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ON CONVECTIVE INSTABILITY OF A ROTATING FLUID 
WITH A HORIZONTAL TEMPERATURE CONTRAST 

BY 

H. L. KUO 
Massachusetts Institute of Technology' 

ABSTRACT 

A simple expression of the criterion for the onset of symmetrical therm.al convec-
tion of a rotating fluid subject to a horizontal temperature contrast is obtained. It 
is shown that both the rotation and a positive static stability act to inhibit convec-
tion. The extent of these inhibitions depends upon the nondimensional parameters 
T = 4Q2d'v~ and R = gd•K-1v-1ad80/dz, where d denotes the depth of the layer, 0 
the rotation rate, a the thermal expansion coefficient, K the thermometric conduc-
tivity, v the kinematic viscosity, and dO./dz the vertical temperature gradient. For 
given values of T and R, the onset of convection requires the nondimensional para-
meter Q = gd•K-1v-1ad80/dr to be higher than a critical value Q., and furthermore 
there is a most favorable cell size l, for which the required value of Q is lowest. Q, 
generally increaBes with T and also increases with l for I larger than l,. When T is 
very large, the parameter K. = 4dQ,(lT)-1, which is the product of a Rossby number 
and the Prandtl number v/K, approaches a constant, suggesting that the onset of such 
convection in the atmosphere and in the ocean may be determined by this product. 
In order to examine the possible difference of conditions in systems such as the atmos-
phere and ocean on the one hand and that in model experiments on the other, two 
cases are discussed: (a) when the horizontal extent a of the fluid is infinitely large 
compared with its depth d, and (b) when a = d. 

INTRODUCTION 

The most important factor that keeps the atmosphere in mot ion 
is differential heating, particularly that in horizontal directions, 
since the vertical stratification of the atmosphere is normally stable. 
Another factor that controls the nature of large scale motions in 
both atmosphere and ocean is the earth's rotation. In this paper 
we shall discuss the effects of these two factors. However, because 
of the complex nature of the motions of these fluid systems, we shall 
limit ourselves here to a discussion of symmetric thermal convection 
and leave other types of motion for discussion at a later date. 

Some problems concerning symmetric thermal convection in a 
thin layer of fluid have been discussed in another paper (Kuo, 1954), 

1 The research reported in this paper has been sponsored by the Geophysics 
Research Directorate, Air Research and Development Command, under Contract 
No. AF 19(122)-153. 
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where the relevant equations have been solved in an exact manner. 
However, the frequency equation derived there is so complicated 
that the desired information can be obtained only through tedious 
computations. In this paper we shall discuss symmetric convection 
by expanding the solution in a double Fourier series with a view to 
finding a simple approximate expression of the stability criterion 
for the onset of such motion. Such an approximate method is also 
useful in dealing with the more complicated asymmetric motions. 

Since this type of thermal convection is of particular interest 
to meteorologists, who commonly believe that the general circulation 
of the atmosphere is maintained by such a large thermal convection, 
many attempts have been made to derive such motion from the 
hydrodynamic equations [for example by Oberbeck (1888), Prandtl 
(1939), Arakawa (1940) and Davies (1953)]. In most of these efforts 
the authors assumed fundamentally that the temperature distribution 
in the fluid is not affected by motion and that this unchanging mean 
temperature distribution results in an unchanging buoyancy force 
which drives the symmetric convection continuously. Thus, the motion 
becomes a forced motion which must therefore be present at all times. 

However, a closer scrutiny of these assumptions shows that neither 
.of them are adequate when applied to a fluid system such as the 
atmosphere. First, in such a shallow layer of fluid with so large 
a horizontal extent, it is difficult to conceive that the motion of a 
particle is determined by the mean temperature at points very far 
away. It must depend primarily upon the temperature or density 
distribution in its immediate surroundings, i.e., upon the local tempera-
ture anomaly. Second, more heat is transported by the motion than 
by heat conduction, therefore the local temperature anomaly depends 
directly on the motion. Thus the motion must be treated as a natural 
motion, in which the velocity field and temperature field are mutually 
dependent and must be determined simultaneously. 

Since the basic concept of the present treatment is quite different 
from that used by others, it seems worthwhile to dwell again on 
some of the physical considerations before attacking the problem 
mathematically. As noted before, we consider the rotation and the 
differential heating as the two most important factors that determine 
the motion, the main function of the latter being to produce and to 
maintain a temperature and thereby a density contrast. It is well 
known that both rotation and stable stratification tend to suppress 
the motion whereas the horizontal temperature contrast has the direct 
effect of increasing the motion by way of the buoyancy force it intro-
duces. Therefore the occurrence of different types of motion under 
different conditions must have its explanation in the adjustment 
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of the motion to two different effects, the inhibiting effect of rotation 
and stable stratification and the motion-producing effect of horizontal 
temperature contrast. Only when the temper_ature. contrast is 
large and the rotation rate small can a symmetncal direct thermal 
convection take place. When the rotation rate is high and the 
temperature contrast relatively small, the fluid particles are not 
capable of following such a direct circulation; the motion must then 
be asymmetrical and more horizontal, hence it must appear as waves 
in the zonal direction, as shown by Fultz (1951) and Hide (1953). 

The problem may also be elucidated by another consideration. 
Since heat is supplied by a heat source and is removed by a cold 
source, the motion may be considered a necessity in order to trans-
port heat in addition to heat conduction. Since the total kinetic 
energy that can be developed in such a fluid system from an initial 
state of relative rest is determined roughly by the total available 
potential energy or by the temperature contrast, it may be considered 
as given by the heating. However, the efficiency of different types 
of motion in transporting heat is quite different, even when the 
amount of total kinetic energy is the same, because only the cross-
isothermal velocity component can produce a net transfer of heat. 
Therefore the efficiency of the motion in transporting heat depends 
upon the nature of the motion which is much affected by rotation. 
If the rotation rate is not too small and if the motion appears in the 
form of symmetric convection, then the ratio between the zonal 
velocity and the meridional velocity is roughly of the order T½ (Kuo, 
1954) while the vertical velocity is comparable with the meridional 
velocity. Therefore most of the total kinetic energy is in the zonal 
kinetic energy. On the other hand, the meridional velocity becomes 
comparable with the zonal velocity in the asymmetric motions, 
particularly when the wave number is large. Thus, large symmetric 
convection is far less efficient in transporting heat than the asymmetric 
motions with larger wave numbers, when the rotation rate is high. 
Since the net amount of heat transported is proportional to the 
temperature gradient, symmetric motion must occur together with 
a larger temperature gradient. 

In this paper we shall discuss the stability criterion for the onset 
of s!mmetric convecti~n in two different cases. In case (a) we 
consider the depth of flmd much smaller than the horizontal dimension 
so that the lateral boundary conditions can be replaced by a harmonic 
requirement. In case (b) we assume the depth of the layer equal 
to i~s horizontal extent. As in the _other paper (Kuo, 1954), we 
consider that a temperature contrast m the radial direction is intro-
duced and is later maintained to a degree within the fluid by heat 



1955] Kuo: Comective Instability of a Rotating Fluid 17 

conduction. At the initial moment we may assume that the fluid 
is in purely zonal motion which balances the radial pressure gradient 
due to the mean temperature contrast, or, more simply, we may 
assume that the fluid is initially at relative rest. The latter case 
can be realized by imagining that the finite horizontal temperature 
contrast is produced suddenly or that the fluid is in a highly viscous 
state before the initial moment. Our problem is to determine the 
minimum horizontal temperature contrasts that are required for the 
onset of symmetric motion at different rates of rotation. The cri-
terion thus obtained may also be the one that marks the transition 
from the low to the high-rotation regime with the lowest wave number, 
if the state of solid rotation is to be disturbed at all. 

EQUATIONS OF THE PROBLEM 

At the initial moment the fluid is at relative rest or in a purely 
zonal motion with velocity v0, and a variable mean temperature 
80 has been produced and maintained in the fluid by external heating 
so that 80 satisfies the steady state heat conduction equation 

v200 = o, (1) 

where V2 stands for the standard Laplacian operator. 
As is permissible in this problem, we allow for the variation of 

density due to thermal expansion only in so far as it modifies gravity 
and introduces a buoyancy force. Thus p, which occurs as a factor 
of g, is replaced by 

p = p (1 - cd:.fJ) , (2) 

where a denotes the coefficient of thermal expansion, p the density 
corresponding to a mean temperature Oo , and t:.fJ the deviation of 
the local temperature from 00• Where p occurs elsewhere in the 
equations of motion we regard it as a constant equal to p and we 
consider the fluid as incompressible during the motion. 

We denote the velocity components in the radial, zonal and vertical 
directions by u, v and w, the departures of local pressure and tempera-
ture from the initial mean values Po and fJo by p and fJ, and we assume 
that all these quantities are independent of the longitude and are 
small; then the linearized equations of motion, continuity and heat 
transfer in cylindrical co-ordinates r, ct,, and z are 

- - 2Qv = - - - + y v 2u - -au 1 ap ( u) 
at par r 2 

(3) 

- + 2Qu + w - = y v 2v - -av avo ( v) 
at az r2 

(4) 
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aw I ap 
- = ga0 - - - + Yy' 2W 
at 'ii az 

(5) 

I aru aw 
--+-=O (6) 
r ar az 

and 
ao aoo aoo - + u - + w - = kv'20 . 
at ar az 

(7) 

1 a a a2 

Here v' 2 stands for the operator-- r - + - and v and K are kine-
r ar ar az2 

matic viscosity and thermometric conductivity. In equations (3) 
and (4) we have neglected av0/ar and v0/r against 20 so that the 
possibility of having inertial instability is eliminated. Since v0 

satisfies the steady state hydrodynamic equations, its vertical vari-
ation is determined approximately by the thermal-geostrophic-wind 
relation 

avo ga aoo 
-=--
az 20 ar 

(8) 

Eliminating u from (4) and (6) and neglecting w/r against aw/ar 
we obtain 

(
a ) aw avo aw 

- - Yy' 2 f = 20 - - - - , 
at az az ar 

(9) 

where f = r- 1a(rv)Jar is the vertical component of the relative vor-
ticity. Multiplying (3) by r, then differentiating with respect to 
rand z, and making use of the continuity equation we get 

(!._ - vv2) a2w = - 20 a~ + 2_ !._ (r a2p) (10) 
at az2 az pr ar araz . 

Applying the operator a2
/ ar2 + r- 1a/ar to (5) and combining with 

(IO) we obtain 

- - Yy'
2 

y' 2W = - 2Q - + - - T - • ( a ) ar ga a ( ao) 
at az r ar ar 

(11) 

Eliminating f from (9) and (11) and making use of (8) we arrive at the 
following equation: 

(12) 
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In this study we shall find only the lowest mean temperature 
contrast required for the onset of the symmetric motion. Thia 
contrast must correspond to the slowest rate of development, and 
therefore it can be found by letting a/at approach zero, since the 
developing disturbances are not oscillatory (see Kuo, 1954). We 
shall therefore put a/at = 0 in the preceding equations. The elimina-
tion of O between (12) and (7) and use of the continuity equation then 
give 

402 a2w ga ( K) aoo a2w 
y> 6w+---- 1+- --

v2 az2 K \I \I ar araz 
+ ga aoo ~~(raw) = 0 . (l3) 

K\I az T ar ar 
The second term represents the effect of rotation while the last two 
terms represent the effects of the horizontal and vertical temperature 
contrasts respectively. Note that if there is no mean temperature 
contrast in the horizontal directions, this equation then reduces to 
the equation discussed by Chandrasekhar (1953) if we replace a2/ar2 

+ r-1a/ar by the ordinary two-dimensional Laplacian operator. 
The presence of the term with the factor ao0/ar makes this equation 
more difficult to solve, because the method of separation of variables 
is not applicable. Since we are more concerned with the effects 
of different physical factors, we shall introduce some approximations 
by neglecting certain effects which are due to the particular geometry 
of the cylindrical vessel. Thus we shall replace a2/ar2 + r- 1a/ar by 
a2/ar2 in the Laplacian operator. Since the side boundary conditions 
have to be considered, it is more convenient to use the stream function 
,fl as the dependent variable, which, according to the approximation 
discussed above, may be defined by 

a,fl 
u= --

az ' 
a,fl 

w =-. 
ar 

The differential equation for ,fl is then the same as (13), namely 

( 
a2 a2 )s 402 a2,fl ga ( K) ao0 a2,fl -+- i/1+---- 1+- ---or2 az2 y2 az2 K\I \I ar araz 

(14) 

ga aOo a2,fl + - - - = 0 • (15) 
KY az ar2 

In seeking solutions of this equation we must satisfy certain bound-
ary conditions. Certainly the normal velocity components along 
the boundaries must vanish, which requires that ,fl be constant along 
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the surfaces z = O, z = d, r = 0 and r = a. We denote this stre~m 
line by ,/; = 0. If these boundaries are rigid, then the tangential 
velocity components must also vanish, which requires that the normal 
derivative a,/;/an and also a2y;/araz vanish because of the continuity 
equation. On the other hand, tangential stresses vanish on a free 
surface, which requires that the second normal derivative a2,/;/an2 

be zero. Since the normal velocity vanishes at all points on the 
boundaries, this latter condition is equivalent to "i1 2,/; = 0 . Addi-
tional boundary conditions follow from the basic equations. For 
example, the elimination of p from (3) and (5) gives 

av ao 
vv 4,/; - 2n - = - ga - . (16) 

az ar 
On a horizontal free surface av/az vanishes. If the radial temperature 
contrast is kept constant on such a surface so that ao/ar is to vanish, 
then t:.4

,/; must vanish. For simplicity, we shall treat all boundaries 
as free surfaces and shall require that t:.4,/; vanish on each of them.2 

Therefore our boundary conditions are 

(17) 

on the boundaries z = 0, z = d, r = 0, r = a. 
We now express the solution of (15) in double Fourier series3 : 

00 00 m1rr n1rz 
,/; = L LAmnSin-sin-, 

m=I n=I a d 
(18) 

which satisfies the boundary conditions (17). Then the problem 
is to determine the coefficients Amn so as to make (18) a solution of 
(15). If we substitute (18) in (15) and change m to t and n to s, 
we obtain 

.t.., .t.., At, sm - sm - - + - + -- -. t1rr . S1rZ {[(t1r) 2 (S,r)2]3 4Q2 (S7r)2 
t=1 ,=1 a d a d v2 d 

+ ga aoo (t1r)2
} + ga (l + ~) aoo 

KV az a KV . V ar 
00 00 ts1r2 t1rr s1rz · LL Ai. · - · cos - cos - = 0. (19) 

t=1 , =1 ad a d 
2 More realistic boundary conditions can be obtained from (16). However it is 

generally impossible to express these conditions in terms of ,ft alone. ' 
• 
3 

This method is widely used in the fi eld of elasticity, where the equations dealt 
with are generally of a lower order. For example; see Seynel, 1933; Trefftz and Wil-
lers, 1936. 
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If we multiply this equation by sin (m1rra-1) • sin (n1rzd-1) and then 
integrate over the entire meridional cross-section, and if we make 
use of the relations 

a 

J m1rr a 
sin2 --dr = -

a 2' 
0 

a 

J m1rr t,rr 2a m 
sin -- cos - dr = - --- when m ± t is odd 

a a 1r m2 - t2 

0 = O when m ± t is even 

and of two similar relations for the z integrations, we obtain 

{:: T + :: · :: R + d6 
[ ( : y + ( ; YJ} Amn 

d oo oo t s 

(20) 

+ mn- · CLLA1s · -- • -- = 0, (21) 
a e-1 ,-1 m2 - t2 n2 - s2 

where the summations over t and s are for odd m ± t and n ± s; 
the even terms vanish. In this equation we have 

4Q2 ga aOo 16 ga ( K) aOo 
T = - d4 , R = - d4 - , C = - - l + - d4 - • (22) 

'\12 K'\I az 1r6 K'\I '\I ar 
Thus T is the square of a Reynolds number in terms of which the 
effect of rotation is measured, sometimes called the Taylor number; 
- R is the Rayleigh number which plays an important part in the 
problem of thermal convection produced by a vertical temperature 
contrast; and C is a parameter representing the effect of the horizontal 
temperature contrast. We now put eq. (21) in the following simple 
form: 

Amn · cp(m,n) +Cf I:Au · --
8 = 0, (23) 

{3mn e-1 ,-1 m2 - t2 n2 - s2 

where cp(m,n) = n2T' + m2{32R' + (n2 + m2{3 2
)

3
, with T' = 1r-4T, R' 

=1r- 4R and f3 = da-1• 

An examination of eq. (21) shows that there are two mutually 
independent systems of equation; one system is for the unknowns 
Amn with m + n even, the other is for the unknowns with odd m + n. 
Thus, if m + n is even, we must have both m and n even or both 
must be odd. Both t and s are then odd or even, since only terms 
with odd m ± t and n ± s occur. On the other hand, if the sum of 
m and n is odd, then one must be even while the other must be odd, 
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hence the sum of t and s is also odd. In each of these two systems 
the number of the unknowns and the number of equations is infinite. 
Since these are homogeneous equations, the determinant t. formed 
by the coefficients of these unknowns must be zero. The equation 
t. = O gives the required critical values of C for given values of T 
and R. 

However, this procedure of computing the critical values can be 
carried out only when t. converges rapidly, which requires that there 
be only a finite number of Amn so that these unknowns can be com-
puted to a sufficient degree of accuracy by neglecting all the other 
unknowns in the system. This is equivalent to saying that solution 
(18) can be approximated by a finite number of terms. The mathe-
matical problem is to make this series representation converge rapidly, 
which requires different arrangements for different cases. 

CASE A. A THIN LAYER OF FLUID WITH 
LARGE HORIZONTAL EXTENT 

In this case we assume that the horizontal dimension a is infinitely 
large compared with the depth d, so that the length ratio 13 = d/a 
-+ 0. This case has been discussed by an exact method (Kuo, 
1954). In order to express the results more clearly, we shall derive 
an approximate formula for the critical temperature contrast by the 
present method. For this case a finite m represents an infinitely 
large horizontal wave length; the critical C thus obtained is evidently 
infinity. To have a finite horizontal wave length, m and t must 
be of the same order of magnitude as the length ratio 13-1 = a/d. 
When 13-1 approaches infinity, m and t must also approach infinity, 
so that {3m approaches a finite value >.. Thus we put 

). 

m = - + mi = p + mi (24) 
13 

where mi and ti are finite integers with zero included and >. is a finite 
number so that >.13-1 = p is an integer. When 13-+ 0, we have p 
> > mi and p > > ti and therefore 

t 1 ---= ½---
m2 - t2 m1 - ti' 

a d 
l=-=---

m >. + l3m1 = ' 
d 

where l is the horizontal half wave length. The function <P(m,n) is 
then given by 

<P(m,n) = n2T' + >.2R' + (n2 + ).2)3 = ip(>.,n) . 
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Thus equation (23) becomes 

,p(X,n) 
1 

CX) CX) 1 s 
AP+m,,n--+ ½ C L LAP+ti,1' -- -- = 0. (25) 

Xn ,,--a, .-1 m 1 - t1 n 2 - s2 

Here we must determine the characteristic value of C by solving 
the determinant of this system of equations, which contains two 
mutually independent systems, one with even m1 + n and even 
ti + s, another with odd m1 + n and odd t1 + s. For the present case 
these two systems give the same characteristic value of C. We shall 
use the second system, with odd m1 + n and odd t1 + s. We then 
have the following relations 

Ap+m,,n = + Ap-m,,n when n is odd, 

Ap+m,,n = - Ap-m,,n when n is even. (26) 

We may divide the unknowns Ap+m,,n and AP+1,,, into two dif-
ferent classes, one class with even nor sand one class with odd nor s. 
Thus, if AP+m,,n belongs to one class, then all the other unknowns 
Ap+1,,, belong to the other class, because if s is odd then n must be 
even, and vice versa. Since the AP+1,,, always occur with C, we may 
take CAp+1,,, as the unknowns and write equation (25) in the follow-
ing form 

2,p(X,n) CX) "' 1 s 
---AP+mi,n + L L CAP+h,• ------ = 0. (27) 

X · n 11--co ,-1 m1 - ti n 2 - s2 

In this way C occurs in the form of c-2 in some coefficients and does 
not occur in the others. We shall compute the determinant of this 
system of equations by using only the first fourteen, letting m1 and 
t1 take the values of the nine integers from -4 to +4 and letting 
n and s take the values from O to 3. However, because of the rela-
tions (26), we actually have eight equations, of which the coefficients 
of the eight unknowns, written in the form of (27), are given in Table I. 
It is seen that c-2 occurs only in two of the diagonal coefficients, 
hence the determinant is a quadratic equation in C2• 

We note that the sixth order determinant ~e, formed by the first 
six coefficients, is a diagonal determinant; therefore the eighth order 
determinant formed by the coefficients given in Table I can be reduced 
to the product of ~6 and a second order determinant ~2- Thus, 
multiplying the first row by -X/3,p(X,1), the second row by 9X/5,p(X,3), 
the third row by 2X/9,p(X,1), the fourth row by -6X/5,p(X,3), the 
fifth row by 2X/45,p(X,1) and the sixth row by -6X/25,p(X,3), and 
by adding to the seventh row, all of the first six elements of the seventh 
row are reduced to zero while the last two elements of this row become 
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Table I The coefficients of the unknowns of equation (27). 

(f~ A,,,, At.~ Al"ta, I A,..-1,l Ar.it,1 Att"+,3 c A1..,,2. C~-p+J,,. 

f · I CJ/C>-,1) 0 z.. :t 

"1T 0 0 0 0 3 

1'·3 
~3) 

0 0 0 0 -.!. -..!. 0 }1•3 s IS 

(ft-1)-1 
<e(~,I) 

0 0 
. :t "2 

0 0 TI 0 -q 5 
("f'tl.) · 3 0 0 0 

~(,\,}) 
0 0 ..!:.. _ _j_ 

).·3 IS ~s 
{'f'~t )·I 0 

~(}.,I) 
0 -.1:. -~ 0 0 0 TI .+s 1 ~(.>.,3) i 

(1it+)·l 0 0 0 0 0 7S J.. 
~d c.v(>.,2) •1 35" 

{ftl)-2 I _}. 2 2 _;. ..L 0 3 s -q -g 45 25 T' CJ/(}1,1.) ., 
(~+3)-.2 I -.L 2 IS 2. 0 - c. ej s 5 -is --=; 35' " 

<()2 554>. 554>. 2>. 6>. 
an =----- ----, 

>.C2 2025<()1 625<()a 
a1s=-- + - -, 

945<()1 875<Pa 

where <Pn is written for <P(X,n). In a similar manner, we multiply the 
first six rows by - >./9<P1, 3X/5<Pa, - 2>./5<P1, 54>./25<Pa, 2>./7 <P1 and 
- 54X/35<Pa, respectively, and by adding to the eighth row, the first 
six elements of this row are then reduced to zero whil the last two 
elements become 

2>.( 1 3) 
as7 = 35 27<()1 + 25<Pa ' 

<()2 26426>. ( 1 3 ) 
ass = XC2 - 1225 27 'Pl + 25cpa • 

In this way we find A = A6 • A2, where A2 is the second order 
determinant formed by a11, a1s, as1 and ass- Since A6 is always positive, 
we must have A2 equal to zero, i.e., 

A2 = I an a1s I = 0 . (28) 
as1 aaa 

This gives a quadratic equation in x = 'P2C-2/2>., 
26786 3659776 

x2 
- -- bx + --- b2 = 0 , (29) 

3675 275625 
>. 3>. 

where b = 27 cpi + 
25

<Pa . The two roots are xi = 3. 701b and x2 

= 3.585b respectively .4 The former gives the lower value of C2 and 

• If only the first seven equations in table I are used, the determinant reduces to 
a11 = 0 which gives x = 3-6933b. The value of C so obtained is only slightly 
higher than that given by 62 = 0. 
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is t"'1erefore the one we want. From x1 we find that the critical values 
of C2 are given by 

675 1 'Pl · ({)2 • ({)3 
c2=-- · - ·-----

7.402 A2 8l<p1 + 25<pa' 
(30) 

where 'Pn = n2T' + A2R' + (n2 + A2) 3• From this formula we see 
that, as T' - co , C becomes proportional to T' and inversely pro-
portional to A. The asymptotic value of C is 

lim T' l 
C = 3.28 - = 3.28 - T' . 

T' - co A d 
(31) 

Thi:3 asymptotic value is approached rapidly as T( = 1r4T') becomes 
larger than 5 X 103

• Thus, for fairly large Taylor numbers, the 
critical temperature contrast required to produce a symmetric con-
vection is proportional to the square of the rotation rate as well as to 
the horizontal dimension of the convection. · 

Formula (30) shows that, for any given values of 1' and R, there is 
a particular value of A = Ac for which C2 is a minimum. This Ac 
is the root of the equation 

dC2 

-=0. 
dX 

(32) 

The value of C corresponding to this value of A is an absolute minimum 
below which no symmetric motion is possible. We denote this C 
by Cm. When the value of C reaches the value Cm, symmetric con-
vection with the horizontal dimension le = d · Ac- 1 will appear. When 
C is above Cm, larger and smaller convective cells may also be produced. 
The values of Ac for different Taylor numbers and zero R are given 
in Table II, together with the minimum horizontal temperature 
contrast, represented by the minimum value of the parameter Q, 
given by 

1r
6 

( k) gd
4 aeo l ( 'Pl . 'P2 . ({)3 )½ 

Qc = -C = l +- -a-= 0.59681r6 - ---- • (33) 
16 v kv ar d 8l<p1 + 25({)3 

The variations of Qcm as a function of T are illustrated in curve a 
of Fig. 1. 

The minimum values of Qc in Table II, given by formula (33), 
correspond to A = Ac and are to be compared with values obtained from 
the exact solutions (Kuo, 1954). As expected, these values are 
slightly higher than those obtained from the exact solutions. How-
ever, the difference is small for small values of T and is less than 
1 % for T smaller than 103; the difference is only 6.7% for T = 108• 

In view of the simplicity of this formula and the ease with which the 
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Table II. Minimum critical values of Q, P and K corresponding to >. = X. = d/l,, 
for the case when the vertical stability is zero. 

T x. Q. P, K. 

0 0.5868 2,747 6 ,448 00 

10 0.5990 2,810 6,733 673.30 

50 0.6395 3,039 7,774 155.50 
102 0.6791 3 ,291 8,940 89.40 

5 X 102 0 .8507 4 ,766 16,218 32.40 
1.0 X 103 0.9644 6,146 23,709 23.70 
2.5 X 108 1.1576 9,391 43,484 17.40 
5.0 X 103 1.3390 13,736 73,570 14.71 
1.0 X 104 1.5530 20,975 130,297 13.03 
2.5 X 10' 1.8870 38,714 292,213 11.69 
5 .0 X 10' 2.1860 63,500 556,000 11.12 
1.0 X 106 2.5094 106,449 1,069,000 10.69 
5 .0 X 106 3.4360 371,000 5,090,000 10.18 
1.0 X 106 3.8990 646,500 10,070,000 10.07 

00 00 00 8.10 

different physical factors can be discussed, including those involving 
the vertical stability, and in view of the enormous computation 
required to obtain information from the exact solutions, we may 
consider this approximate result quite satisfactory. 

Since the critical temperature contrast becomes proportional to the 
horizontal dimension l for large values of T and Z > le, it is more 
convenient to use the parameter p = 4dl-1Q instead of Q, especially 
for large values of T since Pc is nearly independent of l. The values 
of Pc corresponding to A Ac are also given in Table II and are plotted 
against T in Fig. 2. These values and the graphs show that Qcm,Pc 
and Ac increase as T increases, and that, as T----t co , QcmaT0·79 and 
AcaT0·21, so that Pc becomes directly proportional to T . Thus, when 
the rotation rate is high, not only is a larger horizontal tempera-
ture contrast required to produce symmetric convection but the 
motion also tends to break up into cells of smaller horizontal dimen-
sions. 

In Fig. 2, the parametJrs p and T obtained from experimental 
data on symmetric convection, supplied by Dr. Fultz (as yet unpub-
lished) and Mi ss Sabin (1954), have also been entered. The theoretical 
curve for a = d, which will be derived in the following, is also plotted 
in Fig. 2. 

Since Pc becomes proportional to T and varies but little with Z 
for large values of T and l > le, its ratio to T approaches a constant 
as T increases. We denote this ratio by Kc, which is given by 
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Figure 1. Variation of the critical value of Q for the onset of symmetric convection as a 
function of T for two cases: (a) when the horizontal extent of the fluid Is lnflnltely large as 
compared with depth; (b) when the horizontal extent is equal to depth. 
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Figure 2. The variation of the parameter p as a function of T. The experimental data 
are obtained from Dr. Fultz' and Miss Sabin's (1954) observations on the fully developed 
symmetric motions. 
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K = 4d Qc = (~ + i) o: ( aoo) . 
c l T k Q.2l ar c 

(34) 

The asymptotic value of Kc corresponding to an infinite T is 8.10. 
This asymptotic value is approached rapidly when T becomes larger 
than 5 X 103 and even more so when l is larger than le. 

It may be noted that the factor gdl-1Q.-20:aOo/ar depends primarily 
on the heating and the rotation. We shall call this factor the Rossby 
number. Thus, when the Taylor number is large (T > 5 X 103

) 

and R is positive, the criterion for the motion can also be represented 
by the product of a properly defined Rossby number and the Prandtl 
number v/k. 

CASE B. A LAYER OF FLUID WITH A DEPTH 
EQUAL TO ITS HORIZONTAL EXTENT 

Although the ratio of depth to horizontal extent in Case A is similar 
to that of the earth's atmosphere and oceans, such a ratio can hardly 
be reproduced in a model experiment. In order to examine the 
effect of this ratio on the motion, we shall discuss in this section another 
case with depth d equal to horizontal extent a. For this case, equation 
system (21) may be written 

where 'l'mn = n2T' + m2R' + (m2 + n2
)

3
• 

s 
---=0, 
n2 - s2 

(35) 

As noted before, the system_ of equations (35) contains two mutually 
independent systems, the first with m + n and t + seven, the second 
with odd m + n and odd t + s. For this case, the first system gives 
the lowest Eigen-value C; therefore we shall compute C from this 
system by using only the first eight equations with both m and n 
and also t and s, taking the values of the five integers from 1 to 4. 

The coefficients of the unknowns in these equations are given in 
Table III, where we have used CAmn as the unknown for even m and 
even n . 

We note that c-2 occurs in only four of the diagonal coefficients; 
therefore the determinant is a quartic equation in C2 which has four 
roots, which we can show are real. By clearing the fractions of the 
diagonal elements, we obtain a symmetric determinant. A quartic 
equation of C2 is also obtained if we use the first 13 equations of (35) 
and take integers for m and n as well as t and s from 1 to 5. On the 
other hand, if we use only the first five equations by taking m and n 
and t and s from 1 to 3, then the determinant reduces to a linear equa-
ti~n in C2 which is given by 
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c2 = <P22 • ___ ____ 1 _ _____ _ 
16 1 1 1 81 

- +-+-+--. 
8lrp11 25rp1a 25rpa1 625rpaa 

(36) 

This solution represents a fairl y accurate approximation to the 
lowest root of the quartic equation obtained from the eighth order 
determinant of the system in Table III. Since we are concerned 
with only the rough values of C, it suffices to use this simple expres-
sion. The critical values of Q computed from this approximate 
solution for different values of T and R = 0 are given in Table IV 
and are ploted in curve b of Fig. 1. The corresponding values of 
Kare also given in Table IV. 

Table III . The coefficients of the unknowns of equation (35). 

I\; A., A1J A3 t A33 CA., .. C Ai~ CA42,. CA.,.. 
1-1 

*'"'" 
0 0 0 ...i a 

"I -+S 45 225 
1·3 I 4- -~ 0 n ~,3 0 0 s " - 15 zi 75 105 
3·1 0 0 · I _ _£ -~ 3·1 q,JI 0 ,, 

15 1S :z.1 Tos 3-3 0 0 0 3'.3~.H .±. _JL - _a_ ,i:. • S JS' .35 ;pj" z.z. J.. _!. I ..9.... I -2 
q s - 5 2-2. 'l' n<! 0 0 0 25 

2.·4 I ..L I _ ..9... .L -2 

+s 7 - J.S 0 i·tq,._.,.c 0 0 
35 

4 ·l J.. I I _ ..1._ 0 0 
..J... •2 

+s -is 7 35 "l-•l ~-l· 0 

4·'T ..L I I 0 0 0 I •L 
225 35 31. 4·+ q,..,..c. 

Table IV. Critical values of Q and K for the two cases. Both are for R = 0 
and l = d. 

T Q,b K,b Q,. K,. 
0 8320 00 3580 00 

10 8350 3350 3620 1450 
50 8590 688 3710 297 
102 8850 355 3850 154 

5 X 102 10700 85.6 4900 39.2 
10' 12650 50.7 6150 24.6 

2.5 X 103 17350 27.8 9620 15.4 
5.0 X 103 24100 19.3 15100 12.1 

10' 33500 13.5 26600 10.6 
2.5 X 104 59000 9 .5 56500 9.1 
5.0 X 10' 95000 7.6 107000 8.6 

106 165000 6.6 208000 8 .3 
5 X 106 660000 5.3 1015000 8.1 

106 1270000 5 .1 2024000 8.1 
00 00 4.8 00 8 .1 



30 

3.5 

3.0 

2.5 

u2.0 

.,; 
.3 

1.5 

1.0 

0.5 

0 1.0 

Journal of Marine Research 

2.0 3.0 
Log, T 

4.0 

... 

5.0 

[14, 1 

0 

a 00 o 

••• 
0
00 

6.0 7'.0 

Figure 3. The variation of the critical value of K as a function of T for the symmetric 
convection with I = d. K,4 is for case A, K,b for case B . Experimental data are the 
same as in Fig. 2. 

As expected, the critical values of Q for this case, as given by Qcb 
in Table IV are 2 to 3 times larger than those in Table II. This 
is due partly to the effect of the lateral boundaries and partly to the 
horizontal scale of the motion. In order to get a clearer idea of the 
effect of the ratio of depth to lateral extent, we may also compute 
the critical values of Q and K from eq. (33) by putting l = d. These 
values are given in the last two columns of Table IV as Qca and 
Kea. Here, for values of T smaller than 2.5 X 104, Qcb is larger than 
Q.0 , indicating the preponderance of the boundary effect. On the 
other hand, for values of T larger than 2.5 X 104, Qcb becomes smaller 
than Qca, indicating the difficulty of producing large scale symmetric 
convection in a shallow layer of fluid. We also note that the asympto-
tic value of K. for case B is 4.8 as compared with the asymptotic 
value of 8.1 for case A. Since the ratio used in most experiments 
is generally between the limits of these two cases, we may take the 
asymptotic value of Ko to be within the limits 4.8 and 8.1. The 
variations of K.,. and Kcb are represented in Fig. 3. 
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SUMMARY OF RESULTS 

The results show that the onset of symmetric convection in each 
case requires that the nondimensional parameter Q be above a certain 
critical value Qc which increases with the rotation. Therefore, the 
effect of rotation is to inhibit the convection, the extent of which 
depends on the nondimensional parameter T. The effect of the 
vertical temperature distribution, represented by the parameter 
R, is to inhibit convection if the temperature increases upward (R > O) 
and to facilitate convection if the temperature decreases upward 
(R < O). In applying the results to symmetric convection in the 
atmosphere, the vertical temperature gradient should be replaced 
by the vertical gradient of the potential temperature which normally 
increases upward. This effect is included in equations (33) and (36). 
However, since it is similar to the effect of rotation, we may also 
consider that it is included in the effect of rotation by modifying the 
value of T. 

For case A, the lowest critical value of Q for any given values of 
T and R is associated with a certain horizontal scale le which decreases 
as T increases. When T is large (T > 5 X 103

), Qc rapidly becomes 
proportional to T0

· 
79 and to the horizontal dimension l of the cell for all 

values of l larger than lc(pc = 4dl-1QcaT); thus the parameter Kc = 
4dl-1QcT-1 rapidly approaches a constant value, showing that the 
onset of large symmetric convection in a shallow layer of fluid such 
as the atmosphere and the oceans is determined by the parameter 
K. This parameter may be expressed as the product of a Rossby 
number and Prandtl number. The asymptotic value of K for case 
A is 8.1. 

For case B, the critical values of Q are generally 2 to 3 times larger 
than the minimum values obtained in case A. However, the values 
of Q obtained from eq. (33) by putting l = d become larger than 
those of case B when T is larger than 2.5 X 104, showing that it is 
more difficult to produce large symmetric convective motions in a 
thin layer of fluid when the rotation rate is great. 

The results obtained in this investigation may have many applica-
tions in both atmosphere and oceans, which are more nearly repre-
s~nted by case A. Thus we may find the minimum horizontal tempera-
ture gradient required for the onset of symmetric convection with 
a certain vertical dimension d at any latitude, or we may compute 
the maximum horizontal scale of the motion when the horizontal 
temperature gradient is given. A rough computation shows that 
meridional cells of the horizontal dimensional of 10 to 20 latitude 
degrees may exist near to the equator but not in middle and higher 
latitudes. 
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