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Some Properties of Thermocline Equations 

in a Su6tropical Gyre 

Henry Stommel 

Harvard University 

Jacqueline Webster 

Woods Hole Oceanographic Institution 

ABSTRACT 

The functional dependence of solutions of a theoretical model of the subtropical oceanic 
thermocline upon the physical parameters and boundary conditions is exhibited: (r) in a 
limited range by a boundary layer approximation; and (2) in a wider range by numerical 
solutions of the nonlinear equations. 

1. Introduction. In attempting to apply the theory of the oceanic thermo-
dine (Robinson and Stommel, 1959) to the real ocean (e.g., in order to obtain 
an estimate of the amplitude of transport of abyssal circulation; Arons and 
Stommel, 1960 ), the approximate solutions given by Robinson and Stommel 
do not seem to be adequate. Meant only to exhibit qualitative features of the 
thermocline, they were not really intended to be used for quantitative cal-
culation. Moreover, in those cases where the wind-stress was included, the 
calculations, in addition to being very approximate, were nevertheless suf-
ficiently involved to obscure the qualitative dependence of the structure of 
the thermocline on the parameters. For example, one would like to feel fa-
miliar enough with the solutions to know how an increase in downward velocity 
specified at the bottom of the Ekman layer affects the amplitude of upward 
velocity beneath the thermocline. 

The calculations in this paper are performed on equations (14) and (15) 
of the Robinson and Stommel (1959) paper, with the choice a= h = ¼ and 
setting {}Y = o: 

K{}" - W{}' = o, 

W" + ({}' = o . 

(1.1) 

(1.2) 

The first equation is nonlinear; the second is linear but has the nonconstant 
coefficient (. The independent variable is (; both of the dependent variables, 
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{} and W, are functions of C; and K is a physical parameter. The primes de-
note ordinary derivatives with respect to C. The range of variation of C is 
from C = o (at the sea-surface) to C = Cb (at the sea-bottom). The restriction 
to positive C is equivalent 'to restricting attention to anticyclonic (subtropical) 
gyres. The form of transformation with C in the negative range would be 
more appropriate to a discussion of cyclonic (subpolar) gyres, but these 
numerical calculations have not yet been made. The boundary conditions are: 

at C = o: W = W(o), a constant 
{} = {}(o), a constant; 

at C = Cb: W = o 
{} = 0. 

(1.3) 

The reader should refer to the earlier paper by Robinson and Stommel 
(1959) for all definitions, the introduction of the similarity transformation, 
and a discussion of the physical meaning of K. 

2. Numerical Solution. Returning to equations (1.1) and (1.2), without 
approximation, we define the new variable 

and they may be written 

Eliminating {), we obtain 

Z = -W"/C, 

W{}' = K{}" 

z = {}' . 

Z '= wz K . 

(2. I) 

(2.2) 

(2.3) 

We assume (following a method described in Hartree, 1958) that there is a 
sequence of functions Wo, W, ... Wn, Wn+1, . .. , and, of course, following 
from these, a sequence Zo, Z,, . .. Zn, Zn+' · Suppose we have a trial form 
of the solution W 0 , which satisfies the boundary conditions at both top (C = o) 
and bottom (C = Cb) but which is not a true solution of the differential eq. 
(2.4). Then we may write the approximate equation 

(2.5) 

which is linear in Z,; then we solve for Z, and obtain W, from (2.1) by quad-
ratures subject to the exact boundary conditions. We iterate this process 
until we finally reach a state where Zn+i = Zn and Wn+1 = Wn to any 
degree of precision. The iterations are performed on an electronic computing 
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machine. We may then consider that Wn is the solution of the problem. The 
boundary conditions are incorporated as follows. 

Consider Z ' Wnz n+x = K n+1, (2.6) 

where Wn is considered to be a known function of C between C = o and 

C = Cb- Then 
Zn+x = .A 'Pn, 

C 
where we write 'Pn = exp [ (Wn(C)/K) d(] and where .A is an integration 

constant. 0 

The temperature boundary conditions are imposed by integrating (2.3): 

Cb Cb 
Zn+1 d C = fr' d C = - fro . 

0 0 

Thus .A is determined: 
Cb 

.A= -#on 'Pn dC. 
0 

Making use of the definition of Z in (2. I), we write 

W:,: +x = - .AC 'P n • 

By quadrature we write the solution 

cc 
W n+x = - .A C 'P n d ( 2 + BC + C . 

00 

(2.8) 

(2. 10) 

(2.II) 

The two constants of integration, B and C, are determined by the known 
boundary condition Wn+x = W(o) at C = o and Wn+1 = o at C = (bi the 
final form of the solution is 

cc ' Cb Cb 
Wn+• =-.A[~~ C'PndC2

-,:-~ C'PndC2 ]+W(o)(1 -C/Cb)· (2.12) 
oo ,boo 

The calculation is repeated until finally Wn+x = Wn, The temperature field, 
fr, and the geostrophic meridional component of velocity, v, have also been 
computed from W for different choices of the parameter, and the results are 
displayed in Figs. I -4, which are arranged so as to show the dependence of 
the solution on the parameters. 

In practice we have found that there is a tendency for successive values of 
W n to oscillate about the asymptotic limit; thus, for example, Wn :::_ W 00 

and Wn+x ::: Woo . Instead of using Wn to compute Wn+i, we have therefore 
used ½(Wn-, + Wn) as the function to compute Wn+1, which, for reasons 
not entirely clear, greatly improves the convergence of the iterative process. 
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3. Limiting Cases. There are two simple limiting cases which are useful 
to consider: for large K ( K-+ oo) and for small K ( K-+ o ). 

(a) Large K. For very large Kit is clear that the temperature must be given 
by the conductive state: i. e., {}" = o, and hence 

where -r = C/C b, which satisfies both boundary conditions on {}, and eq. ( 1. 1 ). 
The eq. (1.2) may be directly integrated and the two constants of integration 
determined by the boundary conditions (1.3) and (1.4) on W. The solution is 

W(-r) = W(o)- [W(o)+ {}Orb ] -r+ ({} 0P' )-r3. (3.2) 

(b) Small K. As K approaches zero, it is clear from ( 1. 1) that {}' must vanish 
everywhere except at some depth C = Ct where {}" is very large locally. 

Thus the solution of (1.1) is: 

{} = {}o in O S C < Ct, 

{} = o in Ct< CS Cb• 

Integrating ( 1.2) across the discontinuity in {} at C = Ct, we obtain 

(3.3) 

(3.4) 

The upper limit on the left-hand side vanishes and the lower is simply 
-W(o)/Ct, hence we can compute the depth of the discontinuity in{} and W': 

Ct= vw(o) . 
{}o 

(3.5) 

This is the depth of the thermocline for K = o. The solution for W is 

W=W(o)(i-C/Ct) o s C<Ct, (3.6) 

W = 0 Ct < CS Cb, 

which is good for only W(o) > o. When W(o)< o, there 1s no layer of 
discontinuity, and over the whole range of depth 

{} = 0' 

W = W(o) (1 -C/Cb). 

(3.7) 

(3.8) 
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Figure 1. The di stribution of W , W' , and T , with transformed depth ( ; plotted for various choices of the conductiv i ty K . 
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Figure 2 . The distribution of W, W ', and T, with the transformed depth(;; plotted for various 
choices of the transformed depth of the bottom (;b. 
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Figure 4. The distribution of W, W', and T, with the transformed depth C; plotted for various choices of the value of W(o) imposed at the surface 
by the convergence of Ekman layer. 
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4. The Thin Deep Thermocline. Asymptotic Case K f/7 > o. We anti-
cipate that there is- for a certain limited range of parameters-a regime in 
which the thermocline is thin and deep. Thus all of the change in temperature 
between f} = {} 0 at the surface and f} = o at the bottom actually occurs in a 
very narrow interval about some depth Ct [ o S Ct S 1; b] which we can call 
the "depth" of the thermocline. For all values of 1; reasonably different from 
Ct, therefore, {}' = o, and the nonconstant coefficient 1; in (1.2) can be re-
placed by the (as yet unknown) constant Ct- We define Ct as the depth where 
W = o, that is, at the inflection point ( {}" = o) in ( 1. 1) of the variable {); 
and we define two regions: Region 1, o S 1; S Ct where W ?:.. o and Region 2, 

Ct S 1; S 1; b where W S o. The values of W and f} in these two regions 
are denoted by subscripts , and 2. Both terms in ( 1. 1) also vanish except 
in the vicinity of 1; = Ct. 

An appropriate linearization of ( 1. 1) is obtained by replacement of the 
actually variable function W by its mean cp in a narrow region. Because W 
actually changes sign at 1; = Ct, the average velocity cp within the boundary 
layer must be formed separately in each region, and we write cp = cp, = - rp 2 • 

The linear equations used to approximate the true nonlinear equations are 
therefore written as follows: 

Region I : o S 1; S Ct 

Kf};' = cpf}; 

W;' = -!;tf};; 

Region 2: Ct .S 1; .S !;b 

K {}~' = - cpf}; 

W;' = -!;ef};. 

Solutions of these equations are written 

{}, = a,+b,exp [i(1;-1;t)] 

{}2 = a,+ h2 exp [ - i ( 1; - !;t)] 

W, = c,!;+d,+f,exp [f(t;-!;t)] 

W2 = c21; + d,+ /2 exp [ -; (1;- !;t)], 

K 
where f, = - Ct - b, 

cp 
K 

and Ji = Ct - h2. 
cp 

(4.1 a) 

(4.2a) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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We anticipate that the exponential terms will only contribute in the neigh-
borhood of the boundary layer at C = Ct, so that evaluation of constants 
( a1b1c1d1a2b2c2d2) of integration at C = o and C = Cb is particularly simple. 
The boundary conditions are as follows: 

at C = o W1 = W(o) 
{),I = {}(o); 

at C = Ct W1 = o 
W2 = o 
w;= w; 

{),I = {),2 

{}~ = {}~; 

at C = Cb W2 = o 
{}2 = 0. 

There are nine conditions, and there are but eight independent constants 
of integration (ai, bi, ci, di). There are also, of course, two undetermined 
parameters, <p and Ct- Thus elimination of the constants ai ... Ji leads to the 
relation 

1 ( K ) 1 ( K W( o )) 
Cb-Ct 2<p + Ct 2<p + Ct{}o = 

1 
· 

(4.7) 

We now make two assertions: 
(I) We introduce the number N = Cb/Ct, and assert that it is large; that 

is, we limit ourselves to the case where the depth of the thermocline is much 
less than that of the ocean; and 

(2) We assert that the average velocity within the boundary layer in region 2, 
-<p, is equal to one-half of the interior value of W2 as C Ct (see Fig. I) or 
from (4.6) 

W2 interior (Ct) c2 Ct+ d2 

-<p = 2 = 2 . 

This reduces to 
4 <p2 = Ct K {}o . (4.8) 

Eliminating Ct between (4.7) and (4.8) we obtain an equation m <p alone: 

<p4 = K
2
{}0 [(i+-1- )<p + W(o_)_] 

8 N-1 2 ' 
(4.9) 

which simplifies for large N to 
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When solutions of this equation are obtained, then one can work back and 
express all other constants in terms of cp, and the problem is solved. It is physi-
cally a little more meaningful to introduce again the quantity 

_ 2 cp W2 interior (Ct) 
). = W~o) = W(o) ' 

which is the ratio of the upwelling velocity just beneath the thermocline to 
the downward velocity forced by the wind-stress just beneath the Ekman 
layer. The equation (4.10) is then expressed as 

).4 = N(2+ 1), 

K2 fJo 
where N = [W(o)]

3
, a dimensionless number. 

It is evident that 
for N « 1 , ). = N¼ 

and N )) I , ). = Nl . 

(4.10a) 

The parametric dependence of various quantities can now be easily ex-
pressed m terms of the original physical parameter in the extreme range 
of N « I: 

N«1 

). K½ {}~ [W(o)r} 

2cp K½&![W(o))1 

Ct {}~½ [W(o)i 

K/cp 
1 _l. _l. 

2K'l{}
0

•[W(o)] • 

KfCtcp 
1 1 3 

2K" fJ"[W(o)r• 

To recapitulate the meaning of the quantities in the left-hand column: ). is 
the ratio of amplitude of the upwelling velocity just beneath the thermocline 
to the amplitude of the downward component of velocity forced by the wind 
just beneath the Ekman layer; Ct is the depth of the thermocline (inflection 
point in the vertical temperature curve, and depth at which vertical compo-
nent of velocity vanishes: n. b., the depth Ct must be scaled by the similarity 
transformation to restore it to original physical dimensions); K/cp is a measure 
of the thickness of the thermocline layer measured in either direction from 
Ct (also in transformed coordinates); and K/cpCt is the ratio of the thickness 
of the thermocline to the depth of the thermocline. For N )) 1 there is 
no true thermal boundary layering. The simple boundary layer theory, then, 
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does not apply in this range, and we must restrict our attention to the range 
N ( ( 1. The ratio of upward Row beneath the thermocline to downward 
Ekman Row, J., is small in this case, as is seen above. The upward Row for a 
fixed Ekman Row increases with the mixing parameter Kand the increased 
surface temperature, {}o. The depth of the thermocline, Ct, in this range is 
independent of mixing parameter K and increases with increased downward 
Ekman Row and decreased surface temperature {}o. The thickness of the 
thermocline, KJ<p, does depend upon the mixing, and as we would expect, it 
is greater for greater mixi ng parameter K. 

5. Discussion of Results. In order to discuss the nature of the results, it is 
helpful to begin by considering the case W(o) = 5, T(o) = 10°C, K = 0.1 
cm2/sec, and Cb = 4, shown in Fig. 1 by the heavy curves. This corresponds 
to the choice of a midlatitude station distant from the eastern wall more or 
less in the region of the western center of a subtropical high pressure gyre. 

The quasivelocity W(o) = 5 corresponds to a downward velocity of about 
5 cm day-1 just beneath a convergent Ekman layer. The surface temperature 
is taken as I o°C instead of 1 8° -20°C because, in the real ocean, salinity 
reduces the actual density stratification to about half of that which would 
obtain in the case of temperature alone. The value of the vertical eddy con-
ductivity, K = 0.1 cm2 sec-1, is taken for convenience of discussion-for, as 
we shall see, it is rather difficult to decide on a value that could be honestly 
called characteristic. The value of Cb = 4 represents a bottom depth of about 
4000 m, but on account of the similarity transformation it is a pseudodepth, 
not having dimensions of length. Thus it is only at this particular point in 
the ocean (western central subtropical gyre) that the scales of Wand C can 
be interpreted as cm day-1 and kilometers respectively. 

These values of the parameters provide a convenient point of departure for 
the discussion. As can be seen from the heavy curves in Fig. 1, there is a 
clearly marked thermocline, with inflection point in temperature T at about 
Ct = o. 7 5. The vertical component of pseudovelocity W also vanishes at this 
point. At shallower depths Wis nearly linear, and Tis almost a constant 10°. 
For C > Ct, W So, which means that the deep water moves upward against 
the water descending from the Ekman layer at the top. The maximum up-
ward Row occurs at about C = 1.50; and since the extremum in W corre-
sponds to the zero of the meridional horizontal component of velocity, we 
refer to this depth as the level of no meridional motion and denote it by Cn-
For C < Cn the meridional horizontal component of the velocity is directed 
equatorward; at deeper levels, C > Cn, it is directed poleward. The other, 
lighter, curves in Fig. 1 represent cases with different values of mixing para-
meter K, all other parameters and boundary conditions remaining unchanged. 

As is seen, the limiting case of no mixing, K = o, is a simple two-layer 
case with a sharp discontinuity in temperature at C ""0.75. Wis linear in 
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the upper layer and vanishes in the lower. There is no horizontal Row in the 
lower layer. On the other hand, by increasing K above K = o. I, a thicker 
thermocline is produced and larger amplitudes of W are forced in the deep 
water. The value of Ct becomes slightly smaller, the value of Cn greater. The 
limiting case of K = ro corresponds to a linear temperature distribution with 
depth; the W distribution for K = ro is also drawn in Fig. I. This case is 
only of interest in checking the consistency of the numerical solutions, because 
in such an extreme case, the simple idea of fixing the bottom temperature is 
a physically unrealistic boundary condition. We see therefore, as we might 
have suspected, that increased mixing thickens the thermocline and increases 
the amplitude of the deep circulation. 

Formally, amplitude of the transport of deep circulation beneath the level 
of no meridional motion Cn is proportional to - W(Cn), whereas the transport 
driven by the wind is proportional to W(o). Thus in a certain sense we can 
speak of a ratio A of thermohaline to wind-driven circulation defined by 

A = -:::(~)n) . Comparison of the temperature curves in Fig. 1 with actual 

subtropical soundings suggests that the appropriate choice of K is in the range 
o. I S K .::_ I .o, but it is difficult to be much more precise. The corresponding 
range of W(Cn) is about -o.8 .:::. W(Cn) .:::. - 2.5, which means that it is not 
easy to fix the amplitude of transport of the deep circulation, by inspection 
of the T curves, to much within a factor of 3. The ratio A seems to lie some-
where in the range 0.15 .:':. A .:':. 0.5. 

In Fig. 2, we revert to the case with K = o. I and hold all other parameters 
constant, except the depth to the bottom, Cb, which we permit to vary greatly 
in order to see its influence on the solutions. When Cb is made small, Cb < 4, 
the amplitude of the deep circulation, -W(Cn), is greatly reduced; but when 
the depth Cb > 4, there is very little influence on the Cn, W(Cn), A or the 
form of the temperature distribution. In these respects it seems as though 
the depth, Cb = 4, is already effectively infinite so far as the thermocline is 
concerned. However, in the deep water the amplitude of the meridional 
horizontal component of velocity, //, which is proportional to W', is very 
much reduced. 

In Fig. 3 we again revert to the original case, but now we vary the surface 
temperature, {}(o). For {}(o) > 10°, the thermocline depth, Ct, and reference 
level, Cn, are much reduced, but -W(Cn), A, and // when C > Cn are much 
increased. It seems reasonable that increasing the temperature should increase 
the transport of the thermohaline portion of the circulation; but it is only 
upon reflection that the shallower thermocline seems other than paradoxical. 

In Fig. 4 we again revert to the original case, shown by heavy curves, and 
we now vary W(o) . Up until this case we have always taken W(o) = 5, so 
that the wind-driven part of the transport was always the same. Now it can 
vary. Consider increasing W( o) to Io and then to 30, i. e., the Ekman con-
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vergence is made stronger and pushes more water downward. This deepens 
the thermocline (increases Ct) and the level of no meridional motion, C n· It 
has a tendency to increase the deep water upwelling, W(Cn)- On the whole, 
however, in the range o.o .:::_ W( o) .:::_ 1 o.o, the amplitude of the thermo-
haline circulation is not strongly influenced by variation of W(o) . For nega-
tive values of W(o)~orresponding to the divergent Ekman layer drawing 
water upward from below, there is virtually no thermocline, the entire water 
column is cold, the circulation is entirely wind-driven, and the meridional 
component of velocity // extends all the way to the bottom. 

In this discussion we have not explored all the interesting features of the 
numerical solutions. Thus, for example, if we were to construct a figure 
analogous to Fig. I-with the parameter K variable but beginning with a 
choice of W(o) = 5 and ,&(o) = 3°, for example, then the family of curves 
for each K is rather different; Ct increases as K increases ( opposite to the be-
havior of Fig. 1), and the value of - W(Cn) is not a monotonically increasing 
function of K. 

It can be shown that 8Ct(K)/8K > 0 if Ct(O)/C b > Land 8Ct(K)/8K < 0 

if Ct(o)(Cb < i - The latter case is more typical of the true subtropical oceanic 
case, i. e., of a thin thermocline in an effectively infinite deep ocean. 

The results of the numerical theory for N « I (section 4) compare reason-
ably well with the asymptotic theory of section 4. To show this we compute 
the curve for W by the asymptotic theory for the same case as that about which 
the preceding discussion was pivoted. Then N = 8 x 10-4, A= N¾ = 0.167. 
The values of the various essential quantities computed are given thus: 

By numerical theory 
l . . . . . . . . . . . 0.172 
W(Cn) =- 2<p . . - o.86 
Ct.. . . . ....... 0.72 
,&(Ct) =- ,&, . . . . 5-4 

By asymptotic theory 
0.167 

- 0.83 
0.7 I 
5.0 

6 . .Acknowledgements. The first thoughts about the subject of this paper 
arose following completion of the manuscript of the "The Gulf-Stream" 
book (p. 170 eq. 27) in the summer of 1955. The idea of using this particular 
form of coupling the vorticity equation to the thermal wind equation was 
applied to actual hydrographic data a year later (Stommel, 1956), and at the 
time, Dr. George Morgan and one of us (H.S.) discussed informally the idea 
of doing a boundary-layer analysis of the type given in Section 5. Also Dr. 
James Crease made some numerical computations of the kind presented here 
in Section 2. Neither of these preliminary investigations was pursued very far 
because there was not an adequate similarity transformation. 

We were working with the idea that the isotherms near the thermocline 
all had a constant but undetermined slope, thus enabling us to transform the 
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partial vorttc1ty equation to ordinary form. In retrospect that does not seem 
to be a bad idea, but at the time it seemed rather vague and uncomfortable. 
After Robinson found a usable transformation, it was possible to follow up 
both of these earlier investigations, and that is essentially what we have done 
here. 

Dr. P. Welander and Dr. A. Robinson have succeeded in obtaining a 
similarity transformation including diffusion and all advective effects; however, 
their results were not available in final form for purposes of detailed compar-
ison at the time this paper was submitted for publication. 

The idea that subpolar gyres belong to the class of solutions with I; negative 
is due to Dr. N. P. Fofonoff. 

One of us (J.W.) was working on contract Nonr-2196(00) between the 
U.S. Navy and the Woods Hole Oceanographic Institution. 
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