
 
 

 
 
 
 

P.O. BOX 208118 | NEW HAVEN CT 06520-8118 USA | PEABODY.YALE. EDU 

 
 
JOURNAL OF MARINE RESEARCH 
The Journal of Marine Research, one of the oldest journals in American marine science, published 

important peer-reviewed original research on a broad array of topics in physical, biological, and 

chemical oceanography vital to the academic oceanographic community in the long and rich 

tradition of the Sears Foundation for Marine Research at Yale University. 

 

An archive of all issues from 1937 to 2021 (Volume 1–79) are available through EliScholar,  

a digital platform for scholarly publishing provided by Yale University Library at  

https://elischolar.library.yale.edu/. 

 

Requests for permission to clear rights for use of this content should be directed to the authors, 

their estates, or other representatives. The Journal of Marine Research has no contact information 

beyond the affiliations listed in the published articles. We ask that you provide attribution to the 

Journal of Marine Research. 

 

Yale University provides access to these materials for educational and research purposes only. 

Copyright or other proprietary rights to content contained in this document may be held by 

individuals or entities other than, or in addition to, Yale University. You are solely responsible for 

determining the ownership of the copyright, and for obtaining permission for your intended use. 

Yale University makes no warranty that your distribution, reproduction, or other use of these 

materials will not infringe the rights of third parties. 

 
This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. 
https://creativecommons.org/licenses/by-nc-sa/4.0/ 

 

 



SEARS FOUNDATION FOR MARINE RESEARCH 
BINGHAM OCEANOGRAPHIC LABORATORY, YALE UNIVERSITY 

JOURNAL OF 
MARINE RESEARCH 

VOLUME 14 1955 NUMBER 1 

THE TRANSIENT DEVELOPMENT OF A LEE WA VE 1 

BY 
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Massachusetts Institute of Technology 

ABSTRACT 
A stream with an initially undisturbed free surface is set impulsively in motion 

and a (small) pressure perturbation is applied to the surface. The form of the 
free surface as a function of time is examined in detail up to the point where the 
disturbance is sensibly that of a steady-state lee wave. 

INTRODUCTION 
The theoretical problem of waves in the lee of a surface disturbance 

was first attacked by Lord Rayleigh (1883). He pointed out that, 
if a steady state is assumed, the problem is indeterminate in that 
an infinite number of solutions exist. Stationary free waves of any 
amplitude are solutions; and in a fluid of infinite depth it is always 
possible to assign a wave length such that the free wave will move 
with velocity equal and opposite to that of the current and so remain 
stationary relative to the point of disturbance. 

To specify a unique solution, Rayleigh employed the much used 
device of a small fictitious dissipative force proportional to the relative 
velocity. This has the effect of prohibiting any upstream wave 
(except one with infinite amplitude at infinity), hence the only physi-
cally acceptable solution is the lee wave. 

Lord Kelvin (1886), in his investigation of the slightly different 
problem of irregularities in the bed of a stream, used a different method. 

1 This paper was presented at the Johns Hopkins Symposium on the Application 
of Experimental Models to Geophysical Research, September 1-4, 1953. 
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After obtaining a solution which satisfied the boundary conditions, 
he added free waves with just such amplitudes as would render the 
upstream disturbance monotonically decreasing at large distances. 
The result is exactly that obtained by the method of Rayleigh when 
Kelvin's method is applied to this problem, as shown by Hoiland (1951). 

The indeterminateness of the problem persisted a fortiori in the 
more complex models, as in that of Lyra (1943), with continuously 
distributed stability. However, recently Hoiland (1951) has shown 
that if the stream is allowed to begin from a state of rest with an 
undisturbed surface, the disturbance, after sufficient time has elapsed, 
will be sensibly the same as the steady-state lee wave of Rayleigh 
and Kelvin. Hoiland's explanation of the lee wave has considerable 
intuitive appeal, and it is the purpose of this paper to show in some 
detail the transient development of such a wave by using Rayleigh's 
original model. 

THE PROBLEM AND ITS FORMAL SOLUTION 

Consider a homogeneous incompressible fluid stream which is 
bounded on top by a free surface but which is infinite in depth and 
breadth. We fix a co-ordinate system in the stream so that the 
fluid is moving with constant speed U in the direction of the x-axis. 
The z-axis will be taken increasing upward, with origin in the free 
surface. If a disturbing pressure of sinusoidal form, p = p0eih, 
is applied to the surface of the stream, the resulting motion may be 
determined. The disturbance, assumed to be of small amplitude, 
may be represented by a velocity potential <f, and a stream function if; , 
both of which satisfy Laplace's equation. Since the current is uni-
form, the vertical displacement t satisfies the same equation. We 
may thus discuss these quantities in terms of their amplitudes <f>o, 
V'o, to at the surface: 

t = toekz + ik:z: . (2.1) 

For steady conditions, therefore, the dynamic condition at the 
surface reduces to p(kU2 - g)to = Po. 

If we employ Rayleigh's notation, K = g/U2 , we have the result 
in his form, 

Po eikz Po eik:z: 
to= - · --- =---, 

pk u2 - c2 P u2 k - K 
(2.2) 

where C2 = g/k . 
We may now consider the time-dependent problem. The initial 

state of the system is specified and the assumption of steady state 
is relinquished; the problem, then, is to determine the motion of 
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the system at any future time. A simple rule may be given (Wurtele, 
1953) for the construction of the required solution. There are two 
possible free waves of the system, that is, waves which move so that 
their corresponding perturbation pressures at the free surface are 
zero. These waves have the Stokesian velocities ±C, and they may 
be added with arbitrary amplitudes to the stationary solution (2.2), 
which is needed to satisfy the boundary conditions. The time-
dependent solution may be written 

I"o Po { exp ikx - a exp ik[x - (U - C)t] 
k(U2 - C2) (2.4) 

- ,Bexpik[x - (U + C)t]). 
This solution may be verified mathematically by elimination of the 
velocity potential between the dynamic surface condition for non-
steady flow, 

a~ a~ 1 
-+U-=gt+-p, 
at ax p 

and the identity, 
_a~= ar + u ar 

az at ax 
with the use of (2.1). The resulting equation is 

a2ro aro kpo - + 2iUk - - k2(U2 - C2)to = -
aP at P ' 

(2.5) 

of which (2.4) is the general solution. Of course the constants a 
and ,B are to be determined by the given initial state of the system, 
more specifically by the vertical displacement and vertical velocity 
of the free surface at t = 0. For present purposes, we shall select 
these values so as to exhibit the simplest possible pattern of develop-
ment of the disturbance. At the initial moment we specify that 
the free surface shall be undisturbed 

I"o = 0 at t = 0 (2.6) 

but that the motion of the free surface is a simple sinusoidal pattern 
aro ipoeikz 

= ---at t = 0. (2.7) 
at p(U + C) 

If these two conditions are imposed upon the general solution (2.4), 
we find that a = 1, ,B = 0; there the solution of the particular physical 
problem proposed is 

I"o = Po { exp ikx - exp ik[x - (U - C)t] ) . (2.8) 
k(U2 - 02) 
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The wave moving forwards (relative to the fluid) is not excited in 
this system owing to the particular initial state specified. But the 
physical mechanism of the development is made more evident there-
by, since, as we shall see, this advancing wave does not contribute 
to the establishment of the lee wave. 

Following Rayleigh, we may consider the applied pressure as 
concentrated in a narrow band at the origin so that it may be repre-
sented mathematically as a delta function. The Fourier-component 
amplitudes are therefore equal for all waves, and Po may be treated 
as constant. The solution may be written as 

Po!"' dk .i"o = - { exp ikx - exp ik[x - (U - C)t] ) ----. 
p k(U2 - C2) 

(2.9) 

0 

It can easily be shown by methods developed for a similar model 
(Wurtele, 1953) that (2.9) approaches the classical steady-state 
solution as t __,, oo . In the next sections the t ransient state will be 
examined and interpreted. 

EVALUATION OF THE INTEGRAL 
For the purpose of evaluation, the integral (2.9) should be written 

in terms of the fundamental wave number K. If we take K-1 as the 
unit of length, the integral is made nondimensional; and if we absorb 
the constant factor po/pU2 into .i"o and take the real part of (2.9), 
we have 

f"' dk 
.10 = { cos kx - cos [kx - Ut(k - kl )] ) --

k - 1 
(3. la) 

0 

= P j"' cos kx __!!,___ - P j"' cos [kx - u t(k - kl)] 
k - 1 k - 1 

0 

(3.lb) 
where the integrals in (3.lb) take Cauchy principle values at the 
point k = 1. The integral 11 is a solution of t he corresponding 
stationary problem. It may be expressed in terms of t abulated 
functions as follow s: 

f"' dk j"' dy j"' d P cos kx --- = cos x P cos xy - - sin x P sin xy JI... 
k - 1 y y 

0 

= - cos x Ci(x) - sin Ix [½ 1r + Si(lxl) ] , (3.2) 
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where the sine and cosine integrals have their usual notations, 

J
o:, dy 

Ci(x) = - cosy y, Si(x) = j sin yd:. 
:z: 0 

Using the asymptotic expansions of Ci and Si, we may write 

11 = - 1r sin \x\ + O(l/x) . 

5 

(3.2a) 

The second integral 12 in (3.lb) is time-dependent and less easily 
evaluated. We may write it as 

J
o:, dk 

12 = Re P exp i(kx' - n't) -- , 
k - l 

(3.3) 

0 

where we have introduced the co-ordinate moving with the current, 
x' = x - Ut, and the corresponding frequency, 

n' = - Uk¼ . (3.4) 

We may eliminate the radical ir:. the exponent by writing 

J
o:, ydy 

12 = 2 Re P exp if(y) -- , 
y2 - 1 

(3.5) 

0 

where f(y) = x'y2 + Uty. 
There may be two neighborhoods on the path of integration which 
contribute significantly to the integral. The first is the pole, 

y = l, (3.6) 

which is on the path for all values of the parameters. The second 
is the saddle-point, given by df /dy = 0, 

Yo = ½(l - x/Ut)-1 , (3.7) 

which can lie on the path of integration only if x < Ut. So long 
as these two points are separated by an appropriate distance, the 
integral can be evaluated by indenting the contour at the pole and 
by deforming the path of integration so it will traverse the saddle-
point in a path of steepest descent. When the parameters assume 
certain values, specifically when Ut == 2x, the saddle-point approaches 
and then passes over the pole. In this region special methods must 
be used. So that the essential features of the wave development 
do not become obscured, we assume that the system has been in 
motion long enough for the dispersion to be significant, that is, Ut 
» 1. 
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The stages of the wave development are then as follows. 
(i) Ut < x. As in all models involving an incompressible fluid, 

a disturbance appears instantaneously throughout the fluid. In 
general also, since the fluid is infinite in depth, the forward-moving 
waves will always show dispersive effects in advance of the point 
Ut. However, under the assumed initial conditions, only the back-
ward-moving waves are excited, and the group velocity corresponding 
to the frequency (3.4) will be negative: Co' = dn'/dk = - ½Uk-i. 
The component waves cannot reinforce each other except in the region 
x' = C/t, that is, x = Ut(l - ½k-½) ; therefore, in the region 
Ut < x we may expect completely negligible contributions from 
(3.1). To show this formally, we note that 12 may be evaluated 

0 

\ 

\ 
I k 

Figure 1. Path for evaluation of Integral I, when Ut < x. 

along the path r (Fig. 1) and that the angle iJ is determined by 
the relative magnitudes of x' and Ut. The integral is thus expressed 
as a residue term and an asymptotic term: 

a, 

I! = - 1r sin x + 2 Ref exp I - x' sin 2iJ y2 - Ut siniJ y 

0 

ydy 
i [x' cos 2iJ y2 + Ut cos iJ y] } ----

y2 _ e-2,iJ 

The asymptotic term is 0(1/x') or 0(1/Ut), whichever is smaller· 
since both of these are negligible compared to the amplitude of th~ 
lee wave, using (3.2a) we may write for this region 

to = 0(1/x') or 0(1/Ut) . (3.8) 

(ii) 2 When Ut > x, the dispersive effects of the backward-moving 
waves first appear. When ½Ut« x < Ut, the classical method of 

2 Readers concerned with the result rather than with its derivation may omit 
this discussion without loss and skip to Section (iii). 
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Figure 2. Path for evaluation of integral I, when ½ Ut < x < Ut. 
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Figure 3. Path for evaluation of integral J when ½Ut < x < Ut. 

7 

steepest descent is applicable, but if we are to obtain a formula which 
has validity also as the time increases and as the saddle-point (3. 7) 
approaches the pole (3.6), we must employ the more general method 
of Pauli (1938) and Ott (1943). The path is now that in Fig. 2. 
By the substitution u2 = y2 + Uty/(Ut - x) , we may write (3.5) as 

where 

f
a, a+u 

J = e-i(Ut-,c)u• ---------- du 
(u + a - 1) (u + a + 1) 

-a 

and 
k0 = ¼(1 - x/Ut)-2 , no = ¼U(2x/Ut - 1) (1 - x/Ut)-2 , 

a = ko½ • (3.9) 

The path is thereby transformed into that shown in Fig. 3. The 
integral is thus expressible as the sum of the residue term at u = 1 - a, 
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the contribution of the saddle-point at the origin and _the _con~ribution 
of the vertical portion of the path. This last contnbut10n IS_ sho_wn 
to be negligible in comparison to the others. The contnbut10n 
of the saddle-point J. is 

co exp-i-,,/4 

f u+a 
Js = e-,(Ut-x)u• ------- - -- du 

(u + a - l) (u +a+ l ) 
-v'2a exp-fr/4 

CD 

= f e-(Ut-x)T' F (r)dr, 

-v'2a 
where 

a exp i1r/4 + r 
F(r) = . , 

((1 - a) exp i1r/4 + r] ((1 + a) exp i1r/4 + r] 
It is sufficient to compute the first term in the asymptotic expansion. 
Toward this end, we multiply and divide F(r ) by r2 - i (l - a)2, 
obtaining the expansion 

(a exp i1r/4 + r)[r + V - a) exp iT/4] 1 

(1 + a) exp i1r/4 + r r 2 - i (l - a)2 

a(l - a) exp i1r/2 1 
= ----- · ---- + O(r). 

(1 + a) exp i1r/4 r 2 - i (1 - a) 2 

Thus the first term in the asymptotic expansion is 

a(l - a) j"' d-r 
J, ~ ei"/4 --- e--(Ut-x)T2 ------. 

1 + a r2 
- i(l - a)2 

-v'2a 

Since a[2(Ut - x)]½ is large, we may treat the lower limit of this 
integral as infinite. This integral can be transformed into an ex-
pression containing the Fresnel integrals. However, it is strange 
but true that these functions which appear so frequently in mathe-
matical physics have never been tabulated in sufficient detail for 
even such a simple study as the present one. The only applicable 
tabulation known to the author is that by Rosser (1948) of a related 
pair of functions, Rr(y) and Ri(y), defined by the integrals 

V2 j"' _::,,,T, dr 
Rr(y) = - e 2 --- , 

7r 1 + T
4 

0 
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By simple transformations we may show that 
co 

f dr - "' 
(1 - a) e-(Ut-x)T' . = 1rV2e-2 {Rr(a) - i Ri(a)) , 

T2 - i(a - 1)2 
-a, 

where 
a = (a - I)[2(Ut - x)/1r]½ = (2x - Ut) /[21r(Ut - x)]½. 

If this result is substituted into (3.8) and added to the contribution 
of the pole, we have 

2a121ra 
12 = - 1r sin x + -- {Rr(a) cos (k0x - n0t - ¼1r) 

l+a 
+ Ri(a) sin (k0x - not - ¾1r) ) . 

The displacement is therefore 

2a121ra 
to = - -- { Rr(a) cos (k0x - n0t -¼1r) 

1 + a 

+ Ri(a) sin (kox - not - ¼1r)) . (3.10) 

(iii) When ½Ut « x < Ut, that is, when a» I, a» l, the sine 
wave of (3.10) has negligible amplitude and the result3 is exactly 
that given by the method of steepest descent, 

2a [ 1r ]½ · to == --- --- cos (kox - not - 1r14) . 
a2 - 1 Ut - x 

(3.11) 

These waves begin at x when Ut = x with small wave lengths, small 
amplitudes, and with phase speed almost equal to the current speed. 
As time increases at a point they grow in amplitude and wave length, 
but diminish in phase speed. 

(iv) As Ut - 2x and a - 0, the quasi resonance effect discovered 
by Remand (1951) augments the amplitude of the sine wave. The 
result3 is to == - 1r sin (kox - not). 

At the moment Ut = 2x, that is, when a = l, ko = l, no = 0, a = 0, 
we have 

to = - 1r sin x . (3.12) 

a The results of (iii) and (iv) may be verified mathematically by substitution 
into (3.10) of the values of the Rosser functions for large and small arguments, 
respectively. 

Rr(y) = 1/,ry - O(y--6) 

Ri(y) = O(y--3) 

Rr(y) = ½ cos ½ 1ry2 - ½ sin ½ 1ry2 + O(y3) 

Ri(y) = ½ cos ½1ry2 + ½ sin ½ 1ry2 + O(y) 
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There are no propagating waves at x at this moment, and through 
this window we can see the stationary lee wave, now developed to 
one-half its final amplitude. Interpreted differently, the situation 
at this moment is a result of the fact that the group velocity of the 
stationary wave (k0 = 1) is exactly ½U. 

I 

I 
I 

'f 
I 

k 

Figure 4. Path for evaluation of integral I, when x < ½ Ut. 

(v) When O < x « ½Ut, we may apply the analysis of section 
(ii) to the path shown in Fig. 4. The residue term is now of the 
opposite sign, and since a < 1, we have [(a - 1)2Jt = 1 - a. The 
equation for the displacement corresponding to (3.10) is therefore 

2a121ra 
to= - 21r sin x + -- {Rr(a) cos (koX - not - ½1r) 

l+a 

where now 
+ Ri(a) sin (koX - not - ½1r) } , (3.13) 

a = (Ut - 2x)/[2n(Ut - x)Jt. 

As the stationary lee wave grows in amplitude, the propagating 
waves die out. The sine wave rapidly becomes negligible in ampli-
tude, leaving the solution 

to = - 21r sin x - [ 1r ]t cos (kox - not - ¼ 1r) • (3.14) 
1 - a2 Ut - x 

This solution remains valid for all subsequent times, but it is seen 
that the stationary wave becomes rapidly established as the only 
sensible disturbance. For example, by the time Ut = 4x a = ¾ 
the ratio of the amplitude of the propagating wave to th~t of th~ 
stationary wave is less than 0.4x -t. Thus if x is one stationary 
wave length from the origin (21r non-dimensional units), this ratio 
is about 0.16, and the lee wave is sensibly established. 
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·2 

U t , 20 

·2 

Classic Stationery Solution 

Figure 5. Form of the free surface when Ut = 20, with Rayleigh's classical stationary 
solution for comparison. 

(vi) When x < 0, the analysis of section (v) remains valid. How-
ever, in this region the residue term of (3.14) has a different sign 
whereas that of the stationary integral 11 in (3.2a) does not. These 
terms cancel, leaving only the transient term 

to = - [ 1r ]½ cos (kox - not - ¼1r). (3 .15) 
l - a2 Ut - x 

The very long waves have sufficiently high negative group velocities 
to show dispersive effects in this region, but the group velocity of 
the stationary wave is always positive. Thus, in this initial-value 
model, the upstream stationary wave occasions no difficulties because 
there is no mechanism for its generation. Further, since a < ½ 
and Ut - x > Ut, the amplitudes of the propagating waves are 
negligible in comparison with the amplitude of the lee wave. 

4. An example computed. By use of formulas (3.10) and (3.13) a 
straightforward computation of the elevation of the free surface 
at any time is possible. Fig. 5 (still in non-dimensional units) shows 
the system at the moment Ut = 20, with the stationary (Rayleigh) 
solution for comparison. The particle with co-ordinate 20 is there-
fore the one which was at the origin when the system began from 
rest. Ahead of it the disturbance exists though it is negligible on 
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the scale of the diagram. Just behind it the free surface is oscillating 
rapidly with short wave length, and these oscillations give way f~rther 
back to a pattern which resembles more and more the stat~onary 
wave. At x = 10 the amplitude is just half that of the stat10nary 
wave, and by x = 5, the disturbance is seen to be almost indistinguish-
able from the classical stationary solution. 

The oscillations of the free surface at an isolated point as a function 
of time are pictured in Fig. 6. The point chosen is x = 5, which 
has an amplitude of 6.03 as t --t oo. The small rapid oscillations 

if ... _ ~_·""_'_•on- ot....,,!-, "...,·~,.,nQ' __ ,7'2='-0-,,.-,~-----i,:---==------;;';;' :---- - ;;';'c------;:;-, o' u, 
5 .....;,;' 10 15 20 25 

Figure 6. Elevation r (5, I) of the free surface at the point x = 5, as a function of time. 

begin at Ut = 5 and end at about Ut = 7.6, after which the dis-
placement of the free surface is never negative. This displacement 
increases steadily until it reaches the stationary value, which occurs 
at Ut = 16. Thereafter, it oscillates about this stationary value 
with period approaching 81r, but after about Ut = 20 it is always 
within 10% of this value. 

NOTE: Since the above paper was presented, two articles, Palm 
(1953) and Stoker (1953), have appeared on the problem of flow 
over a corrugated bed. Their models have the advantage of resem-
bling more closely actual flow over an obstacle, but their greater 
complexity makes it difficult or impossible to examine the transient 
state of the lee wave in the detail afforded by the model of this paper 
with a surface pressure disturbance. 
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