, 1960) shows that 
only the zero-order modes of this analysis were appreciably different from 
the rigid-wall problem. 

The quasi-geostrophic modes were inspected in some detail to determine 
their contribution to the meandering of the vortex sheet. In particular, an 
effort was made to determine if a regular pattern, allowing the prediction of 
the conditions that create large meanders, could be found. 

The inertio-gravitational modes do not occupy a position on the -y versus 
µ g.raphs that enables the relative wave length,µ, to become appreciably larger 
than the negative of the relative frequency, y. In addition, the curves of - ex 
in the same region (Fig. 4) are nearly parallel to the modal curves intersecting 
in areas where -y and µ are nearly equal. All of these interacting factors 
combine to prevent the inertio-gravitational modes from having large wave 
lengths. Thus the inertio-gravitational modes of the model do not seem to 
match the meanders as observed in the Gulf Stream. Since the quasi-geostrophic 
modes have physical characteristics very similar to the waves found in the 
prototype, they are considered to be the important modes for the meander 
process. Therefore, the quasi-geostrophic modes appear to be the important 
meander modes. 

Several other features also separate these two physical groupings of wave 
modes. Fig. 8 shows that all of the inertia-gravitational modes travel upstream 
against the current, U, and that the quasi-geostrophic modes travel down-
stream. This in effect requires all frequencies, a, of the first type to be negative 
and those of the second type to be positive. This is quite evident from the 
ratio of c/ U for positive U and k. The particular case F 2 = Io (Fig. 7) must 
be singled out, as the inertio-gravitational modes in this example intersect the 
c/ U = o curve and thus have both positive and negative values of a in this 
region. However, near the line of a = o (-y = µ), these modes have small 
wave lengths, A as n =, and cause only small deflections of the shear 
boundary. Thus they appear to be insignificant in the meander problem, even 
though they may be stationary in space as are, approximately, the waves ob-
served on the prototype stream. 
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Figure 8. Diagnostic diagram showing contours of the relative phase-speed, c/U, in they versusµ 
diagram. The -y = µ corresponds to the stationary waves. Comparison with Figs. 5, 6, 
and 7 reveals that the admissible quasi-geostrophic modes propagate in the same direction 
as the stream under all conditions of µ and Ji'% . 

2. Comparison of this Model to the Gulf Stream. The Gulf Stream has been 
studied rather intensively in some respects, but most of these studies have 
provided little information on the transient behavior of the Stream, since 
data for such studies can be acquired only by expensive multiple-ship surveys 
over prolonged periods of time. Only one study of time variations, OPERATION 
CABOT (Fuglister and Worthington, 1951), has produced the type of infor-
mation on the Gulf Stream that is requisite for a comparison with the present 
analysis; it showed that the observed meanders moved downstream at a rate 
of 18.5 to 20.4 km/day. In addition, it was found that the amplitude of the 
wave form doubled in approximately two weeks; the wave lengths ranged 
from 250 to 550 km. The downstream direction of propagation of the waves 
and the size of the wave lengths indicate that the quasi-geostrophic modes 
are more apt to be of importance in the meander processes than are the inertio-
gravitational modes. From the hydrographic data available for the Gulf Stream, 
is has been possible to choose reasonable values for the model parameters, such 
as the physical dimensions of the Stream at a given latitude <p : Do = 1 oo m, 
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width of stream= 60 km, Dy=6okm= 1000m, cp=38°N,/=9.ox 10-s 
sec-I, and a volume transport of approximately 60 x 106 m3 sec-I. All the 
necessary parameters for the present model problem were calculated from this 
information. The effective gravity, g', was determined from the mass transport, 
Do, Dy, and/; and for this example it was found to be 1.08 x 10-2 m sec-2. 
The effective density contrast was then found from the ratio of g' tog. All 
other pertinent parameters were easily calculated from the relationships in 
the text; a tabulation of these follows: 

Do= 100 m 
Dy= Do-sy= 1ooom,aty= -6okm 
s = 1.5 x 10-2 

cp = 380N 
f = 9.0 x 10-s sec-I 

Mass Transport = 60 x 106 mJ sec-I 
g' = I .08 x 10-2 m sec-2 

(e' -e)/e' = 1.10 x 10-1 

U = 1.8 m sec-I 
p2 = 3 

Modal curves have not been drawn for all possible F 2 values. However, the 
curves for F 2 = I and F 2 = Io can be used to interpolate for F 2 = 3 . 

The method used for the construction of the disturbed surface was as fol-
lows. A particular physical mode, quasi-geostrophic or inertio-gravitational, 
of modal value n and value F 2 was cho~en; i. e. a point on a curve of Figs. 
5, 6, or 7 determines y, µ, and ex through (62). To simplify the rnlculations, 
the points corresponding to a specific ex were chosen. This was done by super-
imposing Fig. 4 on Figs. 5, 6, or 7; this showed the desired modal curve and 
determined the y and µ at the point where the desired ex curve intersects the 
curve n = a constant and F 2 = a constant. Using the values U and fas pre-
viously determined, k and zo were calculated from (806) and (76), respectively. 
Since (54) relates z, zo, and y, W(ex, z) as a function of y was obtained from 
Table I. Table II was used to determine the zeros of W(ex, z) and as a check 
on zo, which must be larger than the last Zp [zero crossing of W(ex, z) when 
n = o] and which must lie between the last and the next-to-last zero crossing 
when n = 1 . The model parameters and Table I along with Figs. 4- 7 were 
used for the calculation of ZI for region I (67). Z2 in region 2 (68) was cal-
culated from (77) and (74), which established the ratio of the constants B, 
and B2. Therefore, the disturbance in both regions was obtained in terms of 
the same arbitrary constant BI, Tables III through VII have been prepared 
in this manner. Tables III and IV represent cases of quasi-geostrophic modes, 
and Tables v and v1, inertio-gravitational modes. Table VII differs from Tables 
m-v1, since the distribution of Z1 with y is not shown; this particular table 
was ,constructed to show the effect of the parameters on the excursion, 'YJ, of 
the vortex sheet. Thus calculations of ZI and Z2 were carried out at y = o 
only. 

The two physical modes in Figs. 5-7 were checked for maximum and 
minimum values of A, T, and phase-speed, c. The values obtained for these 
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TABLE III. WAVE TYPE - QUASI-

GEOSTROPHIC 

n = 0, Fi= 3, ex= -.5, µ = .155, y = - .12~ 
.1. = 811 km, a=3.15x J0-6/sec, 17=73.0 
x B, 

y(km) 

50 
30 
20 
10 
5 
I 
0 

- 30.2 
-126.6 
-191.4 
-320.8 
-450. 
-578. 

z,/B, 

.480 

.486 

.355 

.254 

.117 

.050 

.0207 

z,./B, 

-.00802 
-.0455 
-.1075 
-.2584 
- .400 
- .566 
-.617 

TABLE V. WAVE TYPE - INERTIO-

GRAVITATIONAL 

n = 0, Fi = 3, ex = - 1.0, µ = 2.35, y = 
-2.7, ,1, = 53.5km, a= -3.!x!O-S/sec, 
TJ=8.8x B, 

y(km) 

30 
20 
10 

1 
0 

1.85 
3.97 
6.10 
8.24 

- 10.35 
-18.85 
- 35.9 

z,/B, 

.260 

.368 

.430 

.446 

.450 

.406 

.249 

.0606 

z,/B, 
.00176 
.00735 
.0307 
. I 112 
.1285 

TABLE IV. WAVE TYPE - QUASI-

GEOSTROPHIC 

n = 1, F• = 3, ex= - 1.0, µ = .48, y = -.20, 
.1. = 262 km, a= 2.52 x 10- 5/sec, 17 = 
- .333 B, 

y (km) 

50 
30 
20 
10 
I 
0 

- 3.75 
- 14.2 
- 24.6 
- 35.0 
- 40.5 
- 55.7 
- 66.3 
- 76.6 
- 97.4 
-182.0 

z,/B, 

-.580 
-.40 

0 
.24 
.37 
.43 
.45 
.45 
.406 
.249 
.0606 

z,./B, 

-.00764 
-.0430 
-.1018 
-.242 
-.527 
-.575 

TABLE VI. WAVE TYPE - INERTIO-

GRAVITATIONAL 

n = 1, Fi = 3, ex = - 3, µ = 3.8, y = 
-5.2, A = 33.1 km, a= - 12.6x 10-5/sec, 
'7 = 50.5x B, 

y (km) 

20 
10 
1 
0 

- 1.236 
- 3.87 
- 9.14 
-14.41 
-19.65 
-32.8 
-46.0 
-72.3 

z,/B, 

- .64 
- 1.34 
-1.89 
-0.30 

1.36 
1.85 
.89 
.216 
.006 

z,./B, 

.00395 

.0216 

.100 

.1185 

TABLE VII . QUASI- GEOSTROPHIC TYPE. 

IX n F• µ -y A(m) Zo z,/B, z,./B, 17/B, a sec-1 

-0.5 0 3 .155 .12 811. 1.032 .480 -.617 73. 3.15x !o-6 

-1.0 I 3 .48 . 20 262 . .32 - .580 -.575 - .333 2.52 X J0-5 

-2.0 2 3 .37 . 13 339 . .247 .942 .788 10.26 2.J6 X J0-5 

-3.0 3 3 .185 . 082 679 . .1234 -3.60 I 15.3 7440. 9.27 x lo-6 

-4.0 4 3 .12 . 058 1046 . .080 15.3 19.25 -263. 5.58x !o-6 
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TABLE VIII. LI MITI NG CHARACTERISTICS OF THE I NER TIO-GRAVITAT IONAL MODES. 

F, Mode A* min J.o• A•max Min imum Periods•• Maximum Phase-
Speeds + 

(km) (km) (km) (hours) (km/day) 

C > O C < O C>O C< O 

1.0 n = I 0 84 10.8 - 186. 
1.0 n = 2 0 36 5.8 -145. 

10.0 n =0 13.4 65. 405 6.25 24.9 + 51.4 -390. 
10.0 n =I 6.68 31.4 144 3.34 19.6 + 48.1 - 176.5 
10.0 n = 2 4.12 15.5 433 J.94 14.9 + 50.9 - 69.2 
10.0 n = 3 3.30 10.4 20.6 1.59 10.75 + 49.8 - 46.0 
10.0 n =4 2.85 7.56 14.3 1.38 8.1 + 49.6 - 42.4 
10.0 n = 5 2.37 6.28 11.4 1.14 6.46 + 49.9 - 42.3 

U = 1.8 m/sec,/= 9s. 10-5sec-1 (38°N). 
• A denotes wave length (A= zn/1 k I); Ao is that associated witL the stationary waves. 
•• T denotes wave period as observed from a point fix ed to the earth ( T = znfl a I). 
+ Longitudinal phase-speed is positi ve in the same direction as the b•sic flow. 
- Signifi es condition not present. 

parameters are tabulated in T ables VIII-X in terms of F 1 , modal value n, and 
physical type. The required model values for the calculation of these tables 
are the same as those used in computing Tables III-VII. 

One case, F2 = Io, is of particular interest, since the modal curves of the 
inertio-gravitational type of waves intersect the line -y = p , producing a set 
of stationary waves. The condition a = o considerably reduces the characteristic 
equation for the model and is of some interest. In region 2 the condition 
a = o simplifies eq. (45) to sY2 = o at y = o. This further requires that 
r , = o, and then through eq. (72), that B2 = o. The characteristic eq. (73) 
may now be simplified to obtain 

TABLE IX. LIMITING CHARACTERISTICS FOR THE QUASI-GEOSTROPHIC MODES. 

F, Mode Amin Amax Trrtin Maximum c(> o) 
(km) (km) (km/day) 

0.1 All n 0 
1.0 All n 0 

10 n =0 51.0 15.2 8 1 
10 n = I 91 17.2 127 
10 n = 2 98 17.5 135 
10 n = 3 103 17.8 139 
10 n=4 104 17.5 144 
10 n = 5 106 17.9 141 
10 n =6 106 I 7.5 146 
IO n = 7 107 17.5 148 

U = 1.8 m/sec, f = 9 x 10-s sec- 1 (38°N). 
- Undetermined. 
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TABLE X. LIMITING CHARACTERISTICS FOR THE MONOTONIC WAVES (n = o). 

F Class• Amin Amax Minimum Period Maximum Phase-
Speed 

(km) (km) (hours) (km/day) 

C > O C < O C > O C < O 

0.1 (1) 0 0 78 
0.1 (2) - 19.4 155 
0.1 (3) 0 125 'o 155 

1.0 (1) 0 0 78 
1.0 (2) 19.4 155 
1.0 (3) 0 125 0 155 

10 (I) 51.0 15.2 81 
IO (2) 13.4 405 6.25 24.9 51 390 
IO (3) 0 125 0 155 

U = 1.8 m/sec, f = 9 x 10-5 sec- • (38°N). 
• Classification : 

(1) Fundamental meander mode; quasi-geostrophic behavior for small µ ( (( 1). 
(2) Inertial mode for which <J = - f for F',,; 1 (where F' > 1, this corresponds to a= - J for 

µ < 1 only). 
(3) Inertial mode for which <J = + f 

- Undetermined. 

U+ - g~_ [f+k U2 W'(IX,zo)] = 0 
k2U2 - J2 W(1X,zo) (90) 

as the characteristic equation. 
Eqs. (78) and (8oa, b) may now be modified by a = o and used jointly to 

obtain 
1 - µ 

IX = -- - (91) 
2 

where 
µ = kU/f. 

Expression (90) can be further reduced with some algebraic manipulation and 
with the use of ( 91 ). The characteristic equation in its final form becomes 

W' (IX, zo) 
- 2 W(IX, zo) = µ = I - 21X, 

for the case a = o. This is considerably simplified in comparison to the general 
form, eq. (73). Note that a coupling between regions I and 2 is not required 
for stationary meanders. That is, the shear boundary may have the appearance 
of a wave fixed. in time, but Z2 is zero whereas Z, has considerable latitude 
in its configuration. 
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CONCLUSIONS 

The simplified model and its analysis as presented here have shown that 
certain classes of stable waves can exist when the internal Froude number 
exceeds unity. These stable waves are divisible into two distinct physical classes, 
inertio-gravitational and quasi-geostrophic modes. These latter modes and the 
one fundamental mode, common to the quasi-geostrophic modes at small rel-
ative frequencies and to the inertio-gravitational modes at large relative fre-
quencies, are the principal modes applicable to the meander problem. Tables 
vru-x show clearly that these modes embrace the values of phase speed, wave 
length, and periods observed in the prototype Stream. 

In addition to this physical agreement, it is found that the quasi-geostrophic 
modes yield large values for 'Y/ (the displacement of the vortex sheet), when 
Z, and Z2 are out of phase (see Tables rn, rv, and vu). "Large" implies that 
the ratio of the lateral displacement of the vortex sheet to the change in thick-
ness of the upper layer is much greater than unity. This occurs for wave 
lengths comparable to those of the Gulf Stream meanders. Under certain 
conditions, the inertio-gravitational modes also produce a relatively large ex-
cursion (Table vr), but this does not correspond to conditions in the Gulf 
Stream. 

The present analysis accordingly supports the notion that the meanders of 
the real Stream can be treated as quasi-geostrophic disturbances. The analysis 
does not support previous investigations (Stommel and others) which indicate 
that disturbances of wave lengths and speeds comparable to those of the real 
meanders are dynamically unstable when the internal Froude number exceeds 
unity. The primary influence of the internal Froude number in the present 
analysis is two-fold: (i) stationary waves are possible on the shear boundary 
for the relatively short inertio-gravitational modes, and (ii) the range of wave 
lengths within which shear boundary waves of regular behavior can exist 
becomes narrower with increasing Froude number. However, this range en-
compasses, for all F 2 , the really signifiyint modes. 

The results accordingly shed some doubt on the significance of the internal 
Froude number as a simple criterion for instability. This is particularly true, 
since the present model incorporates a velocity discontinuity-a situation 
that would be expected to enhance the conditions for instability. 

At this point, in light of the above findings, it is important to reconsider 
the model developed by Stommel ( I 953). The range of applicability of his 
model as defined by F 2 has already been pointed out. Hbwever, there is another 
important aspect. Stommel assumed that the !perturbation terms were inde-
pendent of y. In order to shed light o,n the implica'tioA of such an approximation, 
it is partinent to consider the energy balance for the system. A complete energy 
equation can be formed from (24), (25), and (26) by multiplying by euH, 
evH, and e[g'H + 1/2(u2 +v2)], respectively, and by summing the resulting 
relations; the following quadratic equation is then obtained: 
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~{~eH(u2+v2)+~eg'H2} + at 2 2 

+ :x {euH [g 'H +~ (u2 + v2
)]} + 

+ :y {evH [g'H +; (u2 +v 2
)]} = o. 

2 79 

(93) 

The first quantity set off by braces represents the sum of the kinetic and 
potential energy of a column of unit cross section extending from the free 
surface to the bottom. The potential energy (1 /2)eg'H2 represents the amount 
of energy possessed by the two-layer column in excess of that of a reference 
column of the same mass but of uniform density e'. This energy anomaly is 
positive provided that Lie is positive (e' >e), which is clearly the case for a 
stable density stratification. Moreover, since H can never be negative, it fol-
lows that the combined energy density (on a per-unit-area basis) at x,y, and t 
is positive definite for stable stratification. 

The remaining two terms set off by braces in relation (93) represent the 
x- and y-components of the energy flux through a vertical plane of unit width 
that extends from the bottom to the free surface. However, all of the energy 
transport occurs in the upper layer. 

Relation (93) ha.c; the canonical form of an energy conservation equation 
for a nondissipative system that is free of any external energy supply. It stipulates 
that the energy density can change locally only if there is a convergence of. 
the energy flux at the position concerned. 

An analogous relation can be obtained from the linear perturbation eq. 
(32) to (34). If the first of these is multiplied by eD1u1, the second by eD1v1, 
and the third by eg' h1, and if the resulting relations are added, the following 
equation is obtained: 

:t H eD1(u21 + v21) + eg' h21} 

+ :x {r1 [~eD1(u21+v21)+;:eg'h21] +eg'D1u1h1} 

+ :y {eg' D1v1h1} = o. 

(94) 

The three terms in braces are similar to the three in (93), except that the 
energy and energy flux now pertain to the perturbations that are superimposed 
on the basic state. 

If Stommel's perturbation equations with their independence of y are 
handled in the same manner to produce a counterpart of eq. (94), the last 
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term will appear in the form - sg' hv. This means that not only are an energy-
density term and an energy-flux term with respect to the x-axis present, but 
the last term produces energy locally . This local production of energy can 
in turn produce instability. Thus, the instability found from Stommel's analysis 
when F 1 > I may well be a result of the approximations made in the initial 
formulation of the problem. Professor R. 0 . Reid pointed out the method by 
which this discrepancy in Stommel's equations could be detected. 

In regard to the amplification of the real meanders of the Gulf Stream, 
there arc three possibiliti es that could be consistent with the present dynamic 
model. (i) The actual meanders can be regarded as being composed of a super-
position of many quasi-gcostrophic modes for a wide band of wave lengths. 
Also these waves are clearly of dispersive character. Accordingly, a modulated 
or a localized disturbance on the Stream Loundary must undergo changes in 
form as the disturbance propagates downstream. Some of these disturbances 
would then grow in amplitude by manner of phase reinforcement. (ii) A second 
possibility is resonant coupling of the meanders with an external energy source. 
The torque exerted on the surface by winds would provide a possible coupling 
mechanism. (iii) A third possibility is that of amplification by virtue of variations 
of the parameters Do and U in the direction of propagation. This could cause 
an increase in the amplitude analogous to the amplification of swell prop-
agating into shall ow water. 

In summation, the question of whether or not the actual meanders of the 
Gulf Stream must be regarded as a true instability, in which the energy of 
the meanders derives from that of the basic state, remains unresolved. The 
answer to this question must :iwait more definitiv e observations that will 
reveal the dynamic charactcri~tics in greater detail. 
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APPENDIX A: PROPERTIES OF THE W(a, z) FuNCTION 

The following are special cases, pertinent recursion relations, and other 
properties of the function 4 

!f'(rx, z) = e-zt, 'I'(rx, I, z) 

expressed in terms of more common functions. 

1. Identities for positive integral values of rx: 

W(o, z) = e-zl•, 
W(1, z) = e-z/• Ei( -z), 
W(2,z) = (z+1)e-zl2 Ei(-z)-e-zl2 • 

2. Identities for negative integral values of rx: 

W(-n,z) = (-itn!e-zl•Ln(z), 

where Ln(z) is the Laguerre polynomial (n = I, 2, 3, ... ) 

n(n- 1)z2 
(- 1r n 

Ln(z) = I -nz +- (
2

!)2 -+ . .. +--;i- z • 

3. Identities for half-integral values of rx: 

w(:, z) = Ko(zi 2), 
2 Vn 

W ( - :, z) = -~ [(z - I) Ko(z/2) + zK, (z/2)], 
2 2 Vn 

where Ko(x) and K1 (x) are the modified Bessel functions of order o and 

1, respectively. 
4 Notation is that of Erdelyi et al. (1953). 
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4. Recursion relations: 

l 
W(1 + n, z) = - [(z + 2n - 1) W(n, z ) - W(n - 1, z)J, 

Jl 2 

5. Derivative relation: 

IV'(rx., z) = TF(rx. + 1, z)-(~ + ~) TF(rx., z), 
Z 2 Z 

or 

W '(rx.,z) = [(~z+rx.- 1) W(rx.,z)-W(rx.-1,z)] 

6. A~ymptotic behavior: 

W(rx., z) z-rx.e-zl2 
[ l - :

2 

+ ... ] 

for large z, and 

l 
W(C,'.., z) - I'(a) [lnz + 1p(rx.) + l. l 5443] 

for small z. 

7. Zeros of W(rx., z): 

For rx. > o 
O> rx. > -l 
-l>rx. > -2 
- 2 > rx. > -3 
etc. 

No zeros of W occur for z > o, 
Exactly one zero of W for z > o, 
Exactly two zeros of W for z > o, 
Exactly three zeros of W for z > o, 

The greatest value of z at which 1-/T(rx., z) = o is less than b, where 

b = (1 -2rx.)+V1 +(1 -2rx.)2, 

[21,3 

The pos1t1on z = b corresponds approximately to the point of inflection of 
W, beyond which the curve is monotonic. 

APPENDIX B: COEFFICIENTS OF EQUATION (85) 

The coefficients in the relation 

Aoy8 + A,y7 +A2y6 + A 3ys + A 4y4 + A5y3 + A6y2 + A7y +As = o 

are given on p. 283 in terms of the basic parameters rx.,µ, and F, with the 
following abbreviations: 
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C = 2cx- 1 

L = EC-I 
E = W(cx, zo)/2 W' (ex, Zo) 
Zo = 2ftf F• 

In this notation the coefficients as derived from (83) are: 

Ao= 4µ2, 

A1 = 12µ3-4µ2 (C+2E)+2µF2 Lz, 

A,= 13µ4 -µ3(10C + 24E) +µ 2 (C2 + 8 CE +4E2 + 5F2 L 2 + 4 -4 L-L•) 
-µ(VF•C), 

A 3 = 6µs-µ4(8C+26E)+µ3(2 C2 +20CE+ 12E2 +4F2L2+10-6L-2L2) 
-µ 2 [2CL2F2 - 2 L(C + 2E) + E(8 + 4EC) + C(2 + 2EC)J +µ(LzF•), 

A4 = µ6 -µs(2C + 12E) +µ4(C2 + 16CE + 13E2 + F•Lz + 8 - 2 L-Lz) 
-µ3[CF2 Lz - 2L(C + 3E) + E(20 + 10EC) + C(4 +4EC)J 
+µ 2 [1 -2L+Lz + 2F2 Lz +E(4C+4E+EC2 -2LC)J, 

A 5 = -µ6(2E)+,us[2+E(4C+6E)J 
-µ4 [C(2 + 8 E 2 + 2 CE) - 2LE+ 16E] 
+µJ[E(8 C + 10E + 2EC2)- 2L(1 +CE)+ 2 +LzF2

] 

+1i 2 [2E(L- 1 - EC)], 

A6 = µ6(E0 ) -µs[E(4 + 2EC)] +µ4[1 + 8E2 + C(4E + E2 C)J 
+µ3[2E(L- 2 - 2EC)] +µ 2 (E2), 

A1 = µs(2E2)-µ4[E(2 + 2EC)] +µ3(2E2), 

As= µ4(E•). 


