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THE GENERATION OF OCEANIC CURRENTS BY WIND 1 

By 

J. G. CHARNEY 
Institute for Advanced Study 

Princeton, New Jersey 

1. Introduction. In 1937 and 1938, C.-G. Rossby published results 
of investigations into the manner in which velocity and pressure 
adjust themselves in ocean currents. He showed that an initially 
unbalanced rectilinear current would execute transverse inertial oscil-
lations in the process of creating the pressure field that is necessary to 
balance the Coriolis forces associated with its momentum. The 
energy which flows into these oscillations depends on the rapidity 
with which the currents are built up, i. e., on the extent of the un-
balance. Since large-scale atmospheric wind systems have charac-
teristic periods large compared to the half pendulum day whereas 
inertio-gravitational oscillations have periods less than a half pendu-
lum day, one would expect the bulk of energy to flow directly into the 
balanced current. It appeared desirable, therefore, to develop a 
formalism that is specifically applicable to the study of such large-
scale balanced motions. In 1947 and 1948 the writer developed just 
such a formalism for treating large-scale atmospheric disturbances. 
It is the purpose of the present article to show how an analogous 
treatment may be applied to large-scale oceanic currents. Specifically, 
it is proposed to again consider Rossby's problem, but this time with 
the explicit assumption that wind stresses impart momentum slowly 
enough for transverse horizontal and vertical motions to create the 
Coriolian mass adjustment almost instantaneously.2 

1 This paper is based on a lecture entitled "Waves and Currents in Atmosphere 
and Ocean" delivered at the Oceanographic Convocation at Woods Hole on June 24, 
1954. Part of the work was done at the Woods Hole Oceanographic Institution, 
where the author was the Woods Hole Oceanographic Associates Lecturer for 1954, 
and part at the Institute for Advanced Study under contract N6ori Task Order I 
with the Office of Naval Research and the Geophysics Research Directorate, Air 
Force Cambridge Research Center. Reproduction of this article in whole or in part 
is permitted for any purpose by the United States Government. 

2 The conditions under which this assumption holds will be given in a forthcoming 
article by Veronis and Stammel (1956). There it is shown that, under ordinary 
circumstances, negligible inertio-gravitational oscillations of large scale are created 
by the atmospheric wind systems. 
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The exclusion of inertio-gravitational oscillations greatly simplifies 
the mathematical problem and permits analysis of more complicated 
systems. The formalism will be applied to the study of currents 
generated in an infinite double-layer ocean by the action of various 
distributions of wind stress. In part, some of Rossby's earlier findings 
will be substantiated; but, in illustration of the generality of the 
method, the formalism will be applied also to the case of an ocean 
with parallel boundaries to show the necessity, under certain condi-
tions, for development of a narrow intense current near the boundaries 
with roughly the dimensions of the Gulf Stream. Finally, some 
attempt will be made to take into account the dynamical effects of 
the variation of the Coriolis parameter. 

2. The Balance Equations. The relevant equations will be derived 
in somewhat more generality than is necessary for present use in order 
to bring out more fully the underlying assumptions. To do so, one 
must draw a fundamental distinction between the two types of large-
scale motion that exist in the ocean. The two have widely differing 
time scales and interact only weakly with one another. They may 
be described broadly as "waves" and "currents," if one includes in 
the "wave" category not only surface waves but large-scale gravita-
tional oscillations influenced by the earth's rotation, and, in the 
"current" category, what is ordinarily meant by transient or sta-
tionary ocean currents. 

In order to formulate mathematically the distinction between the 
two categories, we define certain parameters that characterize the 
space and time scales of a given fluid motion. Let S be a characteristic 
horizontal dimension, U a characteristic horizontal particle velocity, 
and let O be the speed of the earth's rotation. Then the order of the 
horizontal acceleration per unit mass is U2/S and the order of the 
Coriolis acceleration is OU. The nondimensional ratio of the two, 
U/0S, will be called the Rossby number Ro, after Fultz (1951). If it 
is small, the fl.ow is quasi-geostrophic. In this case one may show, 
by evaluating the order of the terms in the equation for the vertical 
vorticity component, that the ratio of horizontal divergence to vertical 
vorticity has the order Ro and is therefore small also. However, 
the essential part of the argument is that the divergence-vorticity 
ratio is small whether or not the flow is quasi-geostrophic, providing 
only that it is not a "wave" motion. In the case where the flow is 
nongeostrophic, we define H as a characteristic vertical dimension, 
Ap as a characteristic vertical potential density difference, and (C, U) 
as the larger in magnitude of the phase or particle speeds, C or U. 
Then it may be shown that for nongeostrophic but quasi-hydrostatic 
motions the divergence-vorticity ratio becomes the reciprocal of the 
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intrinsic Richardson number, R; = g (!!,.p/p) H + (C, U)2, which 
measures the ratio of the square of the speed of long internal gravita-
tional waves to (C, U) 2

•
8 The significance of R; is that it is of order 

unity or smaller for gravity "waves" but is large compared to unity for 
"currents." Consequently one may state as a general rule that the 
divergence-vorticity ratio is small for "currents" and for "currents" 
only. Although exceptions to this rule exist, they are rare and 
somewhat pathological. 

From what has been said, the current motions are to be considered 
horizontally quasi-nondivergent. This is not to say, however, that 
they are altogether nondivergent; small horizontal divergences must 
occur in conjunction with transverse horizontal and vertical displace-
ments in order to bring about the instantaneous mass adjustment. 

-> 
Thus we may write the horizontal velocity vector Vas the sum of a 
nondivergent and an irrotational vector: 

-+ -+ 
V = 'ilY1 X k +Va= V,t, + Va , (1) 

where YI is the stream function for the nondivergent component of the 
-> 

motion, a the velocity potential for the irrotational component, k 
a unit vertical vector, and 'il the horizontal gradient operator; and 

-+ -+-+ -+ -+ -+ 
we assume that k · 'il XV= k · 'v X V,t,»V · V = V · Va but that 

-> 
'v · V 0 is not to be ignored. With suitable boundary conditions 

-> ...... 
on YI and a, one may deduce the important relation IV,t,l»IV 0 I. 

The formal system of equations may now be derived as follows. 
We assume that the fl.ow is incompressible and that the horizontal 
scale is large in comparison to the vertical scale. The motion 1s 
then quasi-hydrostatic, and the Eulerian equations become - - -(

av - - av -) ;:; -+ V•'ilV+w -+fkXV 
at az =-'ilp+;:;F' 

ap 
pg= 

az 
- aw 'il·V+-=O 

az ' 
ap ---t 

-+V• 
at 

ap 
'ilp+w-=0 

az 

(2) 

(3) 

(4) 

(5) 

3 Thia relationship may be derived for simple linear systems by analytic means, and 
for general systems by a kind of scale analysis similar to that used in the theory of the 
boundary-layer in fluid dynamics (Charney, 1948). 
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Here z is the vertical co-ordinate, t time, p pressure, p density, w 
vertical velocity, f the Coriolis parameter 2 0 sin (latitude), and 

F the external force. For simplicity, the purely kinematic effects 
of the earth's curvature have been ignored and, as a quite valid 
approximation in the oceans as well as in the atmosphere, the density 
p (x, y, z) in eq. (2) has been replaced by the standard value p (z). 

We now replace the first vector equation by the two scalar equations 
obtained by taking its curl and divergence. The curl operation 
gives the vorticity equation 

(a - a) --+V • V+w- Z=-ZV•Va 
at az -- av - -- k · V w X - + k • V X F (6) 

az ' 
in which Z is the vertical component of absolute vorticity, 

-+ .... 
Z = k · V XV,;,+ f = V2f + f (7) 

The divergence operation gives -
-+v - v+w- v-v+vw--(a - a) - av 
at az az 

(au)2 au av ( av ) 2 

+ - +2--+ -ax ay ax ay 

12 -- fk · V X V - k · V X VJ = - - V p + V · F 
p 

if x and y are respectively the eastwardly and northwardly directed 
horizontal cartesian co-ordinates and if u and v are the corresponding 

-+ -+ -+ 
velocity components. Here we utilize the inequalities k • V X V»V • V 

-+ -+ 
and IV,;,l»IVal in conjunction with the continuity eq. (4) to justify 
ignoring the first two terms on the left-hand side. Anticipating that 

F is the force of friction, which is important only in the layer of 
frictional influence, whose dynamics will be given special treatment 
in the next section, we may ignore it here. We then obtain the 
reduced form 

[
a2,J, a2,J, ( a2,J, )2] 1 

fv2,J, + Vf · VJ+ 2 - - - -- = - V2p , ax2 ay2 axay p 
(8) 



1955] Charney: Generation of Ocean Currents 481 

which states a direct relationship between the field of motion (expressed 
by the stream-function y;) and the field of pressure. This is the 

-+ 
condition of balance. If V is expressed in terms of y; and a by (1), 
eqs. (3-8) suffice to determine the five dependent variables p, p, 

if;, a, and w. We call them the balance equations. Essentially, the 
only change has been the replacement of the horizontal divergence 
equation by the balance condition (8). 

The balance condition has been obtained independently by Fjortoft 
(unpublished work) as a necessary condition that the nondivergent 
part of the motion be stable with respect to horizontally divergent 
perturbations. We know of course that the oceanic motions are 
stable for the most part, for otherwise one should expect a spontaneous 
generation of "wave" motions from "current" motions. 

The balance condition may be regarded as a generalization of the 
geostrophic approximation. If the inertial forces are small compared 
with the Coriolis force, the nonlinear term in y; drops out and the 
resulting equation 

may be integrated to give 

- - 1 f'v'y; = V,i, X k = - 'vp 
p 

-+ 
Solving for V ,i, , we obtain -

- - k (P) V,i, ,..._, Va = - X 'v p ,..._, k X 'v - , 
pf pf 

(9) 

which is simply the geostrophic approximation. 
If the intrinsic Rossby number is small everywhere, the quasi-

geostrophic equations may be further simplified. The terms involving 
w in eq. (6) become small and may be ignored; the undifferentiated 

..... 
Z may be replaced by f; and V may be replaced in equations (5) and 

-+ 
(6) by Vu, If w is then eliminated between eqs. (4), (5) and (6), one 
obtains 

( a -+ ) a [(ap)-1
( a -+ ) ] ..... at + Vu · 'v Za + f az az at + Vu · 'v p = k · 'v X F, (10) 

..... 
which, when p and V 0 are expressed in terms of p by means of (3) 
and (9), is alone sufficient to determine the motion. 
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3. Specialization of Quasi-geostrophic Equations to Single- and 
Double-layer Oceans. We shall consider oceans consisting of one 
or two homogeneous layers. If the fl.ow is quasi-geostrophic as 
well as quasi-hydrostatic, it can be shown that the motion must be 
independent of height in each layer. The quasi-geostrophic equations 
may then be specialized in the following manner: The continuity 
eq. (4) is first integrated to give 

ah - -- + V · Vh = -h'v' · V" = -h'v'\x , (11) at u 

where h is the thickness of the layer. We next substitute in (6) 
-+ -+ 

and use the geostrophic approximation V"' ,..._, Vu, Redefining the 

averaged force- F dz by F, we obtain, after some combination of 
h o 

terms, 

[~+v-v]z0 =~k-VXF. (12) 
at O 

h h 

In a single-layer homogeneous ocean with a free surface, pressure is 
related to thickness through the hydrostatic equation 

p = p g(h - z) + constant. (13) 
-+ --+ 

Hence V 0 = (g/J) k X Vh, Z 0 = (g/f)V2h + f, and eqs. (11) and (12) 
suffice to determine the two dependent variables h and a. We note 

that if F = 0, eq. (12) asserts the conservation of the "potential 
vorticity" Z0/h. 

-,. 
In the two-layer case, let V, h, p and p be the horizontal velocity, 

depth, density, and pressure respectively of the upper layer and 
denote corresponding quantities in the lower layer by primes. The 
hydrostatic conditions become 

p = gp(h + h' - z) + constant 

p' = gp'(eh + h' - z) + constant , 
(14) 

where e is the density ratio pf p'; the geostrophic velocities and vor-
ticities are defined by 

Vu = (g/f) k X 'v' (h + h') 

Zu = (g/f) V 2 (h + h') + f 
-+ 

Vg' = (g/f) k X 'v' (eh + h') 

Zo' = (g/f) 'v'2 (eh + h') + f 

(15) 

(16) 
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Eqs. (15) and (16) combined with (11) and (12), written for both 
primed and unprimed quantities, are then the governing set of equa-
tions. 

4. The Wind Force. When the wind begins to blow over the surface 
of the ocean, momentum is transferred through the surface into 
deeper water by a complex frictional process. If the wind stress 
is uniform horizontally, then, as Ekman (1905) showed, the frictional 
force varies in magnitude and direction with depth, and the water 
particles oscillate inertially with varying phase and amplitude. On 
the other hand, if the wind is not uniform, or if rigid boundaries 
exist, the frictionally driven currents are divergent and produce 
pressure changes which lead to the establishment of permanent 
currents. Since we are not concerned here with such inertial oscil-
lations as might exist-their energy will be small in any case-we 
must consider the effect of wind stress on the balanced part of the 
flow. This effect may be incorporated into the balance equations 
in the following manner: 

Consider a continuously stratified ocean. If the surface wind 
stress is horizontally nonuniform, the horizontal divergence of the 
wind drift current within the layer of frictional influence far exceeds 
the divergence of the balanced part of the flow. Hence one may, 
with good approximation, attribute all divergence to the wind drift 
current. To this divergence corresponds a difference in vertical 
velocity along the vertical between the surface and the depth at which 
frictional influences become negligible. On the assumption that 
this depth Dis small compared with the vertical scale of the balanced 
currents, the frictional divergence may be introduced as a boundary 
effect in the balance equations for the continuously stratified ocean. 
To show this, let the vertical velocity at the surface be w0 and the 

-+ 
vertical velocity at depth D be w1. Then, if V I is the drift current, 
we have 

Ignoring inertial oscillations we may assume that the total 
Coriolis force acting on the drift current is exactly balanced 18 

by the surface stress -;, i.e., / k X VI pdz = 1. In this formula the 

vertical variation of p may be ignored and one may divide both sides 
by pf. Doing so and taking the curl of both sides, we obtain 

10 

D "v • Vi dz = k · "v X (r/pf) 
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The vertical velocity w0 at the surface is the individual derivative of 
the height of the free surface r. Since depth D is relatively small, 
we may ignore the variations of density in the friction layer and 
write dt = dpi/pig, where i denotes quantities at depth D. Hence 

1 dpi 1 ( a ) 
Wo = pig dt = pig at + Vu . v' Pi . 

--> 
The vertical velocity wi at level Dis given by eq. (5) with V evaluated 
geostrophically. Solving for Wi we get 

w1 = - (ap)-1(~ +Vu• v) P1 = (ap)-1(~ +Vu• v) (ap) . 
az i at g az I at az I 

Combining the last four equations, we obtain the required condition 
--+ 

(;+Vu• v') ( :: } + m (;+Vu· v') Pi = gmk-v' X ( T) , 
where m = -(p-1 ap/az)1• Since D is small, this equation may be 
assumed to apply approximately at the surface. The usefulness 
of this expression lies in the fact that it converts the complicated 
Ekman-spiral microstructure of the frictional layer into a simple 
boundary condition on pressure. 

In the case where wind-induced friction acts in the upper of two 
homogeneous layers, the effect may be directly incorporated by sub-
tracting the integrated frictional divergence through the entire 
upper layer from the individual depth change of this layer due to 
divergence of the balanced fl.ow. Thus in eq. (11) we merely sub-

-+ -+ 
tract the term k · V X ( r / pf) from the left-hand side: 

(; + Vu · v') h = - h v' · V - k · v' X (,~) . 

Proceeding as before in the derivation of eq. (12), we obtain 

( 
a ) Zu Zu ( -; ) - + Vu · V - = - k · V X -
at h h pf ' 

--> 
from which it follows that the body force Fin eq. (12) may be identified 

--> 
with r/ph, providing only that one may ignore the variations of hand 
f on the right-hand side of the above equation and that Zu may be 
replaced by f. The latter approximation is always valid under quasi-
geostrophic conditions, and the former is also permissible when one 
considers how little is known about actual surface stress distributions. 

11 11 

I . 
!I Ii 
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1955] Charney: Generation of Ocean Currents 485 

The above method of incorporating wind stress into the balance 
equations is similar to a method used by Charney and Eliassen 
(1949) for dealing with the effects of surface fri ction on atmospheric 
motions. By introducing the wind stress distribution as a boundary 
condition on pressure, or, in the case of the homogeneous upper layer, 
as a body force, it is possible to investigate the large-scale features 
of the wind-driven circulation without including in complete detail 
all the small-scale complexities of the surface frictional layer. 

5. Generation of Wind Currents in a Single-layer Ocean. Now 
consider an infinite homogeneous ocean of constant depth H which 
is initially at rest. Beginning at time t = 0, a certain amount of 
y-momentum is imparted uniformly to an infinite strip of width 2a. 
What is the final equilibrium state? Rossby (1938) considered the 
case where the momentum is added impulsively. In the present 
analysis we allow the wind stress a finite time in which to act and we 
assume that the current is constantly in a state of quasi-geostrophic 
equilibrium. On the assumption that the motions are small, the 
appropriate equation for dealing with this situation is the linearized 
form of (12). Ignoring effects from the variation off with latitude, 
we have simply 

( a2 1) a1J f aF {B for lxl :$a 

ax2 )..2 at - g ax ' F - 0 for Ix I> a , 
(17) 

where 1J is the perturbation height of the ocean and A is Rossby's 
"radius of deformation" (gH/f)½. The solution of this equation, 
subject to the conditions that 1J = 0 at t = 0 and that 1J be finite at 
x = oo, is found to be 

AjBt {e-0 I • sinh (x/)..) , 
1J = -g- sign xe-1z1/• sinh (a/)..) , 

and is represented schematically in Fig. 1. 

lxl :$a 

lxl>a 

_,.•vri 
•••• -~,6 ....... _ •• 

.... ---- . .,.-------
"r 
i 

- 6 r 
i 
i 

I 
><.•-a 

Figure 1. 

H 

x.•a 

(18) 
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The (infinitesimal) displacement o of the central current to the right 
may be calculated from the transverse velocity u at x = ± a. This 
is obtained from the continuity eq. (11) which, in the present instance, 
is 

ar, au 
-= -H- . 
at ax 

(19) 

We find that u(±a) = (B/2f) [1 + exp ( -2a/A)]. Since this quantity 
is independent of time, o is merely u(±a)t. The velocity of the 
balanced current is obtained from v = (g/f)ar,/ax, 

\x\~a 
\x\>a 

(20) 

If the force B and the time during which it acts are varied in such a 
way that Et remains constant, the resulting motion remains unchanged, 
since that part of the motion which depends on the rate at which 
momentum is added (the inertial oscillation) has been ignored. The 
final equilibrium state corresponding to a given addition of momentum 
is essentially the same as that in Rossby's model. The principal 
difference is that the energy imparted is here less by just the amount 
that is radiated away as gravitational wave energy in Rossby's model. 

6. Generation of Wind Currents in a Double-layer Ocean. Of greater 
interest is the manner in which currents are created in a stratified 
ocean where there is the possibility of internal mass adjustment. 
Here we simplify the analysis by replacing the continuously stratified 
ocean by two homogeneous layers with the surface of discontinuity 
at the center of the mean thermocline as in Fig. 2. 

0 

1000 m _ 

2000m _ 

3000m _ 

Figure 2. 
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To simulate actual conditions in the North Atlantic, we take the 
depths of the upper and lower layers to be 500m and 3500m respectively 
and the density difference p1 - p to be 2 X 10-3gm cm-3• Again, 
assuming small motions, we may disregard second order terms; 
thus eqs. (12), (15) and (16) may be combined to give 

2 a 1 077 a J 
"v - ( 77 + 77') - - - + f3 - ( 77 + 771) = - k · "v X F , 

at x2 at ax g 

2 a 1 0771 a f 
"v - (t77 + 771) - - - + {3- (t77 + 771) = - k · "v X F' 

t at X' 2 at ax g ' 

(21) 

where 77 and 77' are the perturbations of depths h and h' respectively, 
X = (gH/f)½ and X' = (gH'/f)½ are the radii of deformation corre-
sponding to the upper and lower depths H and H', and {3 = df/dy. 
For simplicity, {3 is assumed constant. 

In accordance with the idea that most of the frictional force acts 
in the upper hundred meters or so, we assume that no force acts in the 
lower layer and that there is no frictional transfer of momentum across 
the interface. Any motion created in the lower layer must therefore 
occur in response to pressure forces transmitted from above. 

It will be convenient to separate the motion into its two normal 
modes: a barotropic, or external, mode in which the current velocities 
in both layers are the same and a baroclinic, or internal, mode in which 
the current velocities in each layer are inversely proportional to their 
depths. This separation is performed as follows: We multiply the first 
of eqs. (21) by o- and add to the second, choosing o- so that the linear 
combinations o-( 77 + 771) + €77 + 77' and o-77/X2 + 771 /X' 2 are proportional. 
Denoting the ratio HJH' by r, we find that o- must satisfy the equation 

o-2 + (1 - r) o- - rE = 0 (22) 
whose roots are 

(1 - r)/2 ± [(1 + r) 2/4 - r(l - c)]½. 

Since (1- c) = (p'- p)/p' = 2 X 10-3, whereas (1 +r) 2/4>¾, we 
may approximate these roots by 

o-i o-
2 

= _ (1 - r) ± (1 + r) [l _ 2r (1 - c)] 
' 2 2 (1 + r )2 

(1 - t)r (1 - c)r 
= r - --- - l + ---. (23) 

l+r l+r 
Defining 

R. = O'i (77 + 771) + E77 + 771 (i = 1, 2) , (24) 
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we obtain the required decomposition, 

2 aR, a;2 aR, aR, f ( 2S) 
V----+,B-=<1',-k•VXF, 

at >,,2 at ax g 
where 

a12 = _1 _ (1 - TE) = _r_ ' 
1 - £ <1'1 1 + r 

al = _1 _ (l _ TE) = 1 + r_ 
1 - E <1'2 1 - E 

(26) 

Once the R1 have been found, 71 + 71' and E71 + 711 may be obtained by 
solving (24). Thus 

R1 - R2 R1 - R2 
71 + 71' = = ---

1 + r 
<I'1R2 - <I'2R1 R1 - r R2 

E7I + 711 = = ----
1 + r 

(27) 

It is evident that R1 corresponds to the barotropic mode, since, for 

this component of motion, the geostrophic velocities (g/f) k XV (71 + 71') 

and (g/f) k X V (E71 + 71') are equal. Likewise we see that the upper 
and lower velocities corresponding to R2 are in the ratio 1/r. This mode 
will be called the baroclinic, or internal, mode and is characterized by 
the large deformations of the interface needed to reduce the pressure 
gradient in the lower layer. The slope of the interface is of the order 
of one thousand times that of the free surface. 

Let us assume now that a uniform wind stress acts on the infinite 
strip, lxl a, producing a body force B in the y-direction and acting 
only in the upper layer. Disregarding the ,B-effect, we find, in com-
plete analogy with the single layer case, 

u;AfBt{e-a;ali.sinh(a;x/>,,) , lxl::;a , 

R; = -;;;- sign x e-a;iz1/i. sinh(a;a/>,,) , lxl > a 
(28) 

The corresponding y-velocity components are 

g aR; { e-a;a/J. cosh(a;x/>,,) ' lxl::; a 

V; = J a"; = u;Bt - e-a;1z1/J. sinh(a;a/>,,) ' lxl >a 
(29) 

The upper layer velocities corresponding to each of the modes R1 and 
R2 are shown in Fig. 3 for the half-widths a = 100km and a = 1000km. 
It is seen that the baroclinic mode is predominant over a large part of 
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Figure 3 

V,· 1. 
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the current region for the smaller width whereas for the larger width the 
barotropic mode dominates except near the edges. 

To estimate the orders of magnitude of the currents generated, 
we assume that the surface stress T is one dyne cm-2 and f is 10-4 

sec-1• The body force then becomes B = T/pH = 1.73 cm sec-1 

per day. The maximum currents and countercurrents occur at the 
edges. After one year, max v1 = 0.9 m sec- 1 for a = 100km and 0.6 
m sec-1 for a = 1000km and max v2 = 3.2 m sec-1 for either a = 
100km or a = 1000km. 
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To eliminate the edge effect, an effect which depends on an un-
realistic wind stress distribution for the open sea, we replace the step-

function force by a sinusoidally varying one, F = B sin kx j, where j 
is a unit vector in the y-direction. The solution to eq. (27), again 
without the /3-term, then becomes, in terms of Vi = (g/f) (aR;/ax), 

v; = ui (1 + a;2/X2k2)-1 Bt sin kx . (30) 

Since u1 = r = 1/7 and u2 = -1, the ratio of the amplitude of the 
barotropic to that of the baroclinic mode depends primarily on the 
nondimensional quantities a;2/X2k2

• The baroclinic mode becomes 
important only when a22/X2k2 ,:S 1, i.e., when the wave-length L = 
21r/k is of the order of 100km or less. This result agrees with Rossby's 
conclusions that under ordinary circumstances the internal adjust-
ment of the interface due to transverse circulations is never sufficient 
to cancel the lower current. 

An explanation of this phenomenon may be sought in terms of the 
stability of the circular vortex, of which the above treated parallel 
currents constitute a special case. The geostrophically balanced 
component of flow may be regarded as the motion of a stationary 
circular vortex at a large distance from the axis of rotation. The 
transverse, nongeostrophic, circulation then corresponds to the 
meridional forced circulation caused by addition of angular momentum 
to the zonal flow. Eliassen (1952) has taken this view in his analysis 
of the response of a baroclinic circular vortex to radially symmetrical 
injections of angular momentum or heat. He also assumes that the 
zonal flow is at all times balanced so that meridional circulations are 
necessary in order to maintain the balance. He finds that the merid-
ional motion then takes place mainly in the direction of smallest 
stability. The stabilizing forces in the present instance are gravita-
tional stability of the free surface and of the interface and inertial 
stability due to the earth's rotation. The first two act to resist 
vertical displacement and the last acts to resist horizontal displace-
ments. As the lateral extent of the wind force (determined by a 
in the first problem and by L in the second) decreases, the vertical 
component of the transverse circulation increases relative to its 
horizontal component. Since gravity resists internal displacements 
of the interface much less than it resists displacements of the free 
surface, it is natural to expect the baroclinic modes to predominate 
for sufficiently small a or L. 

Another explanation of this effect follows from the requirement 
that the angular momentum in the lower layer remain constant in 
the absence of external torques. Simplifying matters by supposing 
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that the slopes m of the free surface and m' of the interface are con-
stant in the region lxl :=,; a where wind force B acts, we find that 

Em + (1 - E)m' + (a2/3}..'2)m' = 0 . 

This equation is derived from the condition that the increase in angular 
momentum associated with increase in velocity is exactly balanced 
by the decrease due to the transport of water toward the axis of rota-
tion. 

Solving for the ratio m/m', we find 

m 

m' 
- (1 - E) [ 1 - -3(_1 _~_2 E-) }.-12] 

which shows that m/m' is of the order (1 - E) and that the fl.ow is 
baroclinic only if the ratio a2/(l - E)A'2, corresponding to a22/>..2k2 

in the last example, is of the order 1 or less, a confirmation of our 
earlier result. 

The curious development of the internal mode at the edge of the 
limited area over which a uniform wind is blowing may also be qualita-
tively explained by the above analysis. Near the edge, transverse 
horizontal displacements must give way to vertical displacements, 
and these are much more easily accommodated by a deformation 
of the interface than of the free surface. 

While the sharply limited wind distribution is unrealistic for the 
open ocean, the effect it produces may itself be of the highest import-
ance; for precisely such an effect must be expected near coasts where, 
as a result of wind-induced lateral circulations, water piles up or is 
removed, and where large deformations of the thermocline occur. 
One may speculate that the intense jet-like currents found on the 
western shores of the major oceans, such as the Gulf Stream and the 
Kuroshio, are due to a related phenomenon. We shall investigate this 
possibility further in the next section. 

7. The Coastal Jet. Temperature profiles through the Gulf Stream 
(Worthington, 1953) reveal a marked baroclinicity. Profiles near 
69° W, 38° N, measured in October, show an isotherm near the center 
of the thermocline sloping from say 800 m depth at the seaward 
edge of the Gulf Stream to nearly the surface at its center. It seems 
certain that a theory that would explain this phenomenon would also 
go far toward explaining the Gulf Stream itself; and it is difficult to 
avoid the conclusion that the theory must deal with an essentially 
baroclinic ocean. The most attractive of the existing theories, those 
of Stommel (1948) and Munk (1950), account for many of the mean 
features of the ocean circulations, including the mean westward 
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intensification, but since they deal only with a homogeneous ocean 
or with the total mass transport in a vertical column, they do not 
allow for effects of baroclinicity. Further, in Munk's theory, the 
detailed structure of the western current depends in an essential way 
on a lateral eddy viscosity whose magnitude requires eddies of the 
size of the Gulf Stream meanders themselves. Such a theory cannot 
be expected to apply to the individual jet. 

The calculations to be presented below are not intended as a theory. 
They are meant to be suggestive only. However, they do have the 
advantage of referring to an actual, not a mean, jet-stream, and they 
take explicit account of the baroclinicity. 

The system to be considered first is an infinite double-layer ocean 
confined between two parallel walls, x = ± a. Assuming that the 
ocean is initially at rest, we inquire into the motion created by a 
wind blowing parallel to the walls and varying sinusoidally from one 

wall to the other according to the law G = - B sin (1rx/2a)j. It 
should be emphasized that the system under consideration is essentially 
transient, since we postulate no dissipation of energy, without which no 
steady state can be reached. A complete analysis would contain a 
more realistic wind stress acting in an enclosed ocean and would include 
a dissipation mechanism. The point of view adopted here is that a 
mechanism which will bring the thermocline to the surface in the vicin-
ity of coasts must continue to operate even after various modifying 
factors are brought into play. 

If the {1-effect is ignored, the equations of motion (25) take the 
form: 

( 
a2 a/) alt - - - - = - u · cos kx 

ax2 X2 at 1 1 (31) 

with k = 1r/2a and with R; = (kf B/g)R; . The boundary condition 
is obtained by integrating the linearized continuity equations 

a71 au a11' au' 
- = - H- - = - H'-
at ax ' at ax 

with respect to x. Since u and u' vanish at x = ± a, we get 
a a 

!__ f 1/dx = !__ f 1J'dx = 0 at at ' 
-a -a 

or, in terms of R; , 

a fa -
- R,dx = 0 
at (32) 

-a 
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The solution of the system (31) and (32) is 

R · = ---- cos kx - - -----
- <J';t [ a, cosh (a;x/'A)] 

' k2 + a;2/'A2 'Ak sinh (a;a/'A) ' 
(33) 

which gives, for the velocities of the normal modes, 

g iJR; <J';k2Bt [ . al sinh (a;x/'A)] 
v· =--= ----- smkx+------
' f ax k2 + a;2/'A2 'A.2k2 sinh (a;a/'A) 

(34) 

The first term in parentheses corresponds to the directly forced motion, 
in phase with the wind force; the second term corresponds to the 
motion produced by the Coriolian divergence of water from the coasts. 
We note by comparison with eq. (29) that this latter effect is analogous 
to that already found in the case where the wind stress is uniform. 

For the baroclinic mode, al> > >..2k2 for widths comparable to ocean 
widths. Hence, near the coasts, V2 = ± <J'2 Bte-a,<a-ixi> and is very 
small elsewhere. The maximum velocity of the barotropic mode is 
u1Bt and diminishes slowly toward the center. At the coastal bound-
aries the velocity of the baroclinic mode is greater than <J'1Bt by the 

<J'2 1 
factor - - = - = 7. The distance from the coast beyond which 

<J'1 r 

[
g(l - c)H] ½ 

the baroclinic velocity becomes small is 'A/a2 = ---- , or 
f2(1 + r) 

about 30 km. If B corresponds to a wind stress of 1 dyne cm-2, 

the upper layer velocity at each coast would become 2 m sec-1 after 
about four months. In this time the interface at the coast would 
rise 220 m above its undisturbed depth. 

So far we have considered only cases where the wind blows parallel 
to the shores of an infinite ocean strip. If a wind begins to blow at 
right angles, say with a sinusoidal variation in the y-direction, no 
divergence away from the coasts will take place. Instead, piling up 
of water will occur in troughs and ridges at right angles to the coasts. 
Only later, as a consequence of pressure forces along the coast resulting 
from the initial divergence, will velocities parallel to the coasts be 
generated. In the absence of such asymmetries as might be caused 
by variation of the Coriolis parameter, this mechanism turns out 
to be not as effective as the parallel wind action in generating intense 
coastal currents. 

To calculate the effect of a normal wind, we assume a wind force of 

the form F = B cos µy i, where i is a unit vector pointing westward, 
beginning to act at t = 0. Eq. (25) then becomes 
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2 aR; a;2 aR; (J';f µ B . 
'il----=--- smµy. 

at ;x.2 at g 
(35) 

The vanishing of the normal velocity components u and u' at the 
boundaries is expressed by the geostrophic conditions 

aR; 
-=0 
ay 

(36) 

If 'Yl = µ2 + a;2f;\2 and w, = fµf'Y,, the solution of the system (35) and 
(36) may be written 

(J';µfBt ( cosh "f;X) . 
R; = --- 1 - --- sm µy 

g 'Yi cosh "( ;a 

(37) 

or, in terms of the y-velocities of the normal modes, 

(J' ,µBt sinh 'Y ,x . 
v, = - -- - - - sm µy (38) 

'Y, cosh 'Y,a 
27!" 

Taking µ = -- km-1 we find for the ratio of baroclinic to baro-
4000 

tropic velocity at a point on the coast where the wind force is a maxi-
mum 

- (]'
2 

"/! = = 0.37 
(]'1 'Y2 ra2 

It would seem, therefore, that the wind stress must have components 
which are parallel to the coasts or which have a very large curl (large 
µ) if sharp coastal currents of appreciable strength are to be created. 

8. The Effect of the Variation of the Coriolis Parameter. In the 
various examples treated, the barotropic (or external) mode of motion 
was found to be predominant except near coasts; that is to say, 
the current velocities in the open sea showed no tendency to decrease 
with depth, as they are observed to do. This result confirms the 
findings of Rossby, who lik ewise was unable to account dynamically 
for a rapid decrease of velocity with depth. However, Stommel has 
suggested that if one were to take into account the variation of the 
Coriolis parameter, this result might be altered. The following 
considerations will show that such indeed is the case if the ocean 
circulations are produced by transient wind systems moving with 
sufficiently large period. The physical explanation is that the varia-
tion of f permits self-propagating disturbances, and the impressed 
force system may approach resonance with the free baroclinic oscil-
latory mode. 
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To demonstrate this effect, we consider the forced oscillations 
produced by a traveling wind system exerting the force F = B sin 

(kx - vt) sin µ y j. The resulting motion, given by solution of eq. 
(25), is 

u;JB sin (kx - vt) . 
R; = -------- sm µ y , 

{3g (1 - v/v;) 

where {3 is df /dy, and where 
k{3 

V; = 

(39) 

(40) 

is the frequency of the Rossby wave corresponding to the ith mode. 
211' 11' 

If k = -- k.m-1 and µ = -- km-1 we find for the periods 271'/v: 
4000 4000 

9 days in the barotropic case and 8 years in the baroclinic case. Reson-
ance occurs only if the wind system moves toward the west, an unusual 
occurrence. However, as 211'/v becomes of the order of or larger than 
the baroclinic period of 8 years, the baroclinic amplitude begins to 
predominate, and in the limit, 211'/v = 0, it exceeds the barotropic by 
the factor - 0-2/ 0-1 = 7. 

If, instead of a forced disturbance, we consider the disturbance 
produced from rest by the sudden action of the stationary wind force 

F = B sin kx sinµ y j , we find that 

u·fB [ ] R; = ~g sin kx - sin (kx - v,t) sinµ y , (41) 

where the first term in the bracketed expression corresponds to the 
forced disturbance and the second term to the free disturbance. It is 
seen that, in both, the baroclinic mode is larger than the barotropic 
in the ratio - 0-2/0-1 = 1/r = 7. 

Unfortunately the foregoing results cannot be applied directly 
to the circulation produced in an enclosed ocean by a stationary wind 
field. It is not known how the resonance considerations become 
modified by the inclusion of boundaries. This problem is still under 
investigation. However, judging from the central role played by 
the planetary vorticity effect in Stommel's and Munk's theories of the 
wind-driven ocean circulation, it seems certain that any successful 
treatment of the planetary ocean circulation must eventually take it 
into account. Thus for example Stommel finds that the variation of 
the Coriolis parameter is responsible for a general westward intensi-
fication of the ocean circulation in a rectangular ocean. In the present 
case, where the circulation is produced from rest by wind action, one 
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should expect to find the same effect. But here it has been shown 
that a reduction of the horizontal extent of a current is accompanied 
by an intensification of its baroclinic component near the coast. Hence 
the {,-effect combined with the development of the baroclinic mode 
should lead to a strengthening of the sharp coastal current on the 
western side and a weakening on the eastern side. 

9. Summary and Conclusion. On the assumption that both sta-
tionary and transient ocean currents produced by the action of large-
scale atmospheric wind systems are in a state of quasi-nondivergent 
balance between pressure and velocity, a system of equations has been 
deduced which has the virtue of applying only to current motions to the 
exclusion of background inertio-gravitational wave "noise." In these 
equations the cross-current circulations, needed to restore the pressure-
velocity balance when it is disturbed by wind action, were treated as 
forced motions. A method has been given whereby the complexEkman-
spiral action of the wind-induced forces in the layer of frictional in-
fluence is replaced by a simple boundary condition in the case of a con-
tinuously stratified atmosphere or by a body force in the case of an 
ocean consisting of superimposed homogeneous layers. Application of 
the combined formalism to the behavior of a double-layer ocean under 
the influence of wind stresses has led to the result that, in the absence of · 
effects due to the variation of the Coriolis parameter, uniform currents 
extending all the way to the ocean bottom are created. This result 
confirms some earlier work of Rossby. 

There was, however, an important exception. In the immediate 
vicinity of coasts, large deformations of the interface were found to 
occur because of the action of gravitational stabilizing forces. These 
deformations counteract the establishment of deep currents in such a 
way that the flow is confined primarily to the upper thin-layer. The 
width of the resultant coastal currents is of the order of 30 km and 
therefore it corresponds roughly to the observed widths of the Gulf 
Stream and Kuroshio. In order that such currents may form, the 
wind must have either a component parallel to the shore or an un-
usually large curl. (This last result may be changed when the varia-
tion of the Coriolis parameter is taken into account, for it will have the 
effect of reducing the extent of the western current and thereby, as was 
shown previously, accentuating still further the narrow baroclinic 
coastal current.) 

In accordance with a suggestion of Stommel, a preliminary examina-
tion was made of modifications caused by the variation in the Coriolis 
parameter. It was found that in open oceans the variation gives rise 
to currents that are confined mainly to the upper layer if the wind 
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stress system is horizontally nonuniform and moves very slowly, 
i.e., if it oscillates with a period of the order of or greater than 8 years. 
It has not been shown, however, to what extent these results carry 
over to enclosed oceans. 

To account for the steady-state ocean circulation, one must evi-
dently include a dissipation mechanism. The writer has attempted 
only to show how, in certain circumstances, the motion produced 
from rest by the action of a wind stress on the surface of a baroclinic 
ocean will generate intense coastal currents. Obviously the next 
step is to deal with an enclosed ocean with a variable Coriolis parameter 
and to take dissipation into account. However, even then it is 
not obvious how a dissipation mechanism will be introduced. There 
is some evidence that much of the total energy dissipation in 
the North Atlantic occurs as a result of Gulf Stream meandering. 
If this is so, then the circulation is intrinsically nonsteady and perhaps 
could best be approached as an initial value problem. 

Finally, it should be pointed out that the explanation which has been 
given for the coastal currents has depended in an essential way on the 
transient character of the flow. One must postulate that after 
intense currents have been developed they will be maintained by mass 
advection in a manner that can be accounted for by only inclusion of 
nonlinear terms in the continuity and vorticity equations. One 
may surmise that mass transports produced by the action of wind 
stress in the open ocean will be successfully explained by a theory 
very close to that of Munk-perhaps involving some density strati-
fication-and that the sharp coastal currents will be found to be a 
dynamic response of stratified coastal waters to these transports. 
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