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Long Surf 

D. V . H o,1 R. E. M eyer, and M . C. Shen2 

Brown University 
Providence, R. I . 

ABSTRACT 

T heoreti cal investi gations by the authors on surf due to long swell are summari zed and 
presented here in a form unencumbered by mathemati cal technical it ies. The conclusions 
derived thus far are mainly q uali tative, but in some respects the resul ts are quite detailed 
and differ radicall y fr om results of earli er investigations ; some new observati ons are also 
presented . It appears that a simple, nonlinear model is capable of describing the pri ncipal 
features of the entire phenomenon of breaker formation, breaker coll apse, run-up, and 
backwash fo r a representative type of surf on a shallow beach. The model predicts a marked 
conversion of potential energy into k inetic energy as the breaker coll apses, a notably sudden 
start of the run-up, a thin sheet of run-up that gets progressively thinner as time elapses,• 
and a curious secondary bore in the backwash. 

Introduction. A new mathematical approach to an analysis of surf movement 
on a beach has been given in three recent papers (Ho and M eyer, 1962; Shen 
and M eyer, 1963a, b). For the logical development of the subject, it was 
necessary in these papers to employ complicated technical argument in terms . 
famili ar only to mathemati cal speciali sts. In the foll owing discussion, an effort 
is made to make the theory understandable to a wider audience and thus stimu-
late research on the subject by experimental physici sts and related groups. The 
mathematical arguments are omitted. 

The analysis possesses a feature that is unusual in theoretical oceanography. 
A ll approximations and idealizati ons of the theory are contained in a set of 
four assumptions that constitute the 'model' of surf here proposed. This set 
of assumptions formulates, so to speak, an abstract surf as a system of parti al 
differential equations with boundary conditions. But after these assumptions 
were stated in the mathematical papers mentioned above, no further ideali za-
ti ons or approximati ons of any kind were introduced into the mathematical 
work. Indeed, the authors did not attempt to solve those differential equati ons; 
instead, they proved a set of lemmas, theorems, and coroll aries that establi sh 
rigorously some properti es of the exact solutions of the equations. The fol-

' Now at the M athemati cs Department , Georgia Institute of T echnology, A tl anta, Georgia. 
2 Now at the Courant I nstit u te of M athemati cal Sciences, New York Universit y, New York City. 
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lowing account therefore begins with a statement of all the assumptions con-
stituting the mathematical model, and it then proceeds directly to a statement 
of the conclusions that have been derived to date. 

Formulation. Consider a two-dimensional motion of water on a beach of 
uniform slope-e. g. swell approaching the shore from the sea with crest 
parallel to a straight shore. To avoid additional parameters involved in ex-
plaining the interaction of a breaker with the backwash from the preceeding 
wave, consider only very long swell. Or, more precisely, consider only a wave 
traveling shoreward into water at rest. 

(i) Assume that the water motion is governed by the first-order nonlinear 
long-wave equations (Stoker, 1957): 

Dh/at + a (hu)/a x = o, 

au/at + uau/a x +g a(h-ho)/ax = o, 

where x denotes the horizontal distance (positi ve toward the beach), t the time, 
h(x, t) the total local water depth (Fig. 1), ho(x) the equilibrium water depth, 
g the gravitational accelerati on, and u the x-component of the water velocity. 
If u is interpreted as the vertical mean of the hori zontal velocity component, 
then ( 1) is an exact kinematic statement of mass conservation on a nonporous 
beach. If viscosity and vorti city are neglected, moreover, (1) and (2) can be 
shown (M eyer and Taylor, 1963) to represent the fir st approximation to the 
exact Eulerian equations of water motion, not too far from the shore, on a 
beach of small slope. 

(ii) A ssume further that the front of the incoming wave consists of a bore. 
As used in the foll owing, this concept requires clarifi cati on. It is known that 
progressive waves described by (1) and (2) form steep fronts, similar to those 
observed in swell approaching a beach. As such waves develop further, their 
mathematical descripti on exhibits a singularit y of water acceleration and sur-
face slope that represents a breakdown in the applicability of ( 1) and ( 2) (Stoker, 
1957). On the other hand, observation and analysis indicate that the region 
in which (1) and .(2) fail is of relatively short hori zontal extent. Thus it is of 
considerable interest to consider a model approach to the problem, in which 
the study of the details of the water moti on in that narrow region is avoided 
by assuming only over-all conservati on of mass and momentum for the narrow 
region. This idea permits the development of a consistent mathemati cal model 
(Stoker, 1957) in which the narrow region is represented by a discontinuity 
(the "bore") ; and within the framework of th~ model, analysis of the water 
motion outside the narrow region then proceeds, regardless of whether (or 
how) a real breaker is formed within that region. 

Comparison with the work of Carrier and Greenspan ( 195 8) shows that 
the assumption of bore formation has a crucial influence on the results of the 
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investigation d~scussed here. Carrier and Greenspan studied certain particular 
bore-free solutions of ( l) and ( 2) that show a near-shore behavior which is 
radically d_iff~re1~t from the behavior predicted in the following pages. Note 
that the d1st1nct10n depends on whether or not the waves steepen locall y to 
a greater extent than is consistent with (1) and (2)-not on whether they 
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do or do not form actual breakers. For this study, the U.S. Weather Bureau 
made available unpublished computational results which indicate that even swell 
of very small amplitude, if it is governed by ( 1) and ( 2), is very likely to develop 
the singularity associated with bore formation as the wave approaches the shore. 
The same is indicated by an analytical investigation (Greenspan, 1958). 

By analogy with studies in gas dynamics, the initial form;ition and early 
development of a bore are fairly well understood (Stoker, 1957; Meyer, 1960), 
and this part of the problem was therefore not studied during the present in-
vestigation. The analysis discussed here concerns the later development of the 
water motion, after it has reached a stage where the bore is fairly well developed 
and has moved to the very front of the wave (Fig. 1 ). For a bore traveling 
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shoreward into water at rest, the conservation conditions require (Stoker, 1957) 
that the water level rise from ho on the landward side to hb on the seaward 
side of the bore, and that the water velocity rise similarly from zero to ub. The 
quantities hb and ub are related by 

(3) 

where // denotes the velocity with which the bore travels. These conditions 
also imply that a certain amount of energy dissipation must take place within 
the bore (Stoker, 1957). 

The model cannot be complete without some specification of the initial 
shape of the wave, and ~his aspect requires discussion now. The description 
of bore development3 can be clarified by reference to a space-time diagram 
(lower part of Fig. I). The initial position of the "shore line" is taken as 
x = o; note that the term shore line is used here in a nongeographical sense 
to denote the border line between the dry part of the beach and the part covered 
with water. During the run-up and backwash, the shore line therefore moves 
up and down the beach; its instantaneous position, x = x8 (t), is given im-
plicitly by the equation h(x, t) = o, since h denotes the total local water depth. 
Until the bore arrives at the shore, however, the shore line remains at x = o, 
because the bore travels into water at rest: The successive positions of the bore, 
x = xb (t), define a 'bore path,' B, in such a diagram (Fig. 1 ). The problem 
at hand is as follows: if it is supposed that the water motion is fully known at 
some initial time t = T, how does it develop thereafter? 

Since (1) and (2) represent the water motion as a strict wave propagation 
process, the bore development over any chosen time interval depends only on 
a limited part of the water motion. This may be stated more precisely as fol-
lows. It is plausible to introduce as a third assumption the requirement that 
the bore reach the shore at a finite time (taken as t = o)4• It can then be shown 
that the wave on the seaward side of the bore must possess a "limiting ray of 
propagation." This is a curve ( L in Fig. I) in the space-time diagram defined 
by two requirements. First, its local tangent is given by dx/dt = u(x, t) + c(x,t), 
where c(x, t) is the positive square root of gh(x, t); and second, the curve 
meets the bore path at the time when the bore reaches the shore line. The 
part of the wave extending at time T from the limit ray position, Xo, to the 
bore position, X (Fig. I), has the following role. Specification of the initial 
wave shape, h(x, T), and the initial velocity distribution, u(x, T), from 
x = Xo to x = Xis necessary and sufficient for determining the bore develop-
ment from t = T to t = o by means of (I) to (3). The wave shape seaward 
of the limit ray, L, is irrelevant to the bore development. 

3 This term is used to denote the variation with time of hb, Ub, V, and the bore position, Xb; 
no other information concerning the bore can be obtained from the model here adopted. 

4 With this normalization, the value T < o of the initial time is one of the unknowns of the problem. 
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The second major distinction between this work and that of Carrier and 
Greenspan (1958) is in the types of waves specified. They consider only a 
few particular types of wave shapes; most of them are characterized by the 
peculiarity that a time exists at which the water is simultaneously (a) every-
where at rest and (b) in dis-equilibrium. By contrast, the fourth assumption 
of the present model, to be discussed now, admits a rather general class of 
wave profiles. This model therefore appears more likely to include those pro-
files that actually correspond to observed swell. In fact, one of the striking 
mathematical results of this analysis is that extremely little needs to be specified 
in regard to the initial wave shape. 

Selective Memory. The work discussed here was originally undertaken to 
elucidate a phenomenon of importance in gas dynamics. Keller et al. ( 1960) 
noticed the same phenomenon during numerical computations pertaining to 
the problem outlined in the preceding section. They found that three sample 
solutions of ( 1) to (3) converged progressively towards each other with in-
creasing time, despite differences in the initial conditions. Thus the three 
solutions appeared to become independent of their initial wave shapes as time 
elapsed, in a manner suggesting the figurative description that the solutions 
forget their initial wave shapes. 

The basic reason for this phenomenon was found (Ho and Meyer, I 962) 
in the degeneration of the system of eqs. (1) and (2), which may occur when 
h = o. It was shown that the final development of the bore, just before it reaches 
the shore line, is determined primarily by a single qualitative property of the 
swell, rather than by details of initial wave shape and velocity distribution. 

Precisely, then, eqs. (1) and (2) possess two families of propagation rays, 
viz. the "advancing" rays (such as L), of which the local tangent is given by 
dx/dt = u + c, and the 'receding' rays, of which the local tangent is given by 
dx/dt = u - c. The particular receding ray that passes through the point 
(X, T) of the space-time diagram is of some interest, and the segment of this 
ray, which extends from the bore-path, B, to the limiting ray, L, will be 
denoted by C (Fig. 1 ). Instead of setting the initial data from x = Xo to x = X, 
as discussed above, it is more convenient and mathematically equivalent to 
set the quantity 

u(x, t)- u(x, t)-gtho(x)/x = IX 

as function of time on the ray segment C. However, rather than specify this 
function !X(t) in detail, Ho and Meyer (1962) have taken as their fourth as-
sumption only the requirement that a increase5 with time on C. A satisfac-

5 More precisely, oi(t2) > oi(t,) whenever t2 > t1 • In practice, this amounts to doi/dt > o, which c_an 
be shown to imply the following inequality for the water acceleration, 8u/8t+ u8u/8x, and the velocity 

gradient, 8u/8x, on C : 8u/8t+ u8u/8x-c8u/8x> gho(x)/x. 

This inequality has been studied (Ho and Meyer, 1962, 1963), but the results are of no direct oceanogra-

phical interest. 
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tory physical interpretation of this "monotoneity assumption" has not yet 
been given. Moreover, while this assumption has been proven to be a suf-
ficient condition, it is not known to be also a necessary condition for the 
results that follow; hence, it is not certain that a simple physical interpreta-
tion exists. 

Apart from a mathematical regularity assumption that has little physical 
significance, the monotoneity assumption completes the mathematical model. 
We therefore turn to the predictions- first of all to those pertaining to the 
phenomenon of "forgetfulness." 

The bore height, hb-ho, falls to zero as the bore approaches the initial 
shore position, x = o. Both the bore velocity, //, and the value, ub, of the 
water velocity immediately seaward of the bore tend to a finite limit, uo; this 
much follows already from the first three assumptions of the model (Keller 
et al., 1960). The full model implies that Uo > o, and that f/ and ub increase 
during the final stage of the bore's approach to the shore. This agrees with 
the commonly observed behavior of breakers on a beach. This final stage of 
the bore's approach is thus a process in which potential energy is converted 
to kinetic energy. 

As t o, the water acceleration immediately seaward of the bore develops 
a singularity characterized by a parameter, ao, which is related to the acceleration 
distribution of the wave at the initial time, T . This parameter shares with Uo 

the property that the model determines only its sign, not its magnitude. But 
that is sufficient for a quite detailed prediction of the final stage of bore de-
velopment. It is an "asymptotic" description, i. e. it establishes the limiting 
values of various quantities as t (Fig. 1 ). Such a description distinguishes 
different "orders" in the sense that increasing the order means establishing 
the limiting values of additional and more intricate quantities, thereby ob-
taining a more precise description of the nature of the final stage in bore de-
velopment. 

The model determines such a description to at least the tenth order; the 
seventh order was derived explicitly (Ho and Meyer, I 962), because it reveals 
the precise sense in which surf may be said to have a "selective memory." 
For definiteness, consider the relation between the nondimensional bore 
velocity, f//uo,and the nondimensional bore position, yxb/u20, where y = - gdho/dx 
is the beach slope in acceleration units. To the sixth asymptotic order, the 
relation between f//uo and yxb/u2o is INDEPENDENT OF THE INITIAL WAVE 

SHAPE. But the same statement does not apply to the seventh order description, 
which is plotted in Fig. 2. 

The relations between other properties of the bore are derivable from that 
between f//uo and yxb/u20, and they show an analogous behavior. Altogether, 
then, only two properties of the wave forming the bore and propelling it 
towards shore have an important influence on the final stage of bore develop-
ment. They are (i) the monotoneity property defined by the fourth assumption, 
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and (ii) the velocity, uo. The latter is, presumably, a measure of the energy 
in that part of the wave extending from x = Xo to x = X at the initial time, 
T. All other properties of the initial wave shape have a practically negligible 
influence on the final stage of bore development, during which the main con-
version of potential to kinetic energy takes place. 

This result also contains a suggestion on how experimental data might be 
plotted profitably. If all velocities are divided by uo, all water heights by u2o/g, 
all horizontal distances by u2o/y, and all times by uo/y, then the model predicts 
that the behavior of the bore, sufficiently close to shore, is the same for all 
waves and all shallow beaches of uniform slope. 

Run-up and Backwash on the Beach. Because of the importance of improved 
understanding of wave run-up in relation to tsunamis, the analysis has been 
extended beyond the collapse of the bore on the beach. In view of the radiative 
character of (1) and (2), it is logical that a prediction of the water motion for 
t > o should require a knowledge of the initial wave shape and velocity dis-
tribution for x < X 0 (Fig. 1 ). This is borne out, for example, by the work 
of Carrier and Greenspan (1958), where extension of the determination of 
the motion over any given time-interval requires use of initial data over a 
comparable, additional x-interval. However, this does not hold when a bore 
is present. Again, this is due to the degeneration of (1) and (2) when h = o; 
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this leads to a complicated singularity of almost all nonobservable quantities 
occurring in the analysis. Consequently, many features of run-up and back 
wash depend only on the same part of the initial wave shape that determines 
the bore development up to the collapse of the bore at t = o . This applies 
particularly to the movement of the shore line but extends also to much of 
the internal structure of run-up and ·backwash. Moreover, these features de-
pend again only on the monotoneity property of the wave6 and on the basic 
velocity scale, uo-not on the detailed wave shape. 

As noted earlier, the shore line, x = x8 (t), forming the border between the 
dry part of the beach and that part covered with water, remains at x = o for 
t < o. Somewhat unexpectedly, however, the analysis shows that the "shore 
velocity," dx8/dt, jumps discontinuously from zero to uo, at t = o. From a 
videotape of surf movement on a California beach, with a stationary reference 
figure on the beach, five frames at equal intervals of I 2 frames were selected 
for study' (Plate 1). The first three frames, denoted by t = - 24, - 12, and o, 
shoW" the shore just before the breaker arrived; apart from a little residual 
backwash activity, the actual shore line (in contrast to the breaker) is largely 
at rest. The other two frames, t = I 2 and 24, together with the t = o frame, 
show that, when the breaker arrived exactly at the shore (t = o), the shore 
line rather suddenly assumed a considerable velocity. Of course, the model 
discussed here cannot decide whether a process is truly discontinuous. Since 
the bore is treated as a discontinuity, the prediction of another process as 
discontinuous can be taken only to imply that it involves a change of a sud-
denness comparable to that with which the water level changes in a bore. 

The shore acceleration, d2x 8/ dt2 , jumps from zero to gdho/ dx = -y < o, 
at t = o, and it retains the same value during the whole run-up and during 
part of the backwash. This comes about as follows. The water may be con-
sidered as being divided into fluid elements, each occupying the space between 
the'sand, the free surface, and two vertical planes at a distance dx apart (Fig. 
3). These fictitious vertical partition surfaces may be regarded as moving with 
the local water velocity (uniform over each such surface, according to the 
model discussed here). Then the vertical surfaces do not interfere with the 
natural water motion, and each element contains the same mass of water 
at all times. The motion of such an element is controlled by two influences, 
viz. that of gravity and that of the pressures exerted at the vertical surfaces 
by the adjacent elements. The theorem of Shen and Meyer for the model 
discussed here is that, the closer the element is to the shore line, the less do 
these pressures exert influence on the motion of a water element. The limiting 
element, at the very tip of the sheet of run-up, moves purely under the in-

6 Shen and Meyer (1963 b) proceed without approximation from the four assumptions stated above, 
except that they extend the monotoneity assumption on C over an arbitrary time interval I'- beyond L 
(Fig. 1). But then they permit €--+ o, and since the time at which C and L intersect in Fig. 1 is an 
unknown of the problem, no physical extension of the four assumptions is involved. 
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fluence of gravity; hence, it moves with the constant, negative acceleration, 
d2 x8/dt2 = gdho/dx. Accordingly, the shore line advances landward' up to the 
time t = _2uo/y, and t~en r<:cedes again; its successive positions, x8 (t), are rep-
resented m the space-time diagram by a parabolic path P (Fig. 4); the maximum 
horizontal run-up distance is u20/(2y), and the corresponding run-up height 
above the equilibrium water level is u20/(2g). N ote the contrast between the 
sudden start of the run-up process and the gradual changeover from run-up 
to backwash. The shore line movement may be likened to that of a pendulum 
that is kicked off at t = o by the collapsing bore and is then left to swing up 
and down again under the influence of gravity. Of course, in view of the 
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neglect of friction and various other effects, these quantitative predictions 
furnish only upper bounds for the real run-up distance, height, and time. 
Such bounds are valuable, however, since the precise laws of friction ap-
plicable to surf are still unknown. Moreover, no method is presently available 
for estimating the value of uo from the prcperties of swell far from the shore. 

The water profile close to the shore line, i. e. the net water height, h (x, t), 
at any fixed time t > o, is described to the first order by 

[x 8 (t)-x]- 2 h(x, t) 

as [ x8 (t) - x] Again, the model cannot apply to the very tip of the run-up 
and backwash, where friction and surface tension should be important. But 
it does indicate a much thinner sheet of run-up than might have been expected 
from the mathematical model; and in particular, it predicts a very marked 
progressive thinning of the run-up and backwash sheet with time. Thus it 
is not necessary to depend entirely on seepage for an explanation of this ob-
served effect, for much of it is already explained in the theory of ideal fluid 
motion on an impermeable beach. 

Although all of these predictions are in marked contrast to those obtained 
from Carrier and Greenspan's (1958) particular solutions and from the line-
arized theories (Stoker, 194 7 ), they correspond to features that are visible to 
the casual observer on the beach. However, we were surprised to find that 
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the four assumptions of the model imply the presence, in the interior of the 
backwash, of a singularity of water acceleration of the type generally associated 
with bore formation. The curve D in Fig. 4, which marks the successive 
positions of such a singularity in the space-time diagram, is called "limit line" 
(Stoker, 1957). Although the genesis and precise course of the limit line, D, 

t 

p 

X 

Figure 4. 

are not determined by the four assumptions of the model, those assumptions 
do imply that it must ultimately run towards x = - oo, with the parabola P 
as asymptote; hence its general course must be as indicated in Fig. 4. 

There are only two known interpretations for a limit line (Meyer, 1960), 
viz. either the problem is physically unrealistic, or a bore develops. If the 
latter interpretation is accepted, then again the precise genesis and develop-
ment of this bore are not determined by the four assumptions of the model; 
however, on general grounds (Meyer, 1960), (i) the bore position must be 
shoreward of the limit-line position, and (ii) these two positions must be close 
together at first . The general course of the bore path in the space-time diagram 
must therefore be as it is indicated by the broken line in Fig. 4. 
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Now, there exist two different types of limit lines, and they are associated 
with different types of bores. The bore types are most easily distinguished by 
the direction in which the bore "faces." For instance, the original bore that 
forms the front of the incoming wave is said to face landward (Fig. 1) be-
cause the water level rises across it in a landward-seaward direction. If such 
a bore is reflected from a sea wall, then the reflected bore is of the type facing 
seaward, i. e. the water level rises across it in a seaward-landward direction. 
Unexpectedly, the limit line, D (Fig. 4), is of the type associated with a land-
ward facing bore, like the original bore, and therefore the bore that develops 
in the backwash cannot be interpreted as a reflection of the original bore. 
On the other hand, the broken line in Fig. 4 shows that the new backward 
bore travels in the seaward direction much in contrast to the original bore 
(Fi~. r ). Such a bore in the backwash appears difficult to observe on Rhode 
Island beaches, perhaps because the swell is too short. However, three frames 
taken at equal intervals of r 6 frames from the serial film referred to above, 
show· clearly the development of a backwash bore with the features predicted 
by the model (Plate u). 

Beaches with Nonuniform Slope. The analysis of ( r) to (3) for beaches with 
nonuniform slope has not yet progressed to the same level of mathematical 
precision as the analysis discussed above. But functions u(x, t) and h(x, t) have 
been constructed (Shen and Meyer, 1963a); they satisfy (1) to (3) approxi-
mately and possess the same type of acceleration singularity on the seaward 
side of the main bore as the solutions discussed above. It is a plausible con-
jecture that the new functions once more furnish the asymptotic description 
of the final stage of bore development. This asymptotic description is again 
independent of the initial wave shape up to the sixth order; in ad'dition, it 
is found to be similarly independent of the variations in beach slope. 

Since the mathematical shore singularity is the same, it would be expected 
that the shore line moves again with the constant vertical acceleration, - g, 
during the run-up. If so, then the same upper bound, u20/(2g), for the max-
imum run-up height would be obtained, provided the beach rises monotonically 
landward. 
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PLATE I. Frames from a videotape showing surf movement on a California beach (see p. 226). 
1, / = -24; 2, / = - 12; 3, I= o; 4, / = 12; and 5, I= 24. 
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PLATE II. Frames from a videotape showing surf movement on a California beach (see p. 229). 
1, I= 500; 2, I= 516; and 3, I= 532. 


