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THE ACTION OF VARIABLE WIND STRESSES 
ON A STRATIFIED OCEAN 1,2 

BY 

G. VERONIS AND HENRY STOMMEL 
Imtitu~for Advanwl Stud11, Prinuwn, N. J. 

ABSTRACT 
The forced resporuie of a horizontally infinite ocean on a rotating earth to a tran-

sient wind system is investigated. In an equilibrium state, the ocean consists of 
two homogeneous layers of fluid of finite depth, the fluid in the lower layer being 
Blightly deruier than that in the upper. The wind system is periodic in space, and 
its time-dependence is periodic or is given by a step function. 

Little energy goes into the inertio-gravity waves for winds that blow longer than 
a half pendulum day; most of the energy appears 88 geostrophically balanced R088by 
(planetary) waves. Wind systems with periods from a day to a year excite motions 
which are in part barotropic and in part baroclinic. Winds of long period (100 
years or more) excite the (internal) baroclinic Rossby mode, in which the currents are 
confined to the upper layer. The applicability and oceanographic implications of 
the model are discussed quantitatively. 

1. INTRODUCTION 
This paper treats the response of a stratified ocean to time-depen-

dent wind stress systems of various dimensions. The model of the 
ocean is infinite horizontally, but the wind systems are of finite di-
meilSlons. 

We anticipate that the density stratification of the ocean will play 
an important role in the response of ocean to wind. To account for 
the effect of density variation, a highly idealized structure is intro-
duced, viz., a two-layer ocean with each layer homogeneous in density. 
This structure is supposed to correspond roughly to the two masses of 
water above and below the main thermocline in the real ocean. 

In accordance with the theoretical framework for the dynamics of 

1 Work waa sponsored by the Office of Naval Research under Contract No. N-6-
ORl-139, Taak Order I. Reproduction in whole or in part is permitted for any 
purpose of the U. S. government. 

1 Contribution No. 859 of the Woods Hole Oceanographic Institution. 
Note added in proof. In a recent publication (Veronis, 1956) it was pointed out 

that this article in the Journal of Marine Research contained a wrong conclusion. 
The mistake referred to has been corrected in this article subsequent to publication 
of the Veronis (1956) article in Deep Sea Research. 
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currents in central oceanic areas as given by Sverdrup (1947) and 
Reid (1948), we will neglect horizontal friction due to large scale 
lateral turbulent proceSBes. 

Cases where the effects of coastal boundaries are involved are not 
considered because of the complexity of the general problem. It is 
not generally possible therefore to apply the results of this paper to 
the real ocean in an enclosed basin in the same satisfactory way that 
theories of the mean steady-state circulation (e. g. Munk, 1950) have 
been applied. Application of theoretical results must be limited to 
types of motion (or initial stages of certain types) in which boundaries 
or coasts do not exert an immediate influence. 

Essentially, what we have sought is an understanding of how the 
two-layer ocean responds to changes in the applied wind. Is the wind-
induced velocity (a) confined to the upper layer, (b) nearly the same 
throughout the depth of the ocean, or (c) a combination of a and b? 
Correspondingly, how does the interface between the two layers 
respond in relation to the free surface? (a) Does it respond in such 
fashion as to keep the horizontal preSBure gradients (and hence 
velocities) negligible in the deep layer? (b) Does it remain essentially 
unaffected, hence permitting the horizontal pressure gradients to be 
nearly equal in both layers? (c) Or does it respond aa a combination 
of a and b?3 From a practical oceanographic point of view, a clear 
picture as to which of these alternative modes of motion is probable 
is of great importance in any attempt to relate changes of oceanic 
circulations to changes in the applied wind stress. 

The surface wind-drift currents within the top 100 m are almost 
always in equilibrium with the wind stress and are measured directly 
by discrepancies in navigation of ships, while currents in deeper 
portions of the ocean are inferred from dynamic computations only. 
It is well known that the latter method fails to detect the barotropic 
component of velocity. 

Despite the fact that there are no satisfactory direct measurements 
of velocity distribution in deep waters beneath the main thermocline, 
it is quite obvious from a study of the distribution of certain properties 
such as salinity and dissolved oxygen that these deep waters do not 
move with the same high mean velocity of the water masses above 
the main thermocline. Therefore, so far as the mean circulation is 
concerned, it is certain that the time-mean velocity is essentially 
baroclinic, and one may be sure that any theory which results in a 
barotropic mean circulation has some essential physical feature 
lacking. Barotropic mean currents are excluded by observation; but 

• Motion of the type (a) will be called baroclinic or internal; motion of the type 
(b) will be referred to as barotropic or external. 
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time-periodic barotropic currents are permissible provided they do 
not involve horizontal displacements large enough to confuse the 
picture of the mean distribution of deep ocean properties. For 
example, ordinary tidal currents are barotropic, but, since 'the ampli-
tude of the periodic horizontal displacement associated with them is 
of the order of one kilometer, they produce unobservably small periodic 
variations in the mean distribution of deep water properties at any 
fixed point. It is necessary to examine the theoretical implications of 
any time-variable barotropic flow which might result from the passage 
of storms, from prolonged disturbances to the circulation, or even 
from seasonal variations in wind. If the theoretical result requires 
barotropic modes with periodic horizontal displacements of the deep 
water of more than, say, 300 km, then it seems safe to say that such a 
result is in conflict with observation. 

Finally, one further test by observation should · be mentioned. 
Barotropic currents set up by a storm might involve a permanent 
displacement of the deep water in addition to the periodic displace-
ments. The passage of a number of storms, more or less at random, 
would then result in deep water particles executing horizontal "random 
walks." This type of mixing process can then be expressed in terms 
of a coefficient of eddy diffusivity. If theoretically predicted motions 
of the deep water layers imply an eddy coefficient of much more than 
108 cm2 sec-1 (Sverdrup, 1939), they are in conflict with observational 
material. 

The history of previous theoretical work on this subject goes back 
to Rossby (1938) who, in a pioneer theoretical investigation, came to 
the conclusion that the ocean responds barotropically to variable ap-
plied wind stress. Because this result was so surprising and since it 
might lead to contradictions with observation in some one of the ways 
mentioned above, Rossby re-examined his results by means of several 
different models. In addition to the simple case of two homogeneous 
layers with an abrupt density discontinuity, he studied a case where 
the density stratification was continuous in the lower layer; and he 
even considered the effect of placing another thick homogeneous layer 
beneath the layer of constant stability. Despite these elaborations 
he was unable to escape the disconcerting conclusion that currents 
produced by changes in wind stress are almost independent of depth 
and are not affected significantly by density stratification. 

Since Rossby's conclusion is independent of frequency of applied 
stress (except that it must be less than the inertial frequency), it 
seems that one must infer that even seasonal fluctuations of winds 
produce barotropic changes in the circulation, although in this case 
the boundaries must certainly have some influence on the circulation. 
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However, if the boundary conditions are linear, then they would 
change only the horizontal distribution of the velocity field, not the 
fact that velocity is independent of depth. Finally, it is impoBBible, 
on the basis of RoBBby's model, to account for the fact that the ob-
served mean wind-induced circulation is confined to the upper layer of 
the ocean. In the latter case, one can point out that bottom friction, 
which is not included in RoBBby's model, might well be important in 
preventing the mean wind-induced circulation from extending to the 
bottom, but it could hardly be effective on a time scale such as that 
of a storm. Despite difficulties in interpreting RoBBby's model for 
long-period wind variations, in which a completely naive application 
of the model leads to results that contradict observation, the theoretical 
conclusions regarding short-period wind variations seemed qu,ite 
inescapable. 

RoBBby's model involves a uniform Coriolis para.meter. It is im-
portant to see what effect the introduction of a variable Coriolis 
para.meter would have on Rossby's conclusions, on the grounds that 
the variable Coriolis para.meter is a vital feature of the steady-state 
wind-driven circulation theories (Sverdrup, Reid, Stommel, Munk, 
et al.). Its presence in the vorticity equation might modify the re-
sponse of the ocean to a variable wind system. 

A number of other theoretical studies on the time-response of the 
ocean have been published in the intervening time, and it may be 
helpful to the reader to see explicitly the relation of the present study 
to some of the previous ones. A brief summary of the essential 
characters of these studies is given in Table I. 

The theories of Sverdrup (1947), Reid (1948), Stommel (1948), and 
Munk (1950) a.re steady-state theories of the circulation set up by a 
steady wind system. They provide the justification for neglecting 
horizontal frictional forces in the interior of the ocean. 

The theories of lchiye (1951) and of Veronis and Morgan (1955) 
a.re concerned with changes in the total circulation in an enclosed 
basin due to variations in wind. The papers deal with a homogeneous 
ocean. 

A recent study by Groves (1954) shows some of the features prer 
duced in the Rossby (1938) type of model in the presence of a coast, 
but since the influence of boundaries is not included in the present 
study, there· will be no further occasion to refer to the Groves pa.per. 

An equation for predicting the change in depth of the seasonal 
thermocline, in terms of the applied wind-streBB field alone, has recently 
been published (Freeman, 1954); this is based on the assumption that 
the induced velocity field is ba.roclinic. In view of the fact that no 
reason has been formed to dismiss RoBBby's 1939 demonstration that 



1956] Veron is and Stommel: Variable Wind Stresses 47 

TABLE I. 

Variation Ti= vari-
Bound- of Coriolis ability of Stratiji-

aries paramllter wind cation 
Sverdrup, 1947 +(one) + 
Stommel, 1948 + + 
Reid, 1948 +(one) + + 
Stockmann, 1946 + + + 
Munk, 1950; and other 

similar theories + + 
Ichiye, T ., 1951 + + + 
Veronis & Morgan, 1955 + + + 
Ros.shy, 1938 -t + + 
Cahn, 1945 -t + 
Bolin, 1953 -t + + 
Groves, 1954 +(one) + + 
Charney, 1955 +(two)t +t + + 
Freeman,, 1954 + • 
Present study + + + 

t No fixed boundaries, but initial stream restricted in extent. 
t Charney does consider variation of Coriolis parameter with latitude in one 

portion of his study, but not in the model with boundaries. 
• In this case the response of the interface is specified, not determined. 

short-period response must be barotropic, such an assumption seems 
unsubstantiable. 

During the latter half of 1954, when J. G. Charney (1955) was pre-
paring a contribution for The Convocation held at Woods Hole in 
connection with the dedication of the new U. S. Navy Laboratory of 
Oceanography at Woods Hole, we had an opportunity to read his 
manuscript and to discuss it at length with him; we are indebted to 
Dr. Charney for many valuable suggestions. His paper uses the 
quasigeostrophic approximation throughout. Starting with Rossby's 
two-layer model, he studies the effects of coastal boundaries and of 
the variation of Coriolis parameter with latitude. The presence of a 
coastal boundary tends to favor the baroclinic mode (even in the ab-
sence of the variation of Coriolis parameter with latitude), a result 
which may be of fundamental importance in future theoretical studies 
of such coastal currents or of the Gulf Stream. 

Finally, mention should be made of two papers, by Cahn (1945) and 
Bolin (1953), in which particular attention is paid to the dispersal of 
energy from an initially concentrated current system by means of 
inertio-gravitational waves. Whereas the present study does include 
gravitational and inertial waves, it cannot produce many of the 
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interesting features of the Cahn and Bolin models. This shortcoming 
arises from the periodic spatial distribution of applied wind stress in 
the present study. 

2. THE VORTICITY EQUATIONS IN NORMAL MODES 

The model which will be considered in the subsequent analysis 
consists of a horizontally infinite rotating ocean which is of constant 
depth in the equilibrium state. The density stratification, an ideali-
zation of the observed (continuous) density distribution of the ocean, 
consists of two layers of homogeneous water separated by a surf ace 
of discontinuity which corresponds to the mean thermocline. It is 
assumed that the motions are quasihydrostatic and that no momentum 
is transmitted acroBB the interface by friction. If the motions are 
small, the equations may be linearized. Thus 

OU1 
- -fv1 = 
iJt 

OV1 
-+fu1 = at 

o ( ou1 0V1) 
- ('11 - '11) + D1 - + - = 0 , at ax ay 

0U1 [ 0'71 0'71] - - fv1 = - g a - + b - , at ax ax 
Ol/1 [ 0'71 0'71 ] - + /us = - g a - + b - , at ay ay 

OtJ1 (0U2 0V2 ) -+D2 -+- =O , at ax ay 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

where x (directed eastward) and y (directed northward) are the 
horizontal co-ordinates; tis time; u, and v, (i = 1, 2) are the velocities 
in the x and y directions respectively; D1 is the equilibrium thickness 
of the upper layer;4 '11 is the deviation of the free surface from its 
equilibrium position; g is gravity; f = 2 Q sin (latitude) is the Coriolis 
parameter; 0 is the angular speed of the earth's rotation; a = Pl!PI, 
b = (p,z - P1) I Pol; P1 is the density of the upper layer; and T 1 and T are 
stresses in the x and y directions, respectively, exerted on the ocean sur-
face by a wind. Charney (1955) has shown in some detail that it is 
justifiable to treat the wind stress, which is, of course, actually applied 

' The terms with subscript I define similar quantities in the lower layer. 
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at ~op surface, as a body force distributed evenly with depth over the 
entire top layer. 

If 

,,, = 771, cf> = 711 - 772 

are substituted above, one finds 

au1 a,,, 
- - fv1 = - g - + - , 
at ax D1 

av1 a,,, T - + fu1 = - g - + - , 
ay D1 

act> ( au1 av1) -+Di-+- =0 , 
at ax ay 

au2 _ fv% = _ g [!Y._ _ b act> ] , 
at ax ax 
av2 [ a.,, act>] -+fu2=-g --b-, 
at ay ay 

- (11 - cf>) + D2 - + - = 0 a ( au2 av2) 
at ax ay 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

In the subsequent analysis we propose to take account of the 
variability of the Coriolis parameter by writing df /dy = {3 = constant 
whenever f appears in differentiated form. Otherwise f will be 
assumed constant. Cross differentiating (2.8) and (2.9) and (2.11) 
and (2.12), we obtain the vorticity equations 

ar1 - .!_ acf, + f3v1 = (!!___ - ar') ' (2.14) 
at D1 at D1 ax ay 

ar2 f a 
- - --- (11 - cf>)+ f3v2 = 0 (2.15) 

D2~ ' 
where f1 = avi/ax - auifay and f2 = av2/ax - a¼/ay are the relative 
vorticities of the upper and lower layers respectively. 

At this point it is assumed that the motions are independent of 
the y co-ordinate. The effect of {3 is thereby incorporated into the 
equations of the simple one-dimensional model. Care must be 
exercised, however, in the choice of equations which describe the 
system; otherwise the trivial and uninteresting condition {3 = 0 results. 
Thus, in eliminating all but a single dependent variable, one must not 
include the curl operation, since now a/ay = 0, and the only possible 
consequence is f3 = 0. 
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The only set of equations which is consistent with the above remarks 
is: 

a2v1 f a4, 1 oT 
(2.16) -- - - - + /3Vi = - - I axat Di at Di ax 

aui 011 
(2.17) - -fv1 = - g-, 

at ax 
a4, au1 

(2.18) -+Di-= 0, 
at ax 

o2V2 f 0 
(2.19) - - - - ( 11 - q>) + /3V2 = 0 I 

axat D2 at 
aus [a11 a"'] (2.20) - - fvs = - g - - b - , at ax ax 

a oui 
(2.21) - (11 - 4>) + D2 - = 0 at ax 

Eliminating u1 from (2.17) and (2.18) and substituting the value of 
v1 in (2.16) we find for the upper layer 

~u f3 
rX211n:i:1 - r -"'"' + rf3Xl11u - r "'" = f' (2.22) 

where r = Di/D2 and X2 = gD2/f2 X is the quantity RoBBby called 
the radius of deformation. 

A similar procedure in the last three equations results in the fol-
lowing equation for the lower layer 

(11 - 4>):111 
X1(11 - b 4>):ul - r - (11 - 4>)s1 

f3 
+ /3X2(11 - b 4>):: - p (11 - 4>)u = 0 (2.23) 

The two equations (2.22) and (2.23) may be used for a detailed 
study of the response of 'I and q, to the variable wind stress T, but 
from an analytical point of view it is much simpler to introduce 
normal modes, which enable one to separate the two dependent 
variables in the two vorticity equations without increasing the order 
of the differential form. Equation (2.23), multiplied by the arbitrary 
constant a, is added to (2.22) to obtain 
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(2.24) 

The conditions 

(1 + a) q, + a'I = R and (r + a) 'I - abq, = kR , (2.25) 

where k is a constant of proportionality, are sufficient to reduce the 
equations to a single variable. The above conditions determine a 
and k by the necessity that 

ab r + a 
k = - -- = -- . (2.26) 

1-a a 
Therefore 

and 

1 - r ± v'(l + r) 2
- 4rb 

a=---------

l+r-rb 

ai = (1 + r) (1 - b) ' 

k1 = 1 + r, 

2(1 - b) 

as= 
- r (1 + r - b) 

(1 + r) (1 - b) ' 

rb 
ks=--. 

l+r 

(2.27) 

The two values of R (two normal modes corresponding to the two 
values of a) are 

R, = (1 - a,) ¢, + a,'1 

Thus (2.24) may be written 

(i = 1, 2) . (2.28) 

1 P T-
A2k1 R,:usi - p R,,,,11 - R,,,, + PX2k, Ru,, - p Rw = f (2.29) 

These will be referred to as the equations of normal modes. Once 
the normal modes have been determined, it is possible to obtain other 
more primitive quantities, such as elevation of the free surf ace and 
interface, as well as the velocities in each layer from definitions 
(2.27), (2.28) and equations (2.17), (2.18), (2.20), (2.21); e.g., 

a2 R1 ..:. a1 R2 
q,=----- (2.30) 



52 Journal of Marine Research 

(0:2 - 1) R1 - (0:1 - 1) R2 
1/ = 

3. FREE WAVES 

[15, 1 

(2.31) 

In subsequent sections. we shall have occasion to refer to various 
wave motions which are induced by the action of a transient wind 
stress on the sea surf ace. It is appropriate therefore to consider the 
free waves which are inherent in the normal mode equations and 
to study thereby the behavior of the solutions. A clear picture of the 
free wave motions is also desirable because it helps in visualizing 
certain resonance phenomena which occur in cases where the wind 
stress is periodic in time. 

Consider a normal mode of the form 

R, = S, sin (lx + w,t) , (3.1) 

where S, = const. and where l is the wave number associated with 
the wave length L, i.e. l = 21r/L. The assumed form of the normal 
mode is therefore a wave progressing in the negative x direction when 
the frequency w, is positive. Substituting R, into (2.29), we find 
that the equations reduce to a pair of frequency equations of the form 

(w;)' {3 (w,)2 w, {3µ/ • - - - - + (1 + µ.2)- +- = 0 (i = 1 2) f fl f • f lf I I 
(3.2) 

where µ;2 = k, l2X2• The solutions of the algebraic equations (3.2) 
give the frequency w, in terms of the wave number l. 

From an oceanographic point of view, only a limited range of 
values of l is of interest, and it will be demonstrated that the approxi-
mate roots of the cubic equation within this range of values of l are: 

(3.3) 

(3.4) 

(3.5) 

where 'Y, = 1 + µ;2. In order to indicate the degree of approximation 
involved in these expressions for the roots, the original cubic equation 
may be compared with the expression 

1 f (w, - WH) (w; - w,2) (w; - w;a) = O 
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or 

(;')'- :l (;')2

- (1 + µ/) (;') + {3;/ (1 + £,) = 0, 

(32µ/ 
where £, = -l -- • The original cubic frequency equation is dis-

2f2-y;3 
tinguished from the approximate equation only by the absence of the 
term £,. In order to ascertain the limitations of the approximations, 
we consider an ocean model with the following properties 

Then 

D1 = 500 m (3 = 2 X 10-11m-1sec-1 
D2 = 3500 m f = 10-4sec-1 

r = 1/7 b = 2 X 10-a. 

x2 = 3.5 X 1012m2 
k1 = 8/7 
k2 = 2.5 X 10-4 

£1 .16 for all l 
£2 4 X 10--e for all l . 

The largest values of £, occur for l = 0, i.e., for an infinite wave 
length L. Since L will be restricted by L 12,000 km, the practical 
upper limit of £1 is .02. Therefore the approximate roots are actually 
close to the real ones. 

The phase velocity and frequency of these various waves are shown 
in Fig. 1 for the range of wave lengths 10 km L 12,000 km. 

The six wave motions may be separated into two eategories. The 
waves with frequency wu and w21 represent the geostrophically bal-
anced current motions; ordinarily they contain the measurable fl.ow 
in the ocean. The remaining four waves arise from a completely 
different source, viz., the unbalance between Coriolis and pressure 
forces. These inertio-gravitational motions will often be referred 
to as "transient" motions, since in a nonperiodic model their energy 
would be rapidly dispersed into the outlying regions (see Cahn, 1945). 

Specifically, the waves with frequency wu and w21 are barotropic 
and baroclinic Rossby waves, respectively, moving toward the west. 
They determine the external and internal geostrophic response of 
the ocean to an applied wind stress. For scales of motion most often 
encountered in the ocean, i.e. L 2:: 1,000 km, the isostatic Rossby 
wave merges into a nondispersive type of wave. 

For the smaller wave lengths (L 2,000 km), the w12 and w1a 
waves are barotropic gravity waves of the familiar nondispersive 
type moving to the west and east respectively. For larger wave 
lengths, the waves become dispersive waves of the Sverdrup type 
(Sverdrup, 1926), although this characteristic of their behavior is 
practically unnoticeable except for long waves, L 2:: 6,000 km. In 
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the latter range, both the earth's rotation and the variation of the 
Coriolis parameter affect the velocities of propagation; thus the west-
ward moving waves w12 move faster than long gravity waves and the 
eastward moving waves w13 move more slowly. 

The waves w22 and w2a a.re baroclinic waves moving to the west and 
east respectively. For extremely small sea.le motions (L 100 km), 
they take the form of internal long gravity waves (speed~). 
For somewhat larger wave lengths (100 km L 400 km) they a.re 
of the Sverdrup type. For the more realistic values L > 400 km 
they are essentially inertia.I waves with a period of a. half pendulum 
day. 

Since the properties of the various types of waves have been dia-
cuBSed in the literature they will not be considered here in any more 
detail. Baroclinic and ba.rotropic long gravity, Sverdrup, and inertia.I 
waves a.re discuaaed in Proudma.n (1953). Ba.rotropic RoBBby waves 
a.re discussed by RoBBby (1949) and Yeh (1949). 

4. MOTIONS CAUSED BY MOVING WIND SYSTEM 

As the simplest case of a ti.me-dependent wind stress, consider the 
y component of wind stress to be of the form 

r = W sin (lx + vt).& (4.1) 

The modes excited by the present form of r are 

Ri = Si sin (lx + vt) , (4.2) 

where frequency and wave number of the forced motion are the same 
as those of the streBS field. The amplitudes Si of the normal modes 
are determined from the vorticity equations (2.29) and a.re 

Wl 
Si = --, (4.3) 

j2'Di(v, l) 
where 

'Di(v, l) = (; Y- ; (; Y- (l + µ.'); + ; µ.' . (4.4) 

From S,, the physical quantities may be determined immediately 
by means of relations 

'In th.is case, ,,. could be interpreted as wind stress caUBed by (slowly) moving 
large-scale wind systems such as those obtained from five-day-mean weather charts. 
Reasonable values for the frequency• and for the wave-number l are., .. -5 X 10-1 
aec-1 and l .,. 10 ... m-1. These correspond to a period of about two weeks and to a 
wave-length of 6,000 km. The system moves toward the east and ., is therefore 
negative. W, the amplitude of stress, is constant. 
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rS1 + Si II ,,,, 
= ui' = --,p' 

l+r D1l 

b II 

711' = S1 + S1 u,' = - - '11' 
(1 + r) 2 D2l 

S1 - S, II gl 
(4.5) 

,rs' = V11 = - U1 + - '111 

l+r f f 

II gl 
Vs' = - u1' + - (711' - b,j,') , 

f f 
where 

(,p, '711 '11, U11 U2) = (q,1
1 '111

1 'Ii', U11
1 U2') sin (lx + 11t) 

(v1, v,) = (vi', v2') cos (lx + 11t) • (4.6) 

The exact forms for the solutions will not be written here since they 
will not be used. 

It is apparent that resonance will occur in the present system 
where the denominator ~. (11, l) vanishes. Specifically, the resonant 
frequencies correspond to those of the various free waves (Section 3). 
An eastward moving wind system can excite resonance only for the 
internal and barotropic ·inertio-gravity waves since there are no 
eastward moving Rossby waves. Since natural wind systems rarely 
move to the west, there is no point in considering the cSBes 11 > 0. 

In footnote 4 we noted that the present form of the wind stress 
could correspond to slowly moving patterns of ridges and troughs 
in the atmosphere. The frequencies of these atmospheric motions cor-
respond to periods of the order of several weeks. If such low frequen-
cies are assumed, the quantities~. (111 l) are given approximately by 

II {3 
~l (11, l) = - (1 + µ12) - + - µ12 

f lf 
(4.7) 

JI {3 
~2 (111 l) = - (1 + µl) - + - µ12 

f lf I 

where 11/f is negative. 
Consider the case where l = 10-sm-1 (corresponding to a wave 

length of approximately 6,000 km). If we use here the values of the 
physical quantities D1, D2, etc. which were perscribed in Section 3, 
then µ1

2 = 4 _and µ2
2 = .88 X 10-a. It is apparent, therefore, that 

the ~; (111 l) given by (4.7) can be further simplified for certain ranges 
of 11/f. Thus 
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V V 
Range 1: 10-2 :s; __ :s; 10-1} . {!D1 (v, l) = - (1 + µ12

) 1- + l'f 1-'12 

f yields 
or 70 days T 7 days !D2 (v, l) = - , 

f 

Range 2: 2 X 10-1 :$ - < 10-2} . {:01 (.,, l) = lf "'
11 

f yields " 
or 1 year T > 70 days !D2 (,,, l) = - -

f 

(4.8) 

Range 3: 0 :$ - :s; 2 x 10-a} . {!D1 (v, l) = ,; l-'12 

f yields 
or T 100 years !Di (v, l') = - "'22 

lf 

where T = -2r/v is the period. 
The first range, corresponding to periods which are considerably 

longer than those of the inertia-gravitational motions, is still com-
parable to the period of the barotropic Rossby wave; this initial 
range contains magnitudes that are comparable to observed phenomena 
in the atmosphere (see footnote 4). Range 2 represents periods 
which are much longer than the barotropic but shorter than the 
baroclinic Rossby wave period. The final range exceeds the internal 
Rossby wave period by at least a factor of 10. 

In Range 1, the crosswind velocity component in the upper layer 
u1 is simply the Ekman frictional wind-drift velocity directed to the 
right of the applied wind stress. It is independent of period. This is 
depicted in Fig. 2, which contains the amplitudes of the four velocities 
as well as the two surface heights for Range 1, with the magnitude 
of the wind-stress W = 1 cm2/sec2• Since the crosswind velocity in the 
upper layer is independent of period, its total effect on the mass dis-
tribution is increased with increasing period. Thus the divergences 
are larger and the thermocline is displaced further. Fig. 2 shows that 
the thermocline response is linearly proportional to the period. The 
free surface deviation is small in this range (less than 2 cm), and for 
larger periods in the range it is also proportional to the period. The 
crosswind velocity in the lower layer u2 tends to compensate for the 
divergence caused by u1 in the upper layer. Since it is a function 
of the free surf ace deviation as well as of the thermocline response, 
it is not exactly constant in this range. 

The downwind velocities, mainly geostrophic in the large period 
end of this range, are proportional to period there. It is interesting 
to note that, for the small periods, the accelerative (nongeostrophic) 
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effects which tend to retard the motion are quite prominent, repre-
senting roughly 20% of the contribution to the downstream velocity. 
Since these effects are considerably stronger in the upper layer (where 
wind stress is a direct cause of the unbalanced state), the downwind 
velocity of the upper layer is actually smaller than that of the lower 
layer. The accelerative effects become negligible for a period longer 
than four weeks. It is evident also that the principal response of 
the system throughout Range 1 is barotropic. Near the large period 
end of the range, internal effects become important. 

The periods contained in Range 2 represent the seasonal to yearly 
variations in the wind stress systems. Although boundary effects 
must certainly become important for such long periods, the results 
of the present investigation yield some features which are of interest 
a.nd which will therefore be given here. 
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The solutions of the two modes are 

S1 = Wf S1 = -~ 
{Jg(D1 + D1) ' r(v/f) ' 

and the physical variables become (approximately) 

I Wf Wlb 
'h =-----

{Jg(I + r)D1 (I + r) 2 I'(11/f) ' 
I Wl 

"' = (I + r) I'(11/f) ' 

w 
U1

1 =-----
(1 + r) Dif' 

I w 
U1 = ------

(1 + r) D2/ ' 

I Wgl [ f bl ] 
Vi = (1 + r)f {JgD2 - (1 + r) I'(11/f) ' 

Wl 
Vs 1 =----

(1 + r)fJD2 

59 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

When interpreting results for the present range, one must keep 
in mind the fact that Range 2 corresponds to periods which are con-
siderably longer than the barotropic Rossby wave period but shorter 
than the baroclinic Rossby wave period. However, in 111' and v1' the 
effect of the internal Rossby wave period appears. The longer the 
period, the larger the effect of this internal wave. 

The following facts are evident from an inspection of (4.10) to 
(4.15): 

(a) The crosswind velocity component in the upper layer is simply 
the Ekman frictional wind-drift current and is independent of the 
period. In the lower layer there is a compensating (baroclinic) counter-
flow . 

(b) The thermocline response is directly proportional to the period. 
(c) The downwind lower layer velocity, essentially constant, is 

unaffected by variations in the period. 
The free surf ace deviation 111' and the downwind upper layer velocity 

v1' are dependent on the period. In each case the variable has a 
constant value upon which is superposed the baroclinic Rossby wave 
effect (proportional to period). The velocity vi' exceeds the lower 

bgl2W 
layer velocity v2' by the amount - (l + r)p(,,/f) = 1.53 X 10-, 
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(J/.,,) cm eec-1• For the longest period in this range, i.e., T = one 
year, this excess value is approximately half of the constant value 

Wl . The baroclinic effect has therefore become quite import-
(! + r)D~ 
ant for this extreme value. 

For Range 3, the periods are much longer than the internal Roesby 
wave period. Both D1 and D2 and consequently all of the coefficient! 
of the physical quantities are independent of frequency. The flow 
in this range is now a quasisteady flow. Thus 

1 Wl2 
n1' = ---, 

r fJJ µ.2 
1 wz2 

f/2
1 = ------ I 

rb(l + r) fJ/µ1' 
t12' = u1' = u2' = 0 , 

The velocities are all contained in the upper layer. The total 
transport Wl/fJ is equal to that given by Munk (1950) for the steady-
state model .,,ff-+ 0. In this range of long period variations the 
flow is geostrophic. 

5. MOTIONS CAUSED BY STORMS 

We shall consider next a simple transient model, i.e., one in which 
all of the wave motions discussed in Section 3 are present. It is 
assumed that the ocean is ini t ially at rest and that a wind stress 
begins to act on the ocean surface at time t = 0. The y-component 
of the stress is 

T = 0 1 

r = W coslx , 

t < 0 I 

t > 0. 
(5.1) 

The effect of a storm on oceanic motions can be investigated with 
the present model by the simple expedient of adding the new conditiou 
r = 0 for t > to, where to is, say, four or five days. A more realistic 
wind stress resulting from the passage of a storm is a moving wave 
which starts at t = 0, i.e. 

T = 0 1 

T = W COS (lx + Pt) 1 

t < 0 , 

t > 0. 
(5.2) 
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Except for possible resonance effects, the progressive storm, as opposed 
to a fixed storm, reduces the importance of the inertio-gravitational 
motions. However, since we are primarily interested in the qualita-
tive effect of the initial unbalance and since the moving storm adds 
nothing new to the qualitative behavior, we shall confine our attention 
to the wind stress defined by (5.1). 

The solution of the normal mode equations (2.29), with the wind 
stress r given by (5.1), is6 

{ 
cos lx - cos (lx + w11t) cos (lx + w12t) 

R1 = Wlf f3 + 2f [l + µ121s12 

-I'µi2 
l 

Ri = Wlf { 
cos lx - cos (lx + w21t) 

{3 

where 

Wu= 

~u = 

l (1 + µi2) 

-J2µl 
l 

f v1 + 2 + /3 
/.'l 2l (1 + µ12) 

{3 

w11 = - f Vl + J.'1
2 + 2l (I 

_ cos (lx + w13t) } (
5
_
3
) 

2f [1 + µi2)3/2 ' 

cos (lx + w22t) 

+ 2f (1 + µl)S/2 

_ cos (lx + w23t)} 

2f (1 + µl)a12 ' 
(5.4) 

f3µl 
w -----

' 
12 

- Z (1 + µl) ' 

' W22 = f V 1 + µ2
2 

+ {3 
2l (1 + µ22) 

, (5.5) 

{3 
+---. 

2l (1 + µl) 

The velocities and surface heights can now be determined from 
(2.30), (2.31), (2.8), (2.10), (2.11), (2.13) 

a The solution is approximate, terms of order {Pk,2>..1/j2-y,3 having been considered 
small when compared to unity. Thia restriction is the same as the one used in Section 
3 for the approximate roots of the frequency equation. The simpler forms for the 
frequencies, as given below, are also subject to the same approximation within the 
range of wave lengths of interest. 
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Wlf { l [ r 1 ] Zr cos (lx + wut) 
- -+- coslx-------

r + 1 Pr µ11 l't1 fJrµ11 

l cos (lx + wut) r [ (1_ + ) - ------ + ----- cos e,;i; w11t Prµ,' 2r<1 + µ11)112 

- cos (lx + w11t)] + 1 
[cos (lx + w11t) 

2r(l + l'tt)llt 
- cos (lx + w11t)] } , (5.6) 

{ 
Z cos lx l cos (lx + wut) l cos (lx + wut) 

'7 - '71 = Wl ----- - ----- - -----
{Jfr (r + 1) µ11 fJJµ12 fJrfµ11 

+ 1 
[cos (lx + w12t) - cos (lx + wut)] 

2rc1 + µ11)•11 

+ 2r(l + r)~(l + µ,')111 [ cos (lx + wut) - cos (lx + wnt)]} , 
(5.7) 

•• = Wla {}_ / _l _ 2-) cos lx _ l cos (lx + wut) 
1 + r {Jf \si11 1'11 fJfµ11 

l cos (lx + wut) cos (lx + wut) - cos (lx + w1at) 
+-----+-----------

{Jf "*• 2r<1 + µ1•)•12 
_ cos (lx + wut) - cos (lx + wnt) } 

2rc1 + µ,1)•11 ' 
(5.8) 

Ui = _ W {- lwu r cos (lx + wut) _ lwu cos (lx + w11t) 

D1(l + r) fJf µ11 /3/ µs2 

+ 2r(l #'lt)llt [ W11 COS (l,x + Wut) - WU COB (lz + wut)] 

+ 2r(l #'tt)llt [ Wtt COS (lz + wut) - Wta COS (lz + w:ut)] 1 

(5.9) 
W a {. Zwu cos (lx + wut) lwu cos (lx + w11t) 

Ut =< - --- - ------+ ------
~U + rj ~I 

+ W11 cos (lx + w12t) - wu cos (lx + w11t) 

2/2(1 + µ11) 

_ wn COS (lx + w22t) - w:u cos (lx + wist) } 
, (5.10) 

2/2(1 + µ.2)112 



1956] V eronis and Stommel: Variable Wind Stresses 63 

W { w112rl sin (lx + w11t) lw 212 sin (lx + w11t) Vi = - -------- + ______ _ 
(1 + r)D1 f3J2µ12 f3J2µ22 

+ 2jl(l ; µ12)312 [ - w122 sin (lx + w12t) + w11
2 sin (lx + wut)] 

+ 2jl(l ; µ:2)312 [ - w2l sin (lx + w22t) + w21
2 sin (lx + w21t)]} 

+ Wl2g {- l (1 + r) sin lx + l sin (lx + w11t) + l sin (lx + w21t) 

f3f2rµ12 f3f2µ12 f3j2rµ12 

- 2f'(l ; µ 12)112 [ sin (lx + wut) - sin (lx + w13t)] 
- 2j3(l + r)~l + µ22)812 [ sin (lx + w22t) - sin (lx + w21t)]} , 

v
2 

= _ W a {Zwu2 sin (lx + wut) _ lw211 sin (lx + w21t) 

(1 + r)D2 f3f2µ12 {3j2µ 2
2 

w12
2 sin (lx + wut) - w13

1 sin (lx + w11t) 

2f3(1 + µ12)3/2 

+ w21
2 sin (lx + w22t) - w2l sin (lx + w21t)} 

2f'(l + µl) 312 

{ 
- l sin (lx + w21t) + l sin (lx + wnt) + Wl2g 

{3f2µ12 

sin (lx + w12t) - sin (lx + w11t) 

2j3(1 + µ12)8/7 

+ br [sin (lx + wd) - sin (lx + w21t)]} 

213(1 + r)2(1 + µ22)3/2 

(5.11) 

(5.12) 

From the above form of the solutions it can be seen that the various 
contributions consist of a stationary meridional flow and/or the six 
progressive waves discussed in Section 3. Comparison of the upper 
and lower layer velocities shows that amplitudes of the barotropic 
waves in the lower layer are essentially equal to those of the upper 
layer. The amplitude of the internal wave contributions of the 
lower layer differ by the factor -r. The stationary wave is not 
present in the lower layer since it is a direct consequence of wind 
action. With these facts in mind, only upper layer velocities and 
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surface heights will be discussed in the remaining portion of this 
section. 

As stated earlier, the waves with second subscript equal to unity 
are the geostrophically balanced Rossby waves (see also Charney, 
1955). Representing the geostrophic current motions, they are the 
features of flow which are ordinarily measurable. The remaining 
four terms are accelerative effects and have periods of less than a 
half pendulum day. Thus, for studies of motions with a sufficiently 
large time scale (say, two weeks or longer), the Rossby waves represent 
the essential form of the solution. 

TABLE IL 

Values of w; for three values of L. 
L=200km L = 2000 km L = 8000 km 

WJl 6.32 X 10-1 sec-I 6.17 X 10--,; sec-I 1.81 X 10-• sec-1 

Wa 6.22 X 10-• sec-I 6.3 X 10-• sec-I 1.91 X 10-• sec-1 

wu -6.22 X 10-• sec-1 -6.3 X 10-• sec-1 -1.83 X 10-• sec- 1 

W21 2.95 X 10-1 sec-I 5.53 X 10-s sec-1 1.38 X 10-s sec-1 

W,i 1.37 X 10-• sec-1 1.03 X 10-• sec-1 1.13 X 10-• sec-1 

W21 -1.37 X 10-• sec-1 - .97 X 10-• sec- 1 - .87 X 10-• sec-1 

The coefficients of the varioUJl wave contributions of 711, 712 and u1 • The three 
(vertical) values given for each coefficient are for L = 200, 2000, and 8000 km. 

Coefficient of ,,, (in m) 712 (in m) u1 (in cm/sec) 

.3 -150 
cos lx .3 -150 

.3 -150 

.0375 3.3 X 10--2 
cos(w11t+lx) .0375 3.3x 10--2 1.8x 10-• 

.0375 3.3 x 10--2 2.1 x 10--2 

.2625 150 .276 
cos(w2It+Zx) .2625 150 .54 

.2625 150 .153 
1.8 X 10--,; 1.65 X 10--,; -9.2 X 10--,; 

cos(w12t+lx) 1.8 X 10, 1.6 X 10-• -9 X 10-• 
1.8 X 10--,; -1.6 X 10-• -1.1 X 10-1 

-1.8 X 10, -1.65 X 10--,; -9.2 X 10--,; 
cos(w11t+lx) -1.8 X 10, -1.6 X 10-• -9 X 10-• 

-1.8 X 10, -1.6 X 10-• -1.1 X 10--2 
2.8 X 10-• 1.6 X 10-1 .11 

cos(w22t+Zx) 7.3 X 10-• 4.1 X 10--2 .27 
1.8 X 10-• 1.0 X 10--2 .30 

-2.8 X 10-• -1.6 X 10-1 .11 
cos(w2,t+Zx) - 7.3 X 10, -4.1 X 10--2 .27 

-1.8 X 10-• -1.0 X 10--2 .23 
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TABLE II . (Continiml) 

The coefficients of the various wave contributions of 111• The first column re re--
aents the iJu1 /at (or acceleration) contributioD to the 111 term the aecond column JVflJ 
the geostrophic or g iJfJ fin contribution to 111• ' 

Coefficient of: 

Bin( wut+Zz) 

llin(wut+Zz) 

Bin( wut+Zz) 

111 (in cm/sec) 
(iJu1/iJt contribution) 

-1.2 X 10-7 

-1.1 X 10--. 
- 4 X 10-1 
-8.4 X 10--. 
- 3 X 10--. 
-7.2 X 10-1 

5.7 X 10-• 
5.7 X 10-t 
2.1 X 10-t 

-5.7 X 10-• 
-5.7 X 10-1 

-1.9 X 10-t 
.19 
.28 
.34 

-·.19 
.25 

- .20 

111 (in cm/aec) 
(g iJfJliJz contribution) 

-96 
- 9.6 
- 2.4 

12 
1.2 
.3 

84 
8.4 
2.1 
.6 X 10--. 

5.7 X 10-1 
1.4 X 10-1 

6 X 10--. 
5.7 X 10-1 
1.4 X 10-t 

9 X 10-1 
- 2.1 X 10-1 

- 1.4 X 10--. 
9 X 10-t 

2.1 X 
1.4 X 10--. 

Table II gives compilations of the amplitudes of the various wave 
motions for three separate values of l corresponding to wave lengths 
of 200, 2000 and 8000 km. The 200 km wave length does not represent 
any actual wind-driven motions, but it does give a picture of the 
type of motion which can be expected for such a scale length. The 
other two cases, i.e., wave lengths of 2,000 and 8,000 km, represent the 
practical scale limits of wind-driven oceanic motions. The numerical 
values shown in Table II are based on the physical properties of the 
ocean (D1, D 2, b, etc.) prescribed in Section 3. The wind-stress 
amplitude, taken as 3 dynes/cm2, corresponds to wind velocities 
commonly found in storms. 

In interpreting the results of Table II, it is necessary to consider 
the frequencies of the various waves. For example, in the values 
for surf ace heights .,,1, 112 and downstream velocity vi, the amplitudes 
of the internal l\ossby wave and of the standing wave are much larger 
than any of the other individual amplitudes. However, these two am-
plitudes differ in sign and, because of the low frequency of the baroclinic 
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Rossby wave, their net effect is small (comparable in magnitude to 
the external Rossby wave amplitude) for quite a long period of time. 
On the other hand, the barotropic Rossby wave, which has a con-
siderably smaller amplitude, actually attains its maximum value 
after just a few days. For practical purposes, therefore, the geo-
strophic response of the ocean is a combination of the barotropic and 
baroclinic modes. 

In order to extend the results to storms of finite duration, it is 
necessary to subtract from the above form of the solution a similar 
contribution with t replaced by t - t0, where to is the length of time 
during which the wind acts. From the values of the frequencies it is 
then clear that the internal Rossby wave does not attain its maximum 
amplitude for storms of, say, five days duration. The remaining 
terms execu-ce at least a fourth of one oscillation in that time-that is, 
their maximum values are attained. 

Note that the barotropic long gravity wave amplitude in the velocity 
terms is always at least an order of magnitude smaller than that 
of the baroclinic inertial wave. In the lower layer the internal am-
plitudes are reduced by a factor of -r = -1/7 and the two terms 
may become comparable. 

We have separated the magnitudes of the various waves of the 
downstream velocity v1 into two sections that correspond to the 
contributions from the acceleration term auif at and the pressure term 
g ar,/ax in the first equation of motion: 

The purpose of this separation is to compare the relative effects of 
acceleration and pressure in building up the downwind velocity. 
As one would expect, the pressure terms are the dominant forces in 
producing the barotropic and internal Rossby waves, since these 
motions are essentially geostrophically balanced. However, the 
high frequency inertio-gravitational motions present an entirely 
different picture. These motions result primarily from acceleration 
effects. 

Separation of acceleration and pressure terms has resulted in a 
rather surprising characteristic of the baroclinic inertio-gravitational 
motions. Rossby (1938) presented an intuitive picture of inertial 
motions in a homogeneous ocean. He suggested that an unbalanced 
stream is shifted to the right (in the northern hemisphere) of its down-
stream direction and that its inertia carries it beyond the equilibrium 
position to a point where the pressure gradients caused by the resultant 
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piling up of mass force it back again. The stream thus oscillates 
ab~ut_ its ~9,uilib~ium position with a period of a half pendulum day. 
This mtmtive picture was confirmed by the quantitative results of 
Cahn (1945). In a note following Cahn's paper, Starr (1945) sug-
gested that the extension to a stratified system was relatively simple-
that one can extend the results to a baroclinic ocean with relatively 
minor changes. Inspection of the internal inertial wave amplitudes 
for v1 in Table I shows that such an extension is unjustified. It is 
seen that the Coriolis force is almost completely balanced by the 
acceleration terms and that neither the free surface nor the interface 
changes much in this contribution to the flow . Thus the transient 
internal motion is purely an inertial motion of the type such as a bead 
may execute when constrained to move on a rotating frictionless 
sphere. 

At the outset of the investigation we had the impression that a 
possible indication of distant storms would be a measure of the change 
of the interface and that the period of oscillation would be roughly a 
half pendulum day. However, unless other effects, such as sloping 
bottom or resonance, contribute to amplification of the interface 
changes, this quantity would be quite unmeasurable. The velocities7 

resulting from such storms at distant regions are also quite small. 
Possibly the only noticeable effect would be the amplitude of the 
ba.rotropic Rossby wave contribution to the free surface height. 
Perhaps such measurements could be made with tide gauges on isolated 
oceanic islands. 

As stated earlier, the "permanent" current velocity is a combination 
of the barotropic and internal Rossby wave contributions to the down-
wind velocity. Rossby's conclusion, viz., that changes in the winds 
must produce motions which extend to the ocean bottom, is verified 
here. These velocities are so small, however, that they are comparable 
only to the slow deep-water drift which results from large sources of 
heating and cooling. For example, a storm with a scale of 2,000 km, 
applying a wind stress of 3 dynes/cm2 to the sea surface, gives rise to a 
maximum velocity of approximately 1 cm/sec in the deep layers of the 
ocean (result of barotropic Rossby wave contribution). The maximum 
value is attained in a period of three days. Thus the maximum 
possible mixing length attributable to such a storm is approximately 
3 X 106 cm. This leads to a coefficient of lateral eddy diffusivity 
considerably smaller (3 X 106cm2sec-1) than the one assumed by 
Sverdrup (1939), viz. 108cm2sec-1• His justification for using such 
a value is found in the following quotation from his paper (Sverdrup, 

7 Frictionally wind-driven surface velocities would be measurable. However, 
these are in the direct vicinity of the storm area. 
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1939: 196): "Rossby (1938) has, however, shown that changes in 
the winds over the ocean may produce currents reaching from the 
surface to the greatest depths. All such motions will be directed 
at random and Rossby's conclusions, therefore, can be interpreted 
as showing that changing wind conditions may produce variable 
currents in the deep water, but no flow in a definite direction. If 
this is the case, a large scale lateral mixing may take place." His 
reasoning is probably based on the following excerpt from Rossby 
(1938: 262): "However, since the large scale atmospheric wind systems 
which drive the ocean circulation change from day to day and from 
season to season, it is permissible to state with a reasonable degree 
of assurance, that it is entirely inappropriate to consider the homo-
geneous bottom water as inert beyond the slow thermal circulation 
maintained by antarctic cooling." · 

Both of these statements are qualitatively correct . However, 
from quantitative considerations these statements appear to be 
misleading. The deep lateral mixing due to storms is probably 
negligible on the basis of the present investigation. 

A few remarks should probably be made concerning the effect of 
the change of the Coriolis parameter with latitude. An investigation 
of a model with constant Coriolis parameter reveals that the geostroph-
ically balanced downwind velocities must increase linearly with time. 
The essential effect of /3 is to keep the velocities finite (in the form of 
moving waves). The two solutions become comparable for sufficiently 
small values oft (less than a day) where the sinusoidal time-dependent 
Rossby wave terms can be linearized. In none of the inertio-gravita-
tional wave frequencies does the /3 term contribute an effect of more 
than two percent. Therefore the effect of /3 on inertial oscillations 
is essentially negligible, whereas its effect on the geostrophically 
balanced motions is such as to alter the solution completely (from 
a linear function of time to a moving wave form) for time scales larger 
than the inertial period. 

An important question which has been raised by various authors 
in the past concerns the amount of energy absorbed by the inertial 
oscillations when a transient wind blows over the ocean. This 
question may be partially answered by the present model, although 
a complete investigation would necessarily embrace many more 
features than those included here. By restricting our attention to 
the initial stages of the motion, say, to the first day or so, we may 
investigate the case of /3 = 0 as a good approximation to the present 
model. The total energy E of the flow between the limits - L < x 
:$ L and per unit thickness in the y direction may be derived fr~m a 
combination of equations (2.1) to (2.6) (with f3 = O) 
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The term on the left represents the total (kinetic and potential) 
energy of the flow. The right-hand term, the energy input can be 
evaluated directly ' 
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D1 + D2. The two sinusoidal terms represent the input energy 
which is absorbed by the inertio-gravitational motions; the remaining 
term (t2) is the geostrophic current energy. For a wave length of 

f2D1 
2,000 km, the term -- (1 - cos pt) (corresponding to the baro-

Dp4 
tropic inertio-gravitational motions) is negligible as compared to 
either of the other terms. Hence a comparison of inertio-gravita-
tional energy with geostrophic current energy is afforded by the ratio 
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Time t in this expression is to be interpreted as the time during 
which energy is added to the system by a wind stress. If the length 
of time is considerably shorter than a half pendulum day, most of 
the energy is absorbed by transient oscillatory motions. For times 
longer than a half pendulum day, the maximum amount of energy 
is contained in the geostrophic current field . These facts are shown 
in Fig. 3, which gives the ratio E,/Eu as a function of time of wind 
duration for t < 1 pendulum day. The graph cannot be carried any 
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further as a function of time because linearization of the Rossby waves 
is no longer valid. The tendency, however, is clearly indicated even 
for the short period shown in Fig. 3. 

The case which we have chosen is conducive to strong inertial 
oscillations. If the wind system were moving with a speed of 10 m/sec, 
the reverse action of the wind after a day or so would have a destruc-

10,--------------------, 

8 

El 

Eg° 

0 l 
4 

l 
2 

TIME OF WINO DURATION 

Figure 3 

3 
4 

tive influence on the inertio-gravitational motions. However, the 
transient motions will dominate in the initial period ( < 1/2 pendulum 
day) regardless of whether the wind system is moving, unless the 
frequency of the moving system is unrealistically large. Therefore, 
for motions with a sufficiently large time scale (> 1 pendulum day), 
the flow may be considered as essentially quasigeostrophic (Charney, 
1955). 

6. APPLICABILITY OF THE MODEL TO THE OCEAN 

There are several questions concerning the applicability of the 
present model to the ocean which merit particular consideration: 
(1) To what extent are variable motions in the ocean independent 
of the presence of boundaries? (2) How justifiable is the neglect of 
friction? (3) Are other forces such as atmospheric pressure important 
in setting up oceanic currents? and (4) What are the effects of bottom 
topography on the induced motions? 
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(1) The disturbance set up by an instantaneous change in wind 
is propagated toward the boundaries in the form of waves. The 
length of time required for the influence of the boundaries to become 
evident at an interior point of the ocean therefore depends upon the 
time required for a wave to move from that point to the boundary. 
Since the wave velocities differ for each mode of motion, strict applica-
tion of the model is limited by the time it takes the fastest wave 
(barotropic gravity wave) to reach the coast (a matter of a few hours). 
However, there are two reasons for assuming that the essential results 
of this model would not be affected by coastal influences for a con-
siderably longer period. First, there is no interaction between the 
various modes in the interior of the ocean and there is no reason to 
suppose .that there is any interaction between the transient and 
Rossby modes at the coast. Therefore, so far as the balanced motion 
is concerned, the model may be used in the interior of the oceans 
for the time it takes a barotropic Rossby wave to reach the coast 
(a matter of a few days). Second, the amount of energy contained 
in the transient motions is considerably smaller than that in the bal-
anced motions. The reflection of this energy from the coasts would 
exert a relatively negligible influence on any observable motions. 
It seems likely, therefore, that the geostrophically balanced motion 
of the real ocean should respond to a three or five day storm much 
like the theoretical model-that is, during the "active phase" or life 
time of a central oceanic storm, the effect of coastal boundaries should 
be negligible. 

It is clear that, for periods longer than a week, the barotropic 
Rossby mode of motion may be strongly influenced by the coasts. 
The length of time over which the internal Rossby mode is unaf-
fected by the coasts could be as much as several years were it not for 
the uncertainty as to whether the two Rossby modes can interact 
at the coasts. There is a possibility that the proper boundary con-
ditions are nonlinear in a coastal current such as the Gulf Stream, 
in which case there might be an interaction between the barotropic 
and baroclinic Rossby modes. This is the reason why we hesitate 
to extend the discussion of the internal Rossby mode to wind fluctua-
tions of a seasonal time scale. 

If there is, in fact, no interaction between Rossby modes at the 
coasts, this model leads us to the conclusion that equilibrium adjust-
ment of the main thermocline in the central ocean does not occur even 
in response to wind variations with periods as long as a year. 

(2) The effect of friction is neglected in the model under discussion, 
and it is important to form some estimate of the frictional force. For 
bottom friction, Proudman (1953) gives the frictional force on the ocean 
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bottom as F = - k pu2, where k = 2 X 10-•. The bottom velocities 
involved in the models under discussion are less than those due to 
deep sea tides. The amplitude of the tidal velocity U may be regarded 
as purely periodic, in which case the resultant frictional force due to 
a long period deep sea velocity component u is simply F = - 2k U u. 
If the bottom layer is of depth D, then the time constant K of the 
frictional damping of the lower layer velocity is K = k U / D. Taking 
representative values k = 2 X 10-a, U = 2 cm sec-1, D = 4 X 106 cm, 
one calculates K = 10-8sec-2• Thus the length of time necessary 
for destruction of the velocity of the bottom layer by bottom fric-
tion is approximately three years. 

The time constant involved in lateral friction is K' = Al2, where 
l is the wave number and A the coefficient of lateral eddy viscosity. 
For the largest scale phenomena in the deep sea (Sverdrup, 1939), 
it appears that a largest possible limit of A is 108cm2sec-1• Taking 
l = 1/2 X 10-8cm-~, the time constant becomes K' = 0.25 X 10-s. 
Thus lateral friction of the most intense sort can destroy motion in 
these models in the bottom layer only after 12 years. The conclusion 
is that the frictionless models are justified only for periods up to about 
one year, and that physically they should include friction explicitly 
for longer periods. 

(3) There are other surf ace stresses which may affect the response 
of the ocean also. These are the variations of atmospheric pressure 
and the divergence of the wind stress. (The latter term is approxi-
mately an order of magnitude smaller than the curl of the wind stress.) 
Neither of these driving terms contributes to the current motions, 
but they tend only to increase the transient motions in the ocean. 
For this reason they have not been considered, although any thorough 
study of inertial oscillations would necessarily entail a detailed study 
of these effects. 

(4) The effect of bottom topography has been neglected altogether. 
Perhaps there is no other justification for excluding this feature than 
the fact that the analysis is quite complex when it is included. It is 
conceivable that its effect may be important, particularly for the 
stratified ocean. 

7. SUMMARY AND CONCLUSIONS 

We have investigated the response of an infinite rotating ocean 
of finite depth to a transient wind stress applied at the sea surface. 
The density structure, an idealization of the observed stratification 
consists of two layers of homogeneous water. The variation {J of th; 
Co~iolis parameter f with latitude is incl?ded in the equations by 
taking {J = df/dy = constant; elsewhere, f 1s assumed to be constant. 
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By using normal modes, the equations of motion of a two layer system 
can be reduced to a vorticity equation in a single variable whose 
highest order derivative is of the same order as that in the homogeneous 
system. The vorticity equation contains two separate types of 
motion corresponding to the two modes of oscillation in the system. 
In the barotropic case the motion is uniform vertically. The second 
type, baroclinic motion, occurs when the lower layer responds in such 
a manner as to offset the pressure gradient caused by deviations of the 
free surface from its equilibrium position. 

Substitution of a moving wave solution in the homogeneous vorti-
city equation yields a frequency equation which shows that six dif-
ferent types of waves may be excited in the system. Two of the 
waves, the barotropic and baroclinic Rossby waves, represent the 
motions which are in geostrophic balance. The remaining four waves 
(two barotropic and two baroclinic) represent inertio-gravitational 
motions which result from incomplete balance between pressure and 
Coriolis forces. Behavior of the latter waves is dependent on both 
the Coriolis parameter and the static parameters (depth, density, 
gravity) of the system. Generally, however, the barotropic waves 
are pure gravity waves travelling with speed vgl), and the internal 
waves are pure inertial waves with a period of a half pendulum day, 
21r/f. 

Two types of wind-driven motions are treated. The forced motions 
caused by a moving wave system with a scale comparable to atmos-
pheric patterns as given by five-day mean charts are investigated 
by assuming a driving force of the type W sin (lx + vt), with W = 
1 cm2 sec-1• The resultant motions may be studied by considering 
three separate ranges of period of the driving wind. 

For periods of one to seven weeks (comparable to the barotropic 
Ross by wave period), the ocean responds principally as a homogeneous 
body of water. The baroclinic effects increase in importance with 
longer period. 

For longer periods (up to a year, thus lying between the barotropic 
and baroclinic Rossby wave period) the motion is partly barotropic 
although the effects of baroclinity are more prominent. The upper 
layer downwind velocity is approximately half barotropic-half baro-
clinic when the wind period is a year for the scale chosen. The other 
variables are effected less by the baroclinity. 

When the wind period is long (at least 100 years) the motion is 
purely baroclinic. The flow is geostrophic and the total transport 
is equal to that given by Munk for the steady-state model. 

The second type of wind-driven motions treated here is that caused 
by a nonmoving wind which varies sinusoidally in space and which 
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begins impulsively at some time. In this case all of the possible free 
wave motions of the system occur, and one can study the relative 
importance of the inertia-gravitational and geostrophically balanced 
motions. 

When the wind acts for a period of time comparable to the life of a 
storm, the geostrophically balanced motion is partially external and 
partially internal. The precise partition of the energy between the 
two modes depends on the scale of the motion. The thermocline 
therefore responds to the action of the wind stress and may be meas-
urable (of the order of 10 to 20 m) when the wind blows for three days 
or more. The currents set up in the deep layers are small and are 
probably no stronger than the slow thermal currents resulting form 
antarctic cooling. Consequently, as a result of storms there is prob-
ably no mechanism for the formation of large-scale lateral mixing in 
the oceanic stratosphere. 

The isostatic inertia-gravitational motions are much larger than 
the barotropic inertio-gravitational motions. However, they are not 
accompanied by any measurable movement of the thermocline; 
instead, they are purely horizontal inertial motions. In a stratified 
ocean, therefore, the observed inertial oscillation is not accompanied by 
pressure gradients resulting from excess piling up of water. Instead, 
it is mainly a lateral movement with an oscillation caused by the earth's 
rotation only. 

From the present simple analysis, the essential effect of f3 in a 
transient problem is to amplify the baroclinic mode for large periods. 

A simple investigation of the relative amounts of energy contained 
in the inertio-gravitational and geostrophically balanced flow indicates 
that, so long as the wind blows for more than a half pendulum day, 
most of the energy is contained in the geostrophically balanced flow. 
For winds of shorter duration the energy is expended in inertio-
gravitational motions. 
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