
 
 

 
 
 
 

P.O. BOX 208118 | NEW HAVEN CT 06520-8118 USA | PEABODY.YALE. EDU 

 
 
JOURNAL OF MARINE RESEARCH 
The Journal of Marine Research, one of the oldest journals in American marine science, published 

important peer-reviewed original research on a broad array of topics in physical, biological, and 

chemical oceanography vital to the academic oceanographic community in the long and rich 

tradition of the Sears Foundation for Marine Research at Yale University. 

 

An archive of all issues from 1937 to 2021 (Volume 1–79) are available through EliScholar,  

a digital platform for scholarly publishing provided by Yale University Library at  

https://elischolar.library.yale.edu/. 

 

Requests for permission to clear rights for use of this content should be directed to the authors, 

their estates, or other representatives. The Journal of Marine Research has no contact information 

beyond the affiliations listed in the published articles. We ask that you provide attribution to the 

Journal of Marine Research. 

 

Yale University provides access to these materials for educational and research purposes only. 

Copyright or other proprietary rights to content contained in this document may be held by 

individuals or entities other than, or in addition to, Yale University. You are solely responsible for 

determining the ownership of the copyright, and for obtaining permission for your intended use. 

Yale University makes no warranty that your distribution, reproduction, or other use of these 

materials will not infringe the rights of third parties. 

 
This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. 
https://creativecommons.org/licenses/by-nc-sa/4.0/ 

 

 



SEARS FOUNDATION FOR MARINE RESEARCH 
BINGHAM OCEANOGRAPHIC LABORATORY, YALE UNIVERSITY 

JOURNAL OF 
MARINE RESEARCH 

VOLUME 14 1955 NUMBER 2 

A THEORY OF TIDAL MIXING IN A 
"VERTICALLY HOMOGENEOUS" ESTUARY1 

BY 
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Abstract. An equation is derived for the distribution of a solute in an estuary 
where river flow and tides are predominant factors and where the dynamics and 
mixing can be described by a simple physical model. This model is subsequently 
generalized in various ways and it is found that the basic form of the diffusion equa-
tion is unchanged. An equation is derived which allows for time dependence of the 
varioUB quantities involved and for introduction of a solute into the estuary by an 
external agent. Some solutions of this equation are studied. 

Introduction. In this study we have investigated the distribution 
of salt or any other solute in estuaries as influenced by tides and river 
flow to the exclusion of all other influencing factors. Further, we 
have confined our attention to estuaries which are "essentially homo-
geneous vertically." Thus, if measurements of the concentration of a 
solute are made by sampling an entire transverse cross-section of an 
estuary (i.e., a vertical section perpendicular to the direction of river 
flow) at any time during one or more tidal cycles ( during which time 
the conditions of river flow and tidal amplitude are assumed to be un-
changed), then the concentration values so obtained will differ from 
one another by a smaller order of magnitude than will values obtained 

1 The work presented in this article was carried out under contract Nonr-562(02), 
NR-083-067, between the Office of Naval Research and Brown University. The 
reader is referred to Maximon and Morgan (1953) and Maximon (1953) for further 
details on some of the analysis appearing here. 
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by taking measurements at positions separated by distances of the 
order of the tidal excursion along the length of the estuary. 

A comprehensive theoretical solution of this problem should permit 
us to predict the distribution of any solute within an estuary from a 
knowledge of river flow and tides, possibly including the introduction 
or removal of any solute by means of an external source or sink, as 
when a pollutant is discharged by an industrial plant. A complete 
theory would require detailed study of velocity distribution and 
nuxmg processes. However, at our present stage of development, 
such a program is not feasible, hence we must content ourselves with 
a more macroscopic approach, i.e., one which aims at predicting only 
some convenient average variation of solute concentration as a func-
tion of position along the estuary and possibly of time. Ketchum 
(1951) has used the concept of tidal prism in his study and Arons and 
Stommel (1951) have postulated a diffusion equation. In this in-
vestigation an attempt is made to derive rather than postulate diffu-
sion equations by assuming that the mixing process can be described 
in terms of simple physical models. 

Assume that a channel is divided into two regions; a lower one with 
cross-sectional area b1(x,t), salinity s1(x,t) (dimensions ML-3) and 
velocity u1(x,t); an upper one with cross-sectional area, salinity and 
velocity b2(x,t), s2(x,t), ¼!(x,t) respectively; xis the distance co-ordinate 
along the length of the channel, and u1, ¼! are the tidal velocities. 
Actually we need not envisage such a clear-cut division between the 
layers; they may be interspersed. We need to assume only that the 
channel contains fluids of two kinds, one with salinity s1 moving with 
velocity Ui, the other witl;t salinity s2 moving with velocity ¼!; finally 
we assume that the total cross-sectional area of the fluid of salinity s1 

is b1 and that that of salinity s2 is b2. For convenience, however, we 
shall speak of the channel as if it contained two distinct layers. 

The tides cause upstream transport of the solute in the upper layer 
and an increase in the concentration difference between the two layers 
as a result of their relative velocity. Vertical mixing then carries some 
of the solute into the lower layer. It is assumed that these processes go 
on simultaneously in a more realistic estuary, but in our first model we 
shall assume that vertical mixing takes place instantaneously at high 
and low tide only, and further, that the mixing at each of these times 
is complete, i.e., that the salinities of the upper and lower layers are 
equal following each mixing. For this simplified model the concept 
of "essentially homogeneous vertically" applies only for a short time 
after mixing. However, if mixing takes place continuously or at 
many stages (see later discussion), then the model is consistent at 
all times. 



1955] Maximon and Morgan: A Theory of Tidal Mixing 159 

Kinetic Considerations. First we assume that the channel is of 
constant width. For the continuity of fluid in the lower layer we 
have 

(1) 

for that in the upper layer 

ab2 a (b2u2) 
-+--=0. 
at ax 

(2) 

Although we assume two distinct layers, each with its own velocity, 
an exchange of salt between the two layers is permissible; thus the 
equation for salt continuity for the total channel is: 

a(b1s1 + b2s2) a(b181U1 + b2S2¼) ---- + ----- = 0. (3) 
at ax 

Substituting (1) and (2) in (3) we have 

b1 - + U1 - + b2 - + U2 - = 0. [
081 081] [082 082] 
at ax at ax 

(4) 

Note that in (1), (2), (3) and (4) we have assumed that the fluid in 
each layer moves with uniform velocity over the entire depth of the 
layer. If we assume instead that it moves over partial depths b1', 
b/, then in (1), (2), (3) and (4), wherever b1 and b2 multiply u1 or¼, 
they must be replaced by b1' and b2' respectively. We will assume, 
however, that b1' = b1, b2' = b2. 

For our first spe"cific case, 

U1 = 0, b1 = a, b2 == b + 11, 11 = t sin wt, (5) 

where a, b, t and w are positive constants. The equation b2 = b + 11 
assumes that the tidal wave-length is large compared with the length 
of the estuary so that the level of the estuary rises uniformly over its 
length. Using equation (2) and expressions (5), ¼ is determined: 

ab2 iJ(b2¼) a[(b + 11)¼] - + -- = tw cos wt + ----- = 0. 
at ax ax 

Integrati:r;i.g, 
txw cos wt 

¼=-
b+tsinwt' 

(6) 

where we have set the arbitrary function of t equal to zero so that 
¼(O,t) = 0 for all t. The region of validity of the expressions for 11 
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and ½ probably end for some positive value of x. Equation (6) gives 
the velocity ½(x,t) of a particle in terms of its position x and t. The 
position of the particle li(t) as a function of time may be found by 
substituting 4 for x and li'(t) for½ in (6) and integrating with respect 
tot, giving 

li(to)(b + t sin wto) 
li(t) = __ b_+_t_s_i_n_w_t_' 

where li(t0) is the position of the particle at some fixed time to. 

(7) 

Our object is to calculate the flux of salt past a given cross-section 
during a tidal period due to the action of the tides. Since our ultimate 
goal is to derive a differential equation for salinity as a function of 
position along the estuary we shall want to describe the flux in terms 
of the salinity. Such an equation will express the fact that in an 
estuary where conditions do not change from one tidal cycle to the 
next the upstream flux of salt due to tides must be exactly balanced 
by the downstream flux due to the river. 

In our first model, the salinity of the upper layer, as measured in a 
frame of reference moving with the velocity of the upper layer, 1s 
constant, except when wt = 1r/2, 31r/2, · · · , hence 

082 082 
-+¼ -=0 
at ax 

except when wt = 1r/2, 31r/2, · • •. 
From (8), in particular, 

( 
(4n + l)1r ) ( (4n - l)1r ) 

82 x, 
2
w - 0 = 82 X + ~2, 

2
w + 0 , 

where, from (7) 
n = 0, ± 1, ± 2, 

x(b + s) 
x+~2=---. 

b - t 

(8) 

(9) 

(10) 

That is, the salinity of the upper layer at x just before mixing at 
high tide is equal to the salinity of the upper layer at x + farther 
downstream, just after the previous mixing at low tide, ~2 being the 
distance traveled from low to high tide by that section of the upper 
layer which is at x at high tide. Similarly, 

( 
(4n + 3)11" _ ) _ ( _ (4n + I)1r ) 

82 X,---- 0 - 82 X ~1,----+ 0 , 
2w 2w 

n = 0, ± 1, ± 2, (11) 
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where, from (7) 
x(b - t) 

X -£1 = ---
b + t ' 

161 

(12) 

£1 being the distance traveled from high to low tide by that section of 
the upper layer which is at x at low tide. 

Since the lower layer is assumed to be stationary, we have 

( 
(4n + l)1r ) ( (4n - l)1r ) 81 x, ---- - 0 = 81 x, ---- + 0 ' 

2w 2w 
(13) 

81 (x, <4n a)1r - o) = s1 (x, <4n l)1r + o), (14) 

n = 0, ± 1, ± 2, 

Further, from the assumption of complete mixing after high and low 
tides, we have 

( 
(4n + l)1r ) ( (4n + l)1r ) 81 x, ---- + 0 = 82 x, ---- + 0 

2w 2w 

81 (x, <4n 
3

)1r + o) = 82 (x, <4n 3
)1r + o) 

n = 0, ± 1, ± 2, 

(15) 

(16) 

At this point we leave for a moment our rather formalized derivation 
and derive quite simply the flux over a tidal period by properly 
neglecting terms of relative order (/b. We shall not attempt to justify 
the particular approximations that are made therein, since a more 
rigorous derivation will be given subsequently. 

Derivation of Diffusion Equation from Elementary Physical Considera-
tions. Let us begin with conditions just after high tide mixing and 
consider the transport of salt during a tidal cycle across the section 
at x. During ebb tide an upper layer of water of length ~1 (see Fig. 1) 
and of cross-sectional area b = r ~ b moves downstream past x. 
Since no mixing takes place, this volume carries all of its salt content 
past section x. At low tide it instantaneously mixes with the more 
saline water below and thus acquires salt. During flood tide that same 
volume of water (now of cross-sectional area b - r ~ b and of length 
f2) moves upstream across section x, so that at high tide this same 
volume then occupies the same position as it did at the beginning of 
the cycle, but, having acquired additional salt at low tide, it now has 
a higher salinity than it had in the beginning. Conversely, the lower 
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Figure I. Schematic diagram showing motion of water due to tides and mixing. 

layer upstream of x, having lost some salt to the upper layer during 
low tide mixing, is now less saline than it was at the beginning of the 
cycle. Hence, when mixing takes p_la_c~ at high tide, the upper layer 
yields salt to the lower one. With the cycle completed, the net result 
is an upstream transport or flux of a Lertain amount of salt past sec-
tion x. We will now express this process in mathematical terms. 
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( 
(4n + l)1r ) 

S2 x, 
2

w + 0 = SH(x), 

( 
(4n + 3)1r ) 

s2 x, 
2

w + 0 = SL(x) . 
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(17) 

(18) 

.t « b, 1
3rr /2w 13,,/2w .txw 2x.t 

i;i ~ t2 ~ ¼dt ~ - - cos wt dt = -
~h b b 

from (6) . Thus we may call 
2x.t 

t = --
b 

(19) 

the approximate amplitude of tidal displacement. [Note that, if we 
neglect terms of higher order in .1/b in (10) and (12), we have ti ~ t2 

~ t-l Then, using (11), (14), (16), (17) and (18) we may write the 
equation for salt continuity at low tide as 

aSn(x) + bSn(x - t) = (a + b)SL(x) 

and for that at high tide as 

aSL(x) + bSL(x + t) = (a+ b)Sn(x), 

(20) 

(21) 

in which we have substituted t for both t1 and t2 and have neglected 
terms of relative order .tfb [cf. (20) with (33)]. Now the salt transport 
across a section due to tides is approximately 

b JfsL(x + z)az ~ btSL(x + t/2) 

upstream, during flood tide, and 

b itSn(x - l)dl ~ btSn(x - t/2) 

downstream, during ebb tide, so that the net flux upstream during a 
tidal cycle across a section at x is 

Then, for .tfb « 1, we may write (20) and (21) as 

aSn (x + ~) + bSn (x - ~) = (a+ b)SL ( x + ~) (20') 
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aSL (x - ~) + bSL (x + ~) = (a+ b)Sn (x - ~) · (21') 

Sul:!stituting (20') in (22)°·to obtain an equation in Sn alone, we have 

abe 
= --Sr/(x) 

a+b 

plus terms of higher order in and hence of higher order in r/b. This 
result is identical with that given later in (36), since from (19) = 2xrfb 
and since the constant c in (36) is finally set equal to zero. The differ-
ence in sign occurs because Fin (23) is the net flux upstream whereas 
F in (36) is the net flux downstream. 

Similarly, substituting (21') in (22) we obtain an equation compar-
able to (23) but with SL replacing Sn. Thus if we call 

Sn(x) + SL(x) 
s(x) = ----- (24) 

2 

the average salinity during a tidal cycle, then 

ab~2 

F = --s'(x). 
a+b 

(25) 

Since we assume that there is no net increase of salt over a tidal 
cycle, this net flux upstream must equal the net flux downstream due 
to river flow, so that 

aW ds 
R,,s = ---, 

a+ bdx 
(26) 

where Re is the river flow per tidal cycle. Equation (26) is the inte-
grated form of the diffusion equation 

RC ds = !__ ( aw ds ) 
dx dx a + b dx (27) 

that is obtained again in (39). By using (19), Eq. (26) may be inte-
grated as in Eqs. (39) to (44). 

Calculation of Salt Flux. Although this direct derivation of flux 
and salinity is the most satisfactory procedure to demonstrate the 
origin of the various terms in (26), a more formal derivation to exhibit 
the terms that are to be neglected seemed desirable when generalizing 
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the various factors that influence the final salinity. Therefore we 
turn to the formal computation of the salt flux F(x) at a fixed section 
x over a tidal period due to tides and small scale mixing alone: 

(28) 

Here F is the net flux downstream. In the integrand, x is held con-
stant when integrating over t. Since we wish to speak of mixing or 
salt transfer between the two layers "at" high or low tide, i.e., when 
t = (4n ± l)1r/2w (n = 0, ± 1, ± 2, · · · ), it is convenient to have 
these points either definitely within or definitely outside of the range 
of integration, hence we have the "-0" in the limits of integration. 
For this same reason we may omit the intervals 1r/2w - 0 < t < 1r/2w 
+ 0 and 31r/2w - 0 < t < 31r/2w + 0 and write 

F(x) = r3,r'2"'-o f(x, t) dt +Jh/
2
0,-0 f(x, t) dt' (28') 

J .-12 .. +o 3,-/2.,+o 

where f(x,t) = b2t0.82. We now differentiate (28') with respect to x 
and note that, from Eq. (2), 

af = b2 (082 + ¼ 082) _ iJ(b281) • 
ax ;Jt ax at 

However, in either of the intervals over which we integrate in (28'), 
082/iJt + ¼ iJs2/iJx = 0, so that, in view of (5), 

-=- --dt- --dt, 
dF J,art2.,-0 iJ(b282) f 5.-tz .. -o iJ(b2s2) 

dx ,..,2 .. +o at a .-12 .. +o dt 

= (b + t) 82 (x, 2: + 0) - (b - t) 82 (x, :: - 0), (29) 

+ (b - r) 82 ( x, :: + 0) - (b + r) 82 ( x, :: - 0) . 
We now express 82 at t = 31r/2w - 0, 31r/2w + 0, and 51r-/2w - 0 in 

terms of 82 at t = 1r/2w + 0. From (11), 

82 ( X, :: - 0) = 82 ( X - ~l, 2: + 0) · (30) 

In order to express 82 at 31r/2w + 0 and 51r/2w - 0 in terms of 81 at 
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1r/2w + 0, we need the equation of salt continuity at the time of mix-
ing, which may be written as 

( 
(4n + l)r ) ( (4n + l)1r ) 

as1 x, 
2
"' - 0 + (b + t) s2 x, 

2
w - 0 

( 
(4n + l)1r ) ( (4n + l)1r ) 

= a81 x, 
2

w + 0 + (b + t) 82 x, 
2

w + 0 (31) 

for high tide, and 

as1 (x, (4n 3)r - o) + (b - t) s2 (x, (4n 3)1r - o) 

( 
(4n + 3)r ) ( (4n + 3)1r ) 

= as1 x, 
2
"' + 0 + (b - t) 82 x, 

2
w + 0 (32) 

for low tide. -Substituting (11), (14) and (16) in (32) we have 

(x, :: + o) 
= 

1 [as2 (x, + o) + (b - t) s2 (x - b, + o)] (33) 
a+b+t 

and from (9) and (33) we have 

~(x, :: - o) 
= 

1 [as2 (x + ~2, + o) + (b - t) s2 (x, + o)] · (34) 
a+b+t 2w 2w 

Note that the argument of the term multiplying (b - t) in (34) is 
now the high tide position of that section of the upper layer which is 
found at x + ~2 at low tide, i.e., x, not x + ~2 - ~1• Substitut ing 
(10), (12), (30), (33) and (34) in (29), we expand the right-hand side 
of (29) in a power series in r/b « 1 and keep only the terms of lowest 
order in r/b : 

dF = - 4r2 !_ {x2 as2 ( x, + 0) (. 
dx b% a + b ax ax (35) 

The flux of salt at a section at x over the tidal period 1r/2w - o < t 
51r /2w - 0 is therefore -
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as2 (x, + o) 
4f2 ab 2w 

F =- ---x2 ------+ c. 
b2 a+ b ax 
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(36) 

We now compute the flux due to river flow (the third factor which 
determines the salt distribution) and add this to the flux produced by 
the tides given in (36) so that there is no net flux of salt over a tidal 
period. The flux due to the river is 

1
6,r/2w-0 

G = Rs*(x, t) dt . 
.,,/2w-0 

(37) 

Here R, the river flow across any section, has the dimensions of L 3T- 1 

and s* is related to s, and s2 as follows: 
If the river produced a flow in each of the layers that was pro-

portional to the c:r:oss-section of the layer, then we might define 
s* = [as, + (b + 11)s2]/(a + b + 11). If the river acted over a cross-
section A(x,t) of the lower layer and over a cross-section B(x,t) of the 
upper layer, then we would have s* = (As, + Bs2)/(A + B). How-
ever, over a tidal cycle, the net flux produced by tides and small scale 
mixing and by river flow is zero, so that the salinity of each of the 
layers is periodic. Further, all variations of salinity in either layer 
during a period are 0(t/b). Thus, (37) becomes 

(38) 

Derivation of Salinity. In adding the flux due to tides and small 
scale mixing to that due to river flow we neglect the terms of 0(t/b) in 
(38). Noting that the time variation of salinity in either layer is 
0(f/b), we may again neglect terms of 0(f/b) and replace s2(x, 1r/2w + 0) 
in (36) and (38) by s(x), which may be interpreted as the salinity at x 
to within terms of relative order t/b at any time. Adding F and Gin 
(36) and (38) and setting their sum equal to zero we then have 

where 

the solution of which is 

ds 
Dx2 - - c =Rs, 

dx 

4f2 
( ab ) w 

D = b2 a + b 21r ' 

(39) 

(40) 

(41) 
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where 
k = R/D. (42) 

We now set c = O so that s(O) = 0, which is consistent with the fact 
that ¼(0,t) = 0 for all t so that no salt can get upstream of the section 
at X = 0. 

The constant c' is determined by stipulating the salinity at some 
particular point, x = L, giving 

k (.!. - !) 
s(x) = s(L)e L "' • (43) 

In particular, if we denote the ocean salinity by <1 and define the length 
of the estuary Las the distance between the point at which s(x) = 0 
and s(x) = <11 then 

s(x) i; (1 - -¼) 
-- = e 

(l 

(44) 

Note that Arons and Stommel (1951), who arrive at this same result 
by using dimensional analysis, call k/L the flushing number. In 
terms of the notation used here, their flushing number equals R(a + b)/ 
2Bf2wL, where B is a constant which remains undetermined in their 
paper. It arises from their assumption that the eddy diffusivity A of 

the salt transfer equation as + u as = !_ ( A as) , which they postu-
at ax ax ax 

late as a basis for their considerations, is given by A = 2B~oUo, 2~o 
being the total excursion, over a tidal period, of a particle due to tides, 
Uo the amplitude of the tidal velocity, and u the river velocity. Equat-
ing their flushing.number to k/L [see Eqs. (40), (42)], we have B = a/1rb, 
which relates B to the parameters of this paper. 

Calculation of Flux for Generalized Mixing Process. We shall now 
consider the various ways in which the described model may be modi-
fied so that it may correspond more closely with natural conditions, and 
we will also investigate the effect of such modifications on salinity 
distribution. 

First, consider a model in which the dynamics are those previously 
described, but instead of assuming that mixing takes place at high and 
low tide only (t = 1r/2w and t = 31r/2w) assume that there is mixing 
at t = 1r/2w, 1r/w, 31r/2w, 21r/w. Moreover, instead of requiring com-
plete mixing each time we shall require only that there be an inter-
change of an identical quantity of fluid between top and bottom layers 
at each mixing. Making appropriate modifications for these new 
requirements but following essentially the procedure given for the 
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simplified model (for further details, see Maximon and Morgan, 1953: 
23-33), we obtain an equation for dF/dx which is identical with (35) 
except that the right-hand side is multiplied by a constant which de-
pends on the degree of mixing at each of the mixing times and which 
is always between zero and one, the value one being achieved only 
when mixing is complete and occurs at high and low tide exclusively. 
If a and b can be obtained from observations, and if the observed 
salinity be compared with the salinity predicted by this theoretical 
model, then it should be possible to obtain not only an estimate of this 
constant but an idea of where during the tidal cycle most of the mixing 
takes place, large values of the constant corresponding to a state in 
which most of the mixing takes place at high and low tide. 

Extension of Analysis to Channel of Varying Cross-Section. Next, 
consider an extension of the original model in which we again assume 
that complete mixing occurs only at high and low tides. However, 
the cross-sectional area of the stationary layer is now a(x) instead of 
constant a, the average area of the moving layer is b(x), and the time-
varying part of the moving layer is t(x) sin wt. Following essentially 
the calculations used in the first model (see again Maximon and Mor-
gan, 1953: 33-38), the salinity, formerly given by (43), is now ex-
pressed by the following equation: 

( ) (L) 
,/i.,'/C k(x')dx' 

S X = S e (45) 
where 

1rR a(x) + b(x) [ b(x) ]
2 

k(x) = ----- ---- · 
2w a(x) ·b(x) ix 

t(x')dx' 
0 

(46) 

Thus equation (45) is identical to (43) if a(x), b(x) and ((x) are con-
stant. 

Extension of Analysis to More General Kinetic Conditions. Finally, 
consider a model which is identical to the first (a,b,( constant, com-
plete mixing at high and low tide and no mixing at other times) 
except for the assumption that the bottom layer has a periodic velocity 

U1(t) = - U COS (wt+ <p) . (47) 

The appropriate calculations following the original derivation give 
(see Maximon and Morgan, 1953: 38-42) 

s(x) = s(L)ek (L~:, - x~,) , (48) 
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bU 
Xo = - COS <p. 

fw 

[14, 2 

(49) 

Diffusion Equation in the Non-Steady Case and in the Presence of a 
Solute Source Distribution. Equation (39) expresses a balance be-
tween 'upstream and downstream flux in an estuary where conditions 
do not change from cycle to cycle and where there are no solute sources. 
If we allow both time variation and external sources, and if we assume 
that the mixing model is essentially unchanged, then the following 
equation for the conservation of solute may be derived in place of (39): 

(a + b) as + R(t) as = D !_ (x2 as) + q(x,t) . 
at ax ax ax 

(50) 

Here R now depends on time and q(x,t) denotes the mass of solute 
introduced into the estuary per unit length of estuary and per unit time 
(see Maximon and Morgan, 1953: 42-45). 

Some Solutions of the Diffusion Equation. In this section we consider 
several solutions of (50). In the first solution, s is the salinity con-
centration in the estuary, R is a function of time, and q(x,t) = 0; in 
succeeding solutions s is the concentration of an externally introduced 
solute, R is constant, and q is assumed to be dependent on x only. 

(a) We assume that the time variation of R is sufficiently small so 
that (a + b) as/at is small relative to the other terms in (50) ; hence we 
use successive approximations in the solution of (50). Boundary 
conditions for each of the successive approximations of s are that the 
salinity at the mouth of the estuary be u, a constant, and that the 
salinity at some point upstream be zero. Since river discharge is a 
function of time, we permit the distance L from this point to the 
mouth (the effective length of the estuary) to vary with time, in which 
case it is convenient to choose our co-ordinate system with origin at 
the mouth of the estuary. However, with this shift in the origin, the 
term x2 in (50), which is proportional to the square of the distance 
moved by a particle due to tides, must be replaced by (L + x)2, so 
that we now have 

c as + R as = D !_ [(L + x)2 as] ' 
at ax ax ax 

c =a+ b, (51) 

in which R and L are assumed to be known functions of time. Note 
that, just as for constant R, L is a constant length that must be as-
sumed known in the analysis, so L(t) must be known when R varies. 
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Also, it must be assumed that R and L do not vary significantly over a 
tidal period in order that the derivation which leads to (50) remain 
valid. Physically, this appears to be a reasonable assumption. 

We now define successive approximations so, s1, • · • to the solution 
of (51) by 

D - (L + x) 2 - = R - , a [ 080] aso 
ax ax ax 

(52) 

D - (L + x)2 - = R- + c -- n = 1 2 
0 [ asn] OSn as,._1 
ax ax ax at ' ' ' 

(52') 

where sn(x,t) (n = 0, 1, 2, · · · ) are assumed to satisfy the boundary 
conditions 

Sn(O,t) = 0 

Sn( - L(t) ,t) = 0 

for all t, 

for all t. 

(53) 

(54) 

Integrating (52) subject to (53) and (54) we obtain 

~(~--1-) 
s0(x,t) = ueD L H• (55) 

Similarly, integrating (52') with n = 1, subject to (53) and (54), and 
using (55), we obtain after some manipulation, 

s1(x,t) = s0(x t) {1 -l cR' log, _L_, + cL' (~ - -
1-) 

' DR L + X D L L + X 

+ ;: (1 + a;) [ M (D(LR+ x)- M (~)]}, (56) 

where 

1
"' e-11 

M(x) = e" -dy 
y 

and 
(~)' 

a=--. 
R' 

(56') 

Here s1 (x,t) represents the first approximation beyond the quasi-steady 
solution s0(x,t) given by (55). The solution is given here in the hope 
that it will be tested by other investigators who have available the 
data required for the solution of (56). Values of the function 

1
"' e-11 

- Ei(- x) = -dy 
y 

have already been tabulated by the Federal Works Agency Works 
Projects Administration (1940). 
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For the case in which the mean cross-sectional area c is a function 
of x, the formal procedure leading to so and s1 is identical with that just 
given, although the integrations are more cumbersome. The term 

D !_ (x2 as) in (50) must be modified slightly and may be obtained 
ax ax 

from (46). 

(b) Considering the case in which R is constant and in which 
q(x,t) = q(x), so that s(x,t) = s(x), (50) then becomes 

Dx23'' + (2Dx - R)s' = - q(x), (57) 

where primes denote differentiation with respect to x. Using the 
method of variation of parameters, the general solution of (57) is 

s(x) = !1" q(x)dx + ! e ~:J\ :z q(x)dx + c1 + C2e -;: , 
R o R x 

(58) 

where c1 and C2 are arbitrary constants. 

Consider now two special cases, namely 

(A) q(x) = Qo(x - x0), in which Q is a constant, 0 < Xo < L . 
This choice for q(x) should apply to the introduction of some 
solute at one point (x = xo) in the estuary. Q is then the rate 
of discharge of this solute into the estuary (dimensions MT- 1

) . 

(B) q(x) = q, in which q is constant over the range 0 < x < L. 
This choice for q(x), which corresponds to the introduction of a 
solute uniformly over the entire effective length of the estuary, 
might be applicable in the investigation of ground seepage. The 
total rate of discharge of the solute into the estuary over the 
range 0 < x <Lis then qL. 

We impose the boundary conditions s(0) = s(L) = 0; s(0) is set equal 
to zero, since there is no mechanism to carry the solute upstream of the 
point x = 0, at which point the motion in the estuary due to tides is 
zero; and s(L) is set equal to zero because of the essentially infinite 
reservoir provided by the ocean at the mouth of the estuary. For 
case (A), 

R 1 1 R I 1 
Q [ -(- - -) -(- - -) ] 

s(x) = R eD .,. " - eD L "' , 

R I l._ 

Q [ -(---J] s(x) = R l - eD L " , Xo $ x $ L . (59) 
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For case (B), R 1 1 - R R 
qx qL -(---) q -1 L -

s(x) = - - - eD L "' + - eD"' eD"'dx. 
R R R 

(60) · 

If we let y = R/Dx in the integral in (60) and integrate by parts, we 
obtain 

-R 
q -1R/D:z: e" 

s(x) = - eD"' -dy. 
D R/DL y 

(61) 

We now compare the solute distributions that result for q(x) as 
given in (A) and (B) respectively, assuming that the rates of discharge 
of solute throughout the entire effective length of the estuary are 
equal for the two cases, i.e., qL = Q. In Fig. 2, Rs/Q as a function of 
x/L is plotted for R/DL = 0.8, the value given for the Raritan River 
by Arons and Stommel (1951). Their constant F, the flushing number, 
is equal to R/DL in the notation used here. Values of the integral 
appearing in (61) may be found in Tables of Sine, Cosine and Expo-
nential Integrals (1940). 

Fig. 2 presents two curves for the case in which q(x) = Qo(x - xo); 

RS 
a 

Figure 2. Solute density as a function of distance along estuary. 

A-1 q(x) Q6(X - Xo), Xo/L = 0.4 
A-2 q (x) = Q6(X - Xo) , Xo/L = 0.8 
B q(x) = Q/L O < x < L 
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in one x
0
/L = 0.4 and in the other x0/L = 0.8; note in particular that 

the solute density is appreciably greater over most of the estuary ~or 
the former. It is hoped that this sensitivity of the solute density 
upstream of the external source to the position of the s~urc~ may be 
used to check experimentally the validity of the solute diffus10n equa-
tion (50). 

RS(x.l 
-Q-
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Figure 3. Maximum solute density as a function of position of external source in estuary. 
q (x ) = Q6(x - Xo) 

From (59) we note that the maximum value of s(x) occurs at x = x0 

in the case where q(x) = Q5(x - xo). In Fig. 3, Rs(x0)/Q is plotted 
as a function of xo/L. The data in Fig. 3 may be applicable in deter-
mining the maximum distance from the mouth of an estuary at which 
a known source of pollution may be allowed to discharge into an estu-
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ary if specified limits are placed on the permissible density of pollution 
in the estuary. 
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