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A TEST OF MIXING LENGTH THEORIES IN A 
COASTAL PLAIN ESTUARY1 

BY 

RICHARD E. KENT* AND D. W. PRITCHARD 
Chesapeake Bay Institute, The Johns Hopkins University 

ABSTRACT 

Observations of vertical and horizontal variations in salinity and velocity in the 
James River estuary have been previously employed in the indirect determination of 
the vertical eddy flux of salt, (v,'s') (Pritchard, 1954). This term is employed here to 
compute a mixing length after the definition of Prandtl. It is shown that this observed 
mixing length is qualitatively similar to a theoretical one formulated from the geometry 
of the system and a stability parameter related to the density stratification of the 
system. Several alternate hypotheses regarding the theoretical mixing length are 
tested. It is found that better quantitative agreement is obtained when the influence 
of surface wind waves is included in the formulation of the theoretical mixing length. 

Prandtl (1925) proposed the mixing length theory of turbulence 
in an attempt to relate the rate of momentum transport to the mean 
flow pattern of an incompressible fluid . Despite its questionable 
reality concerning the mixing process, this concept has proven extra-
ordinarily fruitful in the development of fluid mechanics and con-
sequently has been utilized in related fields to describe the turbulent 
transport of properties other than momentum. 

The purpose of this work is to demonstrate that the mixing length 
associated with vertical diffusion of salt in a stratified estuary may be 
formulated in terms of the stability of the system and of an adiabatic 
mixing length determined by the geometry of the system. This 
mixing length will be shown to be qualitatively compatible with the 
corresponding one provided by Prandtl's definition. An improved 
correspondence results when the effects of surface wind waves are 
included in the formulation of the adiabatic mixing length. 

Development. Consider a stratified coastal plain estuary in which 
there exists a mean circulation pattern similar to that described by 

1 Contribution No. 40 from the Chesapeake Bay Institute. This work was sup-
ported by the Office of Naval Research, the State of Maryland (Department of 
Research and Education), and the Commonwealth of Virginia (Virginia Fisheries 
Laboratory). 

* Present address: National Marine Consultants, Inc., Santa Barbara Airport, 
Goleta, California. 
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Pritchard (1952). Here the lateral variations in velocity and salinity 
are negligibly small so that the flow pattern is essentially two dimen-
sional, consisting of a seaward flow in the upper portion of the water 
column and a landward flow in the lower portion. Pritchard (1954) 
has shown that, in this system, the salt balance is maintained pri-
marily by a longitudinal advective salt flux and a vertical nonad-
vective salt flux. It is the mixing length associated with this latter 
flux with which we are concerned. A left-handed co-ordinate system 
is employed in which the X1, x2, and Xs -axes are directed horizontally 
seaward, vertically downward and laterally across the estuary, re-
spectively. 

Consider first the mixing length for salt as given by Prandtl's pro-
posal. Let the vertical flux of salt at a point in the estuary be ex-
pressed as 

(v'2s') = 'Y Vv'22 X #, (1) 

where y v' 22 and v s'2 are the local root mean squares of the turbulent 
fluctuations in velocity and salt, respectively, and where 'Y is the 
correlation between them. If, as Prandtl suggests, a turbulent 
fluctuation in property may be described in terms of a linear dimen-
sion and of a mean gradient of that property, we have for W2 

_ l as vs·"= •-• ax2· 
(2) 

Further, it is hypothesized that a negative correlation must exist 
between the velocity fluctuations perpendicular and parallel to the 
direction of mean flow; that is, 

= -cvv'i2-

By the same argument that led to (2), we write 

~=-cl. av1_ 
OX2 

(3) 

(4) 

Assuming for this system that l, = l~ = l and by substituting (2) 
and (4) into (1), we have for the vertical flux of salt 

< 
, , > _ z2 \ av1 I as V2S - -"(C - -. 

ax2 
1 

OX2 

Letting 11
2 = "fC be a constant in (5), we have 

(v'2s'} 

11
2
Z
2 

= -1 av1 \ · 
OX2 OX2 

(5) 

(6) 



64 Journal of Marine Research [18, 1 

from which the mixing length, l, may be calculated provided that the 
remaining quantities are known. For future reference, let this value 
of l be called the observed mixing length. 

Consider now the derivation of l in terms of an adiabatic mixing 
length and a stability function. For an unstratified system, Prandtl 
(1932) found that the mixing length in the immediate vicinity of a 
solid boundary is nearly a linear function of the shortest distance 
from the boundary; that is 

la = K(X2), (7) 

where la is the adiabatic (unstratified) mixing length, K the universal 
turbulence constant, and X2 the distance from the boundary. Mont-
gomery (1943) generalized Prandtl's geometrical assumption so that 
the adiabatic mixing length for cylinders of infinite length became a 
linear function of the reciprocal of the average "nearness," in the 
plane normal to the cylinder, to the boundary. Since the ratio of 
width to water depth is large (200:1) for the shallow coastal plain 
estuary in which we are interested, the system may be regarded as 
being composed essentially of two parallel plane boundaries: namely, 
the water surface, and the river bottom. For this geometrical setup, 
neglecting the roughness length, Montgomery's mixing length, la, is 
found to be 

(8) 

where h is the boundary separation (in our case the depth of water). 
Clearly, la is symmetrical about the point of mid-depth. 

It is evident that the mixing length in a homogeneous system will 
be unlike that in a stratified system. A stable stratification will 
provide a damping effect on vertical turbulent motions since a por-
tion of the energy in excess of that required to maintain the mean 
field is used to perform work against the density gradient. The 
reverse is true for an unstable stratification. Rossby and Mont-
gomery (1935) have pointed out that for a stable stratification the 
mixing length is reduced; furthermore they have proposed a relation-
ship between the adiabatic and stratified lengths. 

They state that the turbulent kinetic energy per unit mass for the 
case of neutral stability must be equal to the sum of the turbulent 
kinetic energy plus the potential energy per unit mass for the stable 
case. The turbulent kinetic energies for the two cases are propor-
tional to 

and l · I av1 I 2 ax~\ ' 
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where the mean shear is assumed to be the same in the two cases. 
Here la is the mixing length for adiabatic conditions (neutral stability) 
and l is the mixing length for stable conditions. The potential energy 
for the stable case is shown to be proportional to 

_g_ a(T t l2 
<T t ax2 1 

where <T t has the conventional meaning of the density less unity times 
one thousand. (Note: Rossby and Montgomery treated the atmos-
pheric case, where the potential temperature fJ takes the place of <Tt.) 

The expression obtained by Rossby and Montgomery relating l for 
the stable case with la is then in our notation 

l = la(l + {3Ri)- ½, 

where Ri is the Richardson number, given by 

Ri = _g_ a(T t / I' av1 12 
<Tt ax2 ax2 

and where {3 is an undetermined proportionality factor. 

(9) 

Holzman (1943) cited other references to show evidence for a criti-
cal value of Ri above which turbulence is suppressed. He argued 
that l should go to zero at some finite value of Ri, a condition not 
satisfied by eq. (9) . Holzman proposed an alternate relationship 
which does provide for a critical value of Ri, and further, it is more 
amenable to mathematic treatment. His expression, in our notation, 
is 

l = la(l - {3Ri) ½. (10) 

As stated above, Rossby and Montgomery assumed that the turbu-
lent kinetic energy for the adiabatic case was equal to the turbulent 
kinetic energy plus the potential energy due to the displacement over 
the mixing length for the stable case. An alternate proposal is that 
the energies per unit length of displacement are equal. This proposi-
tion leads to the expression 

(11) 

In eq. (8), la is based on the assumption of rigid planar boundaries 
at both the bottom and surface of the estuary. Actually, turbulent 
energy is introduced at the free water surface by wind waves. In 
this case the adiabatic mixing length should be larger in the near 
surface layers than the values given by eq. (8). It would appear 
reasonable to conclude that this increase should be related to the 
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orbital motion induced by surface wind waves. The orbital motion 
induced by surface waves is proportional to the expression 

where L is the wave length of the surface waves and X2 the depth, as 
before. A possible expression for the adiabatic mixing length is then 

(12) 

Here a is an undetermined proportionality factor. 
The term KX2/h - x2l/h in eq. (12) is the same as in eq. (8) and de-

pends only on the geometry of the system. This term is symmetrical 
about mean depth. The term / 1 + ae-2"x2tL) depends on the char-
acteristics of the surface wave motion, and the effect of this term on 
la decreases rapidly with depth. Fig. 1 gives an example of la com-
puted from both eq. (8) and (12). In this computation K has been 
taken as 0.40, has 7.5 m, Las 5 m, and a alil 3.17. Note that eq. (8) 
gives an la which is symmetrical about a well defined maximum at 
mid-depth while inclusion of the effect of surface wind waves extends 
this area of maximum la into the upper half of the water column. In 
this particular case the two computations for la are essentially the 
same below mid-depth. 

For purposes of comparison with the observed mixing length as de-
termined by eq. (6), we designate the l determined by any of the equa-
tions (9), (10), or (11) as the theoretical mixing length. This designa-
tion will hold whether eq. (8) or eq. (12) is employed in determining 
la, 

We will now compare the observed mixing length given by eq. (6) 
with the theoretical mixing lengths given by each of the equations (9), 
(10) and (11), using data collected in the James River estuary. 

Eq. (6) contains the unknown constant 7/, and eqs. (9), (10) and 
(11) contain the unknown constant /3. The procedure employed in 
this comparison involves the simultaneous solution of the two subject 
equations at two depths (3.5 m and 5 m) in order to obtain the con-: 
stants 7/ and /3. The correspondence of the two l's at other depths is 
then examined. 

The data here employed were collected in the James River estuary 
during three periods of several days each during the summer of 1950. 
The station is located some 17 miles upstream from the mouth of the 
James. For further information on the physical and chemical proper-
ties of this estuary, refer to Pritchard (1952, 1954). The data em-
ployed in the evaluation are presented in detailed reduced form by 
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Pritchard and Kent (1953) under the station designation J-17. From 
this latter reference the required values of (v'2s'), iJs / iJx2, u,, iJui/iJx2, 
I iJvif iJx2 I, and I iJvif iJx2 j2 can be obtained directly or computed from 
auxiliary data. 

We have first taken all three periods together as representing one 
set of data. The average values of the pertinent parameters were 
employed in comparing the observed with the theoretical mixing length. 
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Figure 1. The adiabatic mixing length, la, as a function of depth as computed from eq. (8), which 
includes the effect of geometry only, and from eq. (12), which also includes the effect of surface wind 

waves. 

In this initial comparison eq. (8) was employed in obtaining l ... 
In comparing eq. (6), the observed mixing length, with eq. (9), the 
theoretical mixing length proposed by Rossby and Montgomery, we 
found that it was not possible to find a simultaneous solution at two 
depths which gave real values for T/ and {j. In order to make some 
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comparison, a value 0.253 was chosen for r,, and {3 was then found by 
assuming that the two pertinent equations were the same at the single 
depth of 3.5 m. Results are shown in Fig. 2(a). Here the theoretical 
is presented as a solid curve while the observed is plotted as discrete 
points for each one-half meter. Note that the observed mixing length 
is in general larger than the theoretical, except at 3.5 m, where agree-
ment was forced by the method of determining the proportionali ty 
constant {3. 

l IN METERS 1 IN METERS l IN METERS 
0 .4 0 .6 ~ -.::;=.-~:......__.::;o·;,;:.6_...;;,;o.e o.o 0.2 0.4 o.6 

0 

0 0 

0 0 0 

2 0 

:n 
er 0 

LLl 

ti 3 
::E 
z 
-4 
:r: 
f-
c.. 
~ 5 0 

6 

0 

7 0 (a) 

Figure 2. Comparison of obaerved mixing length given by eq. (G), plott..d here as discrete points at 
each one-half meter depth, with the theoretical mixing length given by eqs. (9). (10) and ( l!J. For 
these determinations, the parameter la is given by eq. (8). 

The selection of any positive value of r, would give the same relative 
disagreement between the observed and theoretical as shown in Fig. 
2(a), when eq. (9) is employed in computing the theoretical mixing 
length. The adiabatic mixing length, la, required as a parameter in 
using eq. (9), was computed from eq. (8) for this comparison. Thus 
when la is determined on the basis of boundary geometry only, without 
considering the influence of wind waves, there is only fair correspond-
ence between the mixing length based on Rossby and Montgomery's 
relationship and the one based on observation. 

Comparison of the observed with the theoretical mixing length based 
on the relationship proposed by Holzman is shown in Fig. 2(b). Eqs. 
(6) and (10) were solved simultaneously at 3.5 and 5 m depth to 
obtain values for the parameters ,, and (3. Except at these two points 



1959] Kent and Pritchard: Test of Mixing Length Theories 69 

of forced correspondence, the correspondence between the two lengths 
is not particularly good. 

The value of (:3 which results from this comparison is 0.412 x 10-3. 
Eq. (10) provides for a critical value of Ri at which turbulence be-
comes completely damped: that is, at which the mixing length goes 
to zero. This condition is met when {:3 Ri equals unity: that is, when 
Ri equals 2.43 x 103• 

Comparison of the mixing length determined from eq. (11) with 
the observed is shown in Fig. 2(c). Here again (6) and (11) were 
solved simultaneously at 3.5 and 5 m depth to obtain values of ,, and 
{:3. At other depths the correspondence between the two lengths is 
much better than that shown in Fig. 2(b) and somewhat better than 
that ·shown in Fig. 2(a). The area of greatest difference occurs in the 
upper layers. 

These comparisons were made by using eq. (8) in the determination 
of the adiabatic mixing length. As pointed out above, it is reasonable 
to assume that the effect of surface wind waves would be to increase 
the mixing length in the uppar layers. Thus the lack of agreement 
between the mixing length computed from eq. (11) and that observed 
may be due to failure to include the influence of surface waves in 
determining the parameter la. 

Figs. 3(a) and 3(b) show the comparison between the observed 
mixing length and the values computed from eqs. (9) and (11), re-
spectively, when the adiabatic mixing length is determined from 
eq. (12). The valµe of the unknown constant a in eq. (12) was taken 
at 3.17. This value provides for exact correspondence of the mixing 
length determined from eq. (11) with that observed at the maximum 
which occurs at 1.5 m depth. The wave length L was taken as 5 m, 
a value compatible with the observed mean wind. 

With the influence of surface waves included in the determination 
of the adiabatic mixing length, it becomes possible to solve eqs. (6) 
and (9) simultaneously at 1.5 and 3.5 m. Correspondence between 
the mixing length computed from these two equations is reasonably 
good at all depths. 

The excellent agreement shown in Fig. 3(b) between the mixing 
lengths determined from eqs. (11) and (6) is somewhat forced, since 
the constants 7/ and {:3 were determined to give exact correspondence 
at depths of 3.5 and 5.0 m; and the proportionality factor a in eq. (12) 
was evaluated so as to give exact agreement at 1.5 m. However, the 
correspondence at depths other than these three is much better than 
for any of the other hypotheses tested. -

The evaluation discussed above was made by using the average of 
data collected during three periods of several days each. The data 



70 Journal of Marine Research [18, 1 

from the individual periods show significant differences in vertical 
stability as well as in other parameters which enter the computations. 
In the following discussion the observed data from each of the three 
periods have been used in further testing the suitability of eq. (11) in 
defining a mixing length under stable conditions. 
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Figure 3. Comparison of observed mixing length as given by eq. (6), plotted here as discrete points 
for each one--half meter depth, with the theoretical mixing length given by eqs. (9) and (11). when the 
adiabatic mixing length is given by eq. (12). 

The proportionality factors.,, and /3 should be constant if eq. (11) is 
a valid expression for the mixing length under stable conditions. The 
values of these two factors as determined from the combined data 
have been used in computing the observed and theoretical mixing lengths, 
using eq. (6) and eq. (11) respectively for each of the three periods. 
Results of this comparison are shown in Fig. 4. The curves for each 
of the three periods as computed from eq. (11) show differences, one 
from the other, which are also reflected in the observed mixing length. 
The correspondence of the two lengths for these three periods is quite 
good. 

Table I summarizes the results of the various comparisons discussed 
above. Data available from the James River estuary indicate the 
following: 
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Figure 4. Curves are the mixing length computed from eq. (11), using {3 = 1.65 x 10--,. The circled 
points are the observed mixing length determined from eq. (6) , using 71 = 0.253. The effect of wind 
waves bas been included in the computation of the theoretical· curve. 

(a) The original proposal of Rossby and Montgomery for the mixing 
length under stable conditions is more compatible with the data than 
is the later proposal by Holzman. 

(b) The relationship given by eq. (11) appears to provide a some-
what better correspondence with the data than that provided by the 
relationship of Rossby and Montgomery. 

(c) The influence of surface wind waves is effective in increasing the 
adiabatic mixing length in the upper layers. 

Hypothesis 

Eqs. (8) and (9) 

Eqs. (8) and (10) 
Eqs. (8) and (11) 
Eqs. (12) and (9) 
Eqs. (12) and (11) 

'1 

0.253 
0.335 
0.201 
0.253 
0.335 
0.253 

TABLE I 

{3 

8.05 X 1Q--3 

14.14 X 1Q--3 

0.412 X IQ--3 

1.58 X 10-8 

16.55 X 10-3 

1.65 X 10-3 

Root mean square percentage 
difference, observed and theo-

retical mixing lengths* 

29.9 
23.4 
41.7 
28.0 
16.1 
15.0 

• Depths at which agreement between the two lengths was "forced" by virtue 
of the selection of the coefficients are omitted from this evaluation. 
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NOTE ADDED IN PROOF 

I am indebted to Dr. R. B. Montgomery for pointing out to me 
that in the Richardson number the factor (l / u1)(aui/ax2) should 
more correctly be (l / p)(ap/ ax2). In the text this change would affect 
only the values of {3, which should be multiplied by the factor 1.47 X 
102

• Thus the value of /3 = 1.65 X 10-a should be corrected to {3 = 
0.242, etc. 


