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ABSTRACT

This paper develops a mathematical model for the radiance distribution of light
penetrating a homogeneous hydrosol on the basis of the general theory of radiative
transfer. It is proved that the radiance distribution approaches an asymptotic
pattern at great depths. This is in accord with previous field measurements of the
directional patterns in underwater light and with L. V. Whitney’s conjecture that
there is at some depth in natural waters a characteristic diffuse light symmetrically
distributed around the vertical. The angular form of this equilibrium light pattern
is derived in terms of the mathematical model presented.

INTRODUCTION

Recent experimental evidence (Tyler, 1958) forms the basis for
fresh support of the long-standing conjecture that the radiance dis-
tribution about a point in an optically deep natural hydrosol ap-
proaches, with increasing depth, a characteristic form which is inde-
pendent of the external lighting conditions and of the optical state of
the medium’s surface and which depends only on the inherent optical

1 This paper represents results of research which has been supported by the Bureau
of Ships, U. S. Navy.
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properties of the medium. This conjecture was apparently given its
first definitive formulation by Whitney (1941a, 1941b), who referred
to the asymptotic radiance distribution as characteristic diffuse light.
(Some early experimental evidence for this conjecture is cited in
Whitney’s papers.) In this note we complement experimental evi-
dence in favor of this conjecture by supplying a simple mathematical
proof of the existence of characteristic diffuse light in all homogeneous
optically deep natural waters. The paper concludes with a deriva-
tion of the integral equation governing the angular structure of char-
acteristic diffuse light as well as a brief discussion of an interesting
and tractable example for the case of isotropic scattering.

We note in passing that the applicability of Whitney’s hypothesis
has been widened considerably since its formulation. The problem
of a limiting angular distribution has since been encountered in mod-
arn neutron transport theory, basically as an abstract mathematical
problem rather than as an experimental phenomenon. A similar
type of problem has long been extant in astrophysical radiative trans-
fer. A general proof of the existence of an asymptotic radiance dis-
tribution which covers all of these contexts recently has been devised
(Preisendorfer, 1958a).

However, the hypothesis still retains its greatest usefulness in the
context of geophysical optics. For in this field, unlike the others
mentioned above, the trend to a characteristic limiting form is a
directly observable phenomenon. Furthermore, the existence of such
a form is of inestimable importance to all experimental research work
dealing with the determination of optical properties of natural waters.
In many important instances, knowledge that an asymptotic radiance
distribution exists will obviate the necessity of experimental probings
to extremely large depths; for such knowledge will allow, by means of
relatively simple formulae, accurate prediction of the geometrical
structure of the light field in great-depth ranges. Some of these prac-
tical consequences of the asymptotic radiance hypothesis have been
formulated recently (Preisendorfer 1958b).

PHYSICAL BACKGROUND OF THE METHOD OF PROOF

The argument used by Whitney in establishing experimental evi-
dence for the asymptotic radiance hypothesis went basically as follows:
he showed that when experimentally obtained plots of radiance dis-
tributions at various large depths were blown up to the same size
(more precisely, the zenith readings were normalized to a common
value), they formed a set of nearly congruent figures. Now, an in-
teresting feature of such distributions is that they assume the same



1959] Prevsendorfer: Ezistence of Diffuse Light 3

shape and decrease in size with increasing depth at nearly the same
exponential rate. This fact can be stated precisely as follows:?

N(z, 0, ¢) = g(6, p)e™". (1)

From this we see that the asymptotic radiance hypothesis is equiva-
lent to the statement that the directional and depth dependence of
radiance distributions multiplicatively uncouple at great depths. That
is, the radiance function N may be represented as the product of two
functions: g which gives the shape or directional structure common to
all distributions and an exponential function which gives the depth
dependence of the distributions.

Each factor on the right-hand side of (1) has special physical sig-
nificance. The function g evidentally defines the angular form of
characteristic diffuse light. The exponent k of the exponential func-
tion has the following interesting interpretation.

Define scalar irradiance h(z) at depth z as follows:
2r T
h(z) = f / N(z, 6, ¢) sin 0 df do. ®)
$=0v0=0

The quantity h(z) is then a measure of the volume density of radiant
energy at depth z. Measurements of h(z) over the years in many
hydrosols have shown that h(z) varies essentially in an exponential
manner with depth. That is, semilog plots of 2(z) vs depth show an
unmistakable trend toward linearity as depth increases. In any
event, hA(z) may be accurately represented by a general formula of
the type

= (o)lexn { % / k() dz’}, 3)

where k(z) is the negative logarithmic derivative of h(z). (Here and
below, a primed symbol refers to a dummy variable of integration.)
As depth increases, experimental evidence gathered in the field in-
dicates that k(z) approaches a constant value. Denote this limit
value by k,. Now, assuming that an asymptotic radiance distribu-
tion is approached by the radiance distributions in a particular body
of water, we see from (1), (2) and (3) that

2r x
h(z) = h(zo)e =% = ¢k / / g(6, ¢) sin 0 do dp, (4)
¢=07J0=0
2 It is implicit in the definition of radiance that it applies to an arbitrary but

fixed wavelength of radiant flux. This is also true of all the other radiometric
quantities used in this note.
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where z, is the depth below which we may assume that k(z) = o
From this we conclude that

k=k,. (5)

Hence, under the above assumption (1) we see that, at great depths,
the size of a radiance distribution plot decreases exponentially with
increasing depth and that the rate of this decrease is precisely that of
scalar irradiance (or energy density).

The close connection between the depth dependence of scalar ir-
radiance and that of the radiance distributions, as summarized in
(5), suggests the following mode of representation of the radiance
distributions for any depth: Define, for each direction (6, ¢),

—1 dN(Zy 07 ¢)
N(z, 0, ¢) dz y

Then, in analogy to (3), N(z, 6, ¢) at any depth z may be represented
exactly by

K(z 0, ¢) = (6)

NG o8 = NO,0, ¢ exp{~ [[Ke, o9 ar). @)
U J

Now suppose there is some depth z, below which we have K(z, 8, ¢) =
k. for all directions (6, ¢). Then (7) may be written

Il

N(Z) 0; d’) "V(Oy 0; ¢) exp {_ /zo K(Z’, 0; ¢) dz' — /z K(Zly 0; ¢) dz’}

Il

N(zo, 0, ¢) exp {— k(2 — z0)}.
If we set
9(6, ¢) = N(zo, 0, ¢) exp {k.z},
then we may write
N(z, 0, ¢) = g(0, ) e, (8)

for all depths z below z,.

The similarity between (1) and (8) is unmistakable and it points
out a method of attack we may follow in order to prove the asymptotic
radiance hypothesis: we must show that the quantities K(z, 6, ¢)
approach a limit as depth is increased and that this limit is inde-
pendent of the directions (9, ¢). Furthermore, this limit, in accord-
ance with the preceding discussion, should be none other than the
limit k., of k(z), as defined in (3).
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THE PROOF
We make use of the equation of transfer for radiance:
dN(z, 6
WED D) - —aN(, 0, 9) + Motz 6, 9), ©)
where
Ni(z 6, ¢) = -/-: /; a(0, ¢; 0, ¢') N(z, 0', ¢') sin ¢’ do’ d¢’ (10)
¢ =0 '=0

defines the path function N; ¢ is the volume scattering function
(which governs the law of scattering in the water) and « is the volume
attenuation coefficient. The formal solution of (9) is readily obtained:

N@mw=mmmw+fmwm@rwww.(m
0

The first term represents the component of N consisting of unscattered
light. The second represents the space light over the path of length r
N%O0, 6,9)

Incident light

surface| of the water
i

Light entering
radiance tube

/ /«
Radiance tube measuring N(Z.e.d’);

The plane of the figure is in the
vertical plane defined by 4)

/m/_
N4

Figure 1

(Fig. 1) which has been generated by light scattered into the path of
sight all along its extent. The formal solution (11) has been written
for a general downward direction of flow of light (see Fig. 1) so that
N°(z, 6, ¢) is interpreted as the directly transmitted light from the
upper boundary of the medium and is of the form
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No(z) 0, ¢) == NO(O, 0, ¢) eRsl
where
—rcosf = z.
We now turn eq. (11) into a useful inequality by means of the
following three steps:
First, since N(z, 6, ¢) clearly exceeds its spacelight component at
all depths, we write

N(z, 0, ¢) > / : N.(2, 0, ¢) e 20— dr'.
0

Second, using the definition of N,, we strengthen the inequality when
we write
Nig 0') > onis / h(Z) e===
0
where oni, i1s the minimum value of the volume scattering function;
that is, we have used (10) to deduce that

Nele 05 @) = onie / i NG, ¢, ¢') sin 6 d6’ d¢' = omich(2).
¢'=0/g =0
Finally, since h(z) decreases with increasing depth, we certainly
strengthen the inequality by writing

N(z, 6, ¢) > omia h(2) / " gmatr=r) gy’

That is, we have
N(z, 6, ) > 2 h(z)(1 — e=o7) (12)
o

for all depths 2. From this we see that, as depth increases indefi-
nitely, the exponential rate of decrease K(z, 6, ¢) of the radiance
cannot eventually exceed the k(z) of scalar irradiance and remain
larger by any finite amount; if it did, the plot of N would eventually
fall and remain below that of A. This observation is stated sym-
bolically as follows:

lim,_,. K(z, 6, ¢) < lim. . k(z) = k_ (13)

for all downward directions (9, ¢). We now show that strict equality
must hold in (13). We achieve this by initially assuming the con-
trary; that is, we assume that there is a nonzero solid angle Q, of
dircctions over which

lim,_>m K(Z, 0, d)) S kan €y
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where e is any small positive number. Then it is clear that the
radiances in this set of directions decrease at a definitely smaller
rate than scalar irradiance; so much smaller in fact that, by our
assumption, for some depth z; we must have

N(z, 0, ¢) sin 6 d6 dp > h(z).
e
However, this conclusion clearly contradicts (2) since a part cannot
exceed the whole. We have reached a contradiction which leaves
only one other possibility:

lim, .. K(z, 6, ¢) = k. (14)

for all downward directions (6, ¢). In the light of the preceding dis-
cussion [¢f (8)], this means that the shape of the radiance distribu-
tions impinging on the upper boundaries of deep layers of water
eventually assume a fixed form. But it is known that the shape of
the reflected radiance distribution at the upper boundary of a scatter-
ing layer is determined by the shape of the incident radiance distribu-
tion at that boundary. Hence if the incident radiance distribution
approaches a fixed shape, so does that of the reflected distribution.
This completes the proof.

We observe that the present proof can also be applied in all natural
waters which eventually become homogeneous. That is, the preceding
arguments are basically unchanged if the medium is inhomogeneous
over any initial finite depth range below the surface. Even more
general media exist which give rise to asymptotic radiance distribu-
tions, namely media in which the ratio o/« eventually becomes inde-
pendent of depth (Preisendorfer, 1958a).

THE EQUATION FOR CHARACTERISTIC DIFFUSE LIGHT

Using the equation of transfer, definition (6), and the relation be-
tween z and r, we write the equation of transfer in the following gen-
eral form:

N* (Z, ¢y 0) (15)

iz @) = a + K(z, 0, ¢) cos 6

From (14) and (8) we see that the limiting form of (15) (as depth in-
creases indefinitely) is

o 4 o 4 / 7
(6, ¢) =/¢,=0/0,=0¢T(9, o; 0, ¢') g0, ¢') sin ¢’ do’ d¢’ . (16)

a+ k,cost
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this is the equation governing the angular form of characteristic
diffuse light. It is a property of equations of the type shown in (16)
that the function g is independent of ¢ for all real physical situations.
Thus characteristic diffuse light is always represented by a surface of
revolution whose axis of symmetry is vertical.

The theory of the solution of such equations as (16) is fairly well
understood (e.g., see Davison, 1957). The present note, therefore,
will not discuss (16) in any detail. However, there is one simple
special case which is immediately solved and which can shed much
ligkt on some of the salient details of the structure of the asymptotic
radiance distributions. This is the case of isotropic scattering, where
the volume scattering function ¢ is independent of direction and has
the form

a0, ¢; 0, ) = -, (17)

where s is the total scattering coefficient.

To observe the resulting structure of the asymptotic radiance dis-
tribution it is convenient in the present case to turn to (15). With
assumption (17) and definitions (2) and (10), we have

e h(z) Fuclh
N(Z, 0, ¢) i 47 a + K(z, 0, ¢) cos 6 ’

which at great depths approaches the form

h(zo) ek=(—20)

NG, 6, ¢) = il; <£) 1_+<%)_COS‘0 . (18)

Here z, is the depth below which A(z) decreases exponentially with
increasing depth. Comparing (18) with (8), we see that for the present
case

i /s h(zo) ek==0
g@w=56%1@§;;. (19)

We have written (19) in the indicated form to point up the follow-
ing geometric fact: A polar plot of g(6, ¢) is generally a prolate ellipsoid
of revolution with vertical axis and of eccentricity k_/a. When there
is no absorption in the medium, it is easy to deduce then that k. = 0
and that characteristic diffuse light is represented by a spheref On
the other hand, if there is little scattering as compared to absorption,
the figure assumes a narrow pencil-like shape. In the limit of no
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scattering, k, approaches «, and the figure degenerates into a vertical
line.

The structure of the expression in (18) is related to the limiting
form of a simple model for the radiance distribution discussed else-
where (Preisendorfer, 1958¢) and to a formula derived by Poole (1945).
We conclude with the observation that (19) predicts a different limit-
ing ratio of horizontal to upward radiance than that derived by Whit-
ney (1941a) under the same circumstances (z.e., isotropic scattering).
Instead of the ratio 2:1, as suggested by Whitney, the present formula

yields
9(r/2, ¢) _ ko) <
e e

In other words, the ratio in (20) is not a fixed magnitude but de-
pends on the optical properties of the medium in the manner shown.

The distribution (19) can serve as a convenient standard reference
distribution against which experimentally determined radiance dis-
tributions can be compared. The amount of departure of the ex-
perimental distributions from (19) would then serve as a measure of
the anisotropy of scattering in the real medium.
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