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ABSTRACT 

The statistical distribution of wave-heights is derived theoretically on the assump-
tions (a) that the wave spectrum contains a single narrow band of frequencies, and 
(b) that the wave energy is being received from a large number of different sources 
whose phases are random. Theoretical relations are found between the root-mean-
square wave-height, the mean height of the highest one-third (or highest one-tenth) 
waves and the most probable height of the largest wave in a given interval of time. 
There is close agreement with observation. 

1. INTRODUCTION 

At present several different quantities are in use for describing the 
state of the sea: for example, the mean height of the waves, the 
root-mean-square height, the height of the "significant" waves (defined 
by Sverdrup and Munk [1947] as the mean height of the highest one-
third of all the waves), the maximum height over a given interval of 
time, and so on. The purpose of the following is to investigate the 
relationship of these quantities to one another in some special cases, 
and especially in the case when the spectrum of the waves consists of 
a single narrow frequency-band. 

1 The author is indebted to the Commonwealth Fund, New York, for a Fellowship 
to enable him to study at the Scripps Institution of Oceanography, where this paper 
was prepared. 
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For definiteness let us consider the elevation t of the sea surface at a 
fixed point, given as a function of the time t only. Much of the 
following, however, will apply to any oscillatory function of a single 
variable: for example, to the pressure at a point on the bottom, or to 
the rolling motion of a ship as measured by its angular deflection from 
the vertical. In general we shall denote by a the amplitude of (, 
which may be defined as half the distance in level between a wave 
crest and the preceding trough; thus 2a equals the wave-height. The 
period, or interval between successive crests, will be denoted by r, 
or 21r/u, where u/21r is the frequency. I denotes any interval of the 
t-axis, of length T, in which the variable tis under consideration; it is 
supposed that T > > r, i. e., the interval contains a large number of 
complete periods. The successive values of a in the interval I may 

l. (t) 

t 

Figure 1. A simple sine-wave: definition of the wave amplitude. 

be denoted by a1, a2 ... aN. If these are arranged in descending 
order of magnitude, the mean value of the first pN of these, where p 
is a fraction between O and 1, will be denoted by a<v> . . Thus the 
amplitude of Sverdrup and Munk's "significant waves" is a<t>. The 
mean amplitude of all of the waves is a< 0 . It is clear that a<v> is a 
decreasing, or at any rate a non.increasing, function of p; and if 
amax is the maximum value of a in the interval, we have 

The root-mean-square amplitude a is defined by 

1 
a2 = -(a12 + ~2 + ... + a N2) 

N 

It may easily be shown that 

a> a<0 . 

(1) 

(2) 

(3) 

Since a is of physical significance in a wide class of cases, a<v> will 
normally be expressed in terms of a. The mode is defined as the most 
frequently occurring wave amplitude and will be denoted by µ(a). 
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Example 1. Simple sine-wave. Suppose 

r = ao cos at ; 

247 

(4) 

then we have a simple sine-wave of period 21r/u and amplitude a0 

(see Fig. 1). All the waves are of amplitude a0, and therefore 

amax = a(p) = (1, = µ(a) = ao. 

4-11/(0-,-~) 

l(t) 

(5) 

4a.J t 

-4-'11/(a,+ o;) 

Figure 2. Combination of two sine-waves of sli ghtly different frequency. 

Example 2. Two sine-waves. Consider the sum of two sine-waves of 
equal amplitude but of very slightly differing period: 

r = ao cos uit + ao cos u2t 1 (6) 

say, where I u1 - u2 I < < I u1 + u2 I. We may write 
U1 + Uz U1 - Uz t = 2ao cos --- t cos --- t , 

2 2 
(7) 

U1 + U2 
showing that the resultant consists of a carrier wave cos --

2
- t, 

whose period is nearly the same as that of the two component waves, 

modulated by an envelope function 2a0 cos ui uz t, whose period, 

by hypothesis, is comparatively long (see Fig. 2). The maxima and 
minima of r occur nearly on the envelope and so are nearly equal 
in magnitude to the magnitude of the envelope function. In the 
limit they are distributed at even intervals along the t-axis. Taking 
the interval O < t < 1r/(u1 - u2) as typical, and supposing it con-
tains N waves, we see that the highest pN waves will be contained 
in the interval O < t < p1r/(u1 - u2). The mean amplitude a<P> of 
these is given by 

and hence 
2 . p1r 

a CPl = 2ao · -sm-. 
p1r 2 

(8) 

(9) 
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The root-mean-square wave-height is given by 

and hence 

Thus 

In particular 

ii, 2 = 2ao, a = -v2 ao. 

2 . p7r 
a<P>/a = -v2 • - sm - . 

p7r 2 

20 -v2 . 7r 
a<l/1°>/a = -- sm - = 1.408 

7l' 20 
6-v2 . 7l' 

a<l>/a = --sm-= 1.350 
7l' 6 

2,v2 . 1r 
a<O/a = --sm-= 0.901 

7l' 2 

a<P>/a is plotted against pin Fig. 3. We have also 

ama,c = 2ao; amu/a = -v2. 

[XI, 3 

(10) 

(11) 

(12) 

(13) 

(14) 

The statistical distribution of the wave amplitudes is evidently the 
same as that of the envelope function, which is that of the simple 
cosine curve 

r = 2a0 cos O. (15) 

See Fig. 4. The probability that a point in the interval O < O < 1r/2 
lies in any given region of width do is 2/dOl/71'. Hence the probability 
P(r)/dr/ that the function (15) lies between rand r + dr is given by 

2 
P(r) I dr I = - I do I . (16) 

7l' 

Thus, when O < r < 2a, 

2 I dO I P(r) = - -
11' dr 

2 1 

7l' 2aosin 0 

2 1 
(17) 

Clearly a can never exceed 2ao or ,v2a. Hence the probability-
distribution P(r) of the wave-height a is given by 

P(r) = l : (2a2 

1 

0, 

, (r < -v2a)I 

(r > -v2a) 

(18) 
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1·5 

1·0 -- ----------------------

0·5 

00 ...... ---------------------0·0 0·5 
p 

l·O 

Figure 3. Graph of a(P) /tJ as a function of p, for two sine-waves of slightly different 
frequency, 

y 

0 
0 

di 

() W/2 

Figure 4. The curve 11 = 2a, cos B. 
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1·5 

l·O 

aP 
O·Sc__ _ __ _ 

o,0L ________ 1,_ __ _... _ _ ___ ..,__ __ 

O·O I· O 2·0 

r-/a 
Figure 5. Frequency distribution of the wave amplitude for two sine-waves of slightly 

different frequency. 

The function aP is plotted against r/a in Fig. 5. It will be seen that P 
increases steadily with r and tends to infinity as r tends to v2a. 
We have therefore 

µ(a) = v2a = amax. (19) 

The foregoing examples, however, are very special cases which are 
unlikely to occur in practice. In the following we shall be concerned 
with a more realistic case, namely when the spectrum of the waves is 
narrow and the disturbance is made up of a number of random con-
tributions. Such a case was considered by Rayleigh (1880) in con-
nection with the amplitude of sound derived from many independent 
sources, and the theoretical distribution of maxima has been used in 
acoustics and in the theory of filters (for example, see Rice, 1944-5; 
Eckart, 1950). Indeed, Barber (1950) has already presented evidence 
that for waves there is rough agreement with this distribution. We 
shall consider rather carefully the application of this distribution to 
sea waves, find the theoretical values of a<P> /a and the distribution of 
amax/ a, and compare the results with observation. 
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2. A NARROW WAVE-BAND 

Let the wave elevation t in any interval I be expressed as a Fourier 
integral: 

(20) 
-00 

where the spectrum function A(u) may be complex and where it is 
understood that only the real part of the right-hand side is to be taken. 
Suppose that the spectrum consists of a single narrow frequency-band 
of wavelength 21r/uo, say, so that A(u) is appreciable only for values 
of u near <To • We may write 

t = eiu,1f 00

A(u) ei<u-u,> 1 du. (21) 
-00 

In this expression eiu,t represents a carrier wave of wavelength 21r/u0 , 

and the integral 

(22) 
-00 

is a slowly varying function which represents the envelope of the 
waves (see Fig. 6). As in Example 2 above, the maxima and minima 

IB(t)I l(t) 

t 

Figure 6. A disturbance i-(t) having a narrow frequency band, and its envelope IB (I) I-

of t are spaced nearly evenly along the t-axis and are approximately 
equal to the value of IBI at these points. It follows that the prob-
ability-distribution of the wave amplitudes is the same as the prob-
ability-distribution of IBI , which we shall therefore consider. 

Now the wave-energy received at any point on the coast will have 
originated in many different places over a wide area. We may imagine 
that the generating area of the waves is divided into a large number of 
different regions, each of which will contribute to the wave-height s 
and to the envelope function B. If each region of the generating area 
is sufficiently large compared with a wavelength, it may be assumed 
that the phases of the contributions from different regions are inde-
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pendent of one another. Then it is reasonable to assume that B is 
the sum of a very large number of small components of random phase. 
The probability-distribution of such a sum, which is known as the 
"random walk," was found by Rayleigh (1880) and has since been 
studied by many workers (for references, see Bartels, 1935). If the 
component vectors are b1, b2, .... bM, i. e., if 

(23) 

,.o 

aP o-5 

O·O"------'--------'-------........_ _____ ...._ 
O·O 1·0 I ·5 2 ·0 

r;a 
Figure 7. The " random walk" frequency distribution. 

then the mean square value of IBI, taken over all relative phases of the 
component vectors, is given by 

(24) 

and, under certain general restrictions on the size of the component 
vectors (see Khintchine, 1933) the probability that IBI lie between r 
and r + dr is given by 

P(r)dr = e-r•JB'. 2r/B2 dr. (25) 

Since the probability-distribution of IBI equals that of the a's, we have 

f3 = a, (26) 

a quantity that can be estimated from observation; no detailed 
knowledge of the component vectors is required. Thus the probability-
distribution of the a's is given by 

P(r) dr = e-,,1a,. 2r/a2 dr = - de-,,1a,. (27) 
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The function 
aP(r) = e-r•tli.J. 2r/a (28) 

is shown in Fig. 7 (cf. Fig. 5). It will be seen that P(r) is zero when 
r = 0, that it increases to a maximum, and then falls away rapidly 
for large values of r/ii. The total area under the curve is, of course, 
unity. The maximum value occurs when r/a = 1/v2, so that the 
mode µ(a) is given by 

1 
µ(a)/a = - = 0.717. 

v2 
(29) 

The chance ip(r) that a should exceed a certain valuer is given by 

ip(r) = f «> P(r)dr = e-r•fli.J. (30) 
r 

To find a<"', we note, first, that the proportion p of a's which exceed 
a certain valuer is equal to ip(r), so that from (30) 

p = e-r•fa, ; r = ( log : Y. (31) 

The mean value a<Pl of those a's that are greater than r is given by 

ip(r) a<P) = f rr, r P(r) dr (32) 
r 

or 

(33) 

from (27) and (30). After integrating the right-hand side by parts, 
we have 

and hence 

e-rt/lit a<P) = r e-••fa• + f rr, e-r•/iil dr' 
r 

a<Pl/a = r/a + e••ta•f tr) e-rt//it dr/a 
r 

(34) 
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where H (fJ) is the probability function: 

H (fJ) = ..;1r Je e-e'dfJ. (37) 

0 

Numerical values of aCP>/a are given in Table I for some representative 
values of p. In particular, the mean aC1> is given by 

v1r 
aCl>/a = - = 0.886. (38) 

2 

TABLE I. REPRESENTATIVE VALU ES OF aC•l/a IN THE CABE OF A NARROW 

WA VE SPECTRUM 

p 

0.01 
0.05 
0.1 
0.2 
0.25 
0.3 
0.3333 

aC•l/a 
2.359 
1.986 
1.800 
1.591 
1.517 
1.454 
1.416 

p 

0.4 
0.5 
0.6 
0 .7 
0.8 
0.9 
1.0 

a (P)jii, 

1.347 
1.256 
1.176 
1.102 
1. 031 
0.961 
0.886 

The second moment of the distribution about the origin being a2, by 
definition, we have for the second moment about the mean: 

[o (a) ]2 = a2 
- aC1 >2 = a2 (1 - :) . 

Thus the standard deviation o(a) is given by 

o(a)/a = ( 1 - : Y = 0.453. 

(39) 

(40) 

aCP> /a is shown as a function of pin F ig. 8, which may be compared 
with Fig. 3. An asymptotic formula for aCP> /a when p approaches 
zero is found by further integration by parts in equation (35) : 

aCPl/a = (l og y + (log r½ - · : (log r! 
1 3 5 ( 1 )-! + 2 . 2 . 2 log-; . . . (41) 

Thus, in Fig. 8, asp tends to 0, aCP> /a tends to infinit y logarithmically. 
However, for the validi ty of t his result it is essential that the fraction 
of the sample containing the highest pN wave amplitudes a shall not 
be too small; otherwise the present approximation will not hold. 
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2·0 

1•0 

o-o-----------'----------'----0·0· 0·5 l·0 

p 
Figure 8. Graph of a(P)Ja as a function of p, for the narrow frequency band. 

Suppose, for example, that we wish to find the expectancy E(amax) of 
the highest wave in an interval containing N waves. An approximate 
answer might be obtained by setting p = l/N and finding a<1tN>. 
But this answer will not be exactly correct; for aOtN> in fact represents 
the mean height of the 1/Nth highest waves in a large sample, say a 
sample of size mN obtained by collecting together m samples, el'l,ch 
containing N wave amplitudes. The m highest waves may not be 
distributed evenly, one in each of the samples; and if not, the mean of 
the highest waves, one from each group, will clearly be less than the 
mean of them highest from all mN wave amplitudes together. Hence 
we see that the expected value of amax must be somewhat less than 
a(l/N). 

Of course the ratios a <P> /a found above refer to the total statistical 
"population" of wave amplitudes, or at least to a sample of theoreti-
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cally infinite size selected at random from this population. In practice 
we have to consider samples of finite size N. For each ratio such as 
a <P > /a, theoretically there will be a corresponding probability-distribu-
tion depending on N. The expectancy value and the most probable 
value of a<P>/a and of a<P,>ja<P,> (where p1 and p2 are two different 
values of p) will differ slightly from the corresponding (exactly defined) 
values for the whole- population. But when N and pN are large, 
these differences can be expected to be very small, and in the present 
discussion they will be neglected. 

On the other hand, the expectancy of am.,,, the maximum wave 
amplitude in a sample, depends fundamentally on the size of the sample. 

One further point may be mentioned here. Strictly the analysis 
is valid only if the sampling of the wave amplitudes is random. In 
fact the sample consists of N consecutive wave amplitudes; since the 
envelope function varies slowly, there must be some correlation be-
tween members of the sample, especially when the spectrum is narrow. 
This may affect slightly the probability-distribution of, say, a <P> /a; 
but provided the record contains more than one or two wave groups, 
the effect of the "grouping" can be expected to be very small. Fluc-
tuation of the envelope function may even act as a "randomising" 
process and may lead to observed ratios in closer agreement with the 
theoretical ratios than expected. At all events, the effect of "group-
ing" will be ignored in the present paper. 

3. THE MAXIMUM WA VE AMPLITUDE 

The probability-distribution of amax may be derived as follows: 
The chance that any particular one of the a's in the sample should be 
less than r, say, is 

fr P(r) dr = 1 - cp(r) , (42) 
0 

where cp is given by equation (30). The chance that every a in the 
sample shall be less than r is therefore (1 - cp )N ; and the chance that 
at least one a shall exceed r is 1 - (1 - cp)N. The chance that the 
maximum a shall lie in the interval (r, r + dr) is the chance that at 
least one a shall exceed r, minus the chance that at least one a shall 
exceed r + dr, that is, 

or 

smce 

- d (1 - (1 - cp)N] , = d (1 - cp)N, (43) 

N(l - cp)N-1 P dr, 

dcp 
-;j;=-P. 

(44) 

(45) 
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Thus the probability-distribution of amax is 

N(l - cp)N-l p. (46) 

The expectation E(amu.) of the maximum is given by 

E(amu.) = -J00

rd [1 - (1 - cp)N]. (47) 
0 

On integrating by parts and assuming 

r [l - (1 - cp)N] - O 

when r - oo , we have 

E(amu.) = J00 

[1 - (1 - cp)N] dr. 
0 

On substitution from (30) we have 

E(amax)/ii = J00 

[1 - (1 - e-r2Ja2)N] dr/a 
0 

1 Joo = 2 [1 - (1 - e-B)N] 0-½dO . 

0 

(48) 

(49) 

(50) 

(50a) 

For small or moderately large values of N, the above integral can be 
evaluated by a direct expansion, using the binomial theorem; thus 

E(amax) /ii = 

2
1 Joo [Ne-B - N(Nl. -2 1) e-ze + ] ••• ( - )NHe-NB 0-½dO' 

0 

(51) 

and since 

(52) 

we have 

E(a )/ii= - ------+ .. . (-)N+i_. 
1r [ N N(N - l) 1 1 ] 

max 2 vl 1.2 v2 vN 
(53) 

Table II gives the exact values of the integral for N = l, 2, 5, 10 and 
20. However, we are chiefly interested in values of N of the order of 
50 or more, for which the binomial coefficients in (53) become so large 
that computation by means of that expression becomes impracticable. 
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An asymptotic expression for large values of N may be found as 
follows: write 

Bo = log N; 
1 

e-e, = - . 
N' 

0 = 80 + 0'' (54) 

say, then 
e-B')N I - - == e-•-e 

N • 
(55) 

-I 0 2 

w -t;,) 
Fig,ure 9. Graph of the function f (B) = (1 - e-B) N when N is la rge. 

with errors of order 1/N. Thus we see that the first function in the 
integrand of (43), i. e., 

f(O) = 1 - (1 - e-B)N, (56) 

has a rather sudden drop from 1 to 0 in the neighborhood of 80 (see 
Fig. 9). We have, therefore, 

I Je, I= 2 0-, dB+ R (57) 

0 

= Ool + R, 

where Risa remainder of order 00-l at most ; in fact 

R = Bo-½ [ - J0

e-.-e'd81 + f 00

(I - e-•-8 1)d0' ] + R' 
- 00 0 

1 [ J oo da 11 
da ] = 2 Bo-} - e-a--;; + (I - e-a) -;; + R' 

l 0 

= ½,.- Bo-½ + R', (58) 

where R' is of order Bo-; at most and 'Y is Euler's constant ( = 
0.5772,2 ; see Whittaker and Watson, 1950: 236). Thus 

1 
E(amnx) I a = (log N)i + 2 'Y (log N)- l + 0 (log N )- i . (59) 
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TABLE II. VALUES OF E(a,.az)/a AND µ(amaz)/a FOR DIFFERENT VALUES OF N, 
FOR A NARROW SPECTRUM 

~E(a,. •• )/a---
N (log N) t exact asymptotic µ(amaz)/iJ. 

expression expression 
1 0.000 0.886 0.707 
2 0.833 1.146 1.030 
5 1.269 1.462 1.366 

10 1.517 1.676 1.708 1.583 
20 1. 731 1.870 1.898 1. 778 
50 1. 978 2 .124 2 .010 

100 2.146 2.280 2.172 
200 2 .302 2.426 2 .323 
500 2.493 2.609 2.509 

1,000 2 .628 2 .738 2.642 
2,000 2.757 2 .862 2.769 
5,000 2.918 3.017 2.929 

10,000 3 .035 3 .130 3 .044 
20,000 3.147 3.239 3 .155 
50,000 3.289 3.377 3.296 

100,000 3.393 3.478 3.400 

The above equation may be compared with equation (41) for a<Pl/a 

when p = l/N. We see that E (amax) differs from aO/Nl in the second 
term of the asymptotic expansion. Since ½'Y = 0.28861, we have 
E(amax) < aOIN) as expected. For large N, however, E(amax) still 
increases like (log N )½ and therefore tends to infinity with the length 
of the interval, t hough very slowty. Values of the asymptotic ex-
pression for E(amax)/a are given in Table II for values of N ranging 
from 10 to 100,000. It will be seen that in this range E (amax)/a 
increases only from about 1. 7 to about 3.5. The asymptotic expres-
sion may be compared with the exact expression for N = 10 and 20. 
The differences in the two cases are 0.032 and 0.028 respectively, or 
about 2%. For N > 50 the error in the asymptotic expression is 
almost certainly less than 0.03; for large values of N the error may be 
expected to diminish proportionally to (log N )- ! . 

The "most probable" value of amax, which we shall denote by µ(amax), 
is given simply by the maximum value of the probability-distribution 
(46), i.e., the maximum of 

N(l - e-r•/ii• )N-1 e- r• /iil . 2r/a . (60) 
Writing 

o = r2/a2
, (61) 

we see that we must have 

:0 [ oie- B(l - e- B)N-1] = O' (62) 
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and hence 
1 (N - l)e-8 

-- 1 + =0 (63) 
28 1 - e-8 

or 

N e-e = 1 - 218 ( 1 - e-e) (64) 

or 

8 = log N - log [ I -
2
~ (I - e-8

)] (65) 

= log N + 0 (:) (66) 

when N is large. Thus 

8 = log N + 0 (log N)-1 , (67) 

and the most probable value of amax is given by 

µ(amax)/a = 8½ = (log N )½ + 0(log N)-!. (68) 

Thus there is no term in (log N )-½. Starting with the approximate 
value (log N )½, one may find closer approximations to µ(amu. ) /a by 
applying Newton's method of successive approximation (see, for 
example, Whittaker and Robinson, 1932: 84) in equation (65). Values 
of µ (amax)/a so found are given in the last column of Table IL 

The chance that amax shall not exceed (log N )½ by more than a given 
amount may be found similarly. We have seen that the probability-
distribution of amax is given by 

d d , 
- (1 - 8)N = - (I - e-r /a )N. (69) 
dr dr 

If we define ro by the equations 

ra2/a 2 = 80 = log N; ' . I e-r, /a· = -

N 
(70) 

we have 

- 1 _ ---- = - e-,-(r-r, )/a 
d ( e-<r'-r,' ) la')N d • , _, 

dr N dr 
(71) 

approximately. The probability that a will be less than r is therefore 

e-,- (r,-r,• ) /at 

' 
and t he probability that a will be greater than r is 

1 - e-,-(r•-,,,) /a• 

(72) 

(73) 
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4. DISCUSSION 

The chief assumptions used in the derivation of the theoretical dis-
tribution P(r) in sections 2 and 3 are: (a) that the frequency spectrum 
consist of a single narrow frequency band; and (b) that the waves be 
considered as the sum of a large number of contributions, all of about 
the same frequency, and of random phase. Let us consider under 
what conditions these assumptions should be satisfied. 

In the first place, the analysis will not apply to regular trains of 
waves produced by a simple organized mechanism: for example, the 
waves generated by a paddle in a model wave tank, or the transverse 
waves produced by a ship; or the wave-height distribution resulting 
from the interference of two wave trains of the same amplitude but of 
slightly differing wavelength, as in Example 2 (p. 247). In the open 
sea such examples constitute very special and most unlikely cases. 

The present analysis is meant to apply to wind-generated waves. 
Since the dimensions of a storm area are large compared with the 
wavelengths we are considering, it is fairly safe to suppose that the 
phases of contributions from different parts of the storm area are ran-
dom. However, the range of frequencies may not be narrow; if 
there are two distinct sources of wave-energy, for example a distant 
storm and local winds, there may well be two distinct frequency-bands 
in the spectrum. The most satisfactory conditions would be repre-
sented by a single storm at a great distance (compared with the 
dimensions of the storm); for, in the course of propagation, different 
frequencies in the spectrum, being propagated with different velocities, 
will become spread out in space, and over a short interval of time only 
a narrow range will be present. It must be assumed that the time of 
recording is not too long, so that in this time the frequency and ampli-
tude of the waves do not change significantly. On the other hand the 
time must be long enough to ensure that the sample of wave-heights is 
sufficiently representative; this requires that at least several "groups" 
of waves be included in the record. 

The method of recording may affect the apparent frequency spec-
trum of the waves. For example, if the waves are recorded by meas-
urement of pressure on the bottom, as is now usual, the high fre-
quencies, which are attenuated rapidly with depth, will be damped out 
relative to the lower frequencies, and the corresponding frequency 
spectrum will therefore be narrower. Hence the present analysis may 
apply more closely to a record of pressure on the bottom than to the 
actual surface elevation. In fact, the free surface, if viewed very 
closely, will usually show a large number of short steep waves, which 
may constitute maxima and minima of the wave elevation but which 
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are not normally of interest to us; for example, they would not affect 
the rolling or heaving motion of a ship. Strictly speaking, we should 
consider only that modification of the spectrum which is relevant to 
the purpose in hand. A ship itself acts as a resonant filter, which 
will amplify those components in the spectrum which are close to its 
natural period. The present analysis, therefore, might very well be 
applied to the angular deflection of a ship's mast from the vertical; 
from an analysis of the rolling motion over a few minutes, one could 
easily compute the maximum roll that is likely to be encountered 
during, say, the next hour, assuming that the sea conditions remained 
constant; for, in the notation in Sections 2 and 3, one could estimate 
a with fair accuracy from observation over the shorter interval and 
hence find E(amax) or µ(amax) over the proposed longer interval. 

However, an important restriction should be mentioned here. One 
of the conditions implied in assumption (b) above is that the contri-
butions from different parts of the generating area should be super-
posable; that is, the mechanical system we are dealing with should be 
linear. This assumption can be shown to be valid for low waves in 
deep water; but clearly it will not hold for waves approaching the 
maximum height. For this reason the analysis could not be applied 
to surf or to waves in the open sea which are nearly at their maximum 
height. Nor could it be applied to the rolling motion of a ship when 
this is large enough for nonlinear terms to become important or when 
the rolling is so great that the ship may capsize. 

With these restrictions in mind let us compare some previous 
observations with the theoretical results of Sections 2 and 3. 

5. COMPARISON WITH OBSERVATION 
Munk (1944),2 in an analysis of wave records taken at the Scripps 

Institution, California, compared the mean height H<31ioi of the highest 
30% of the waves with the mean height H(lJ of all of the waves. He 
found 

H <3iioi O. 49 
--- = -- = l. 53 . 
H(I> 0 .32 

The theoretical value from Table I is given by 
a<JJ1oi a<a11oi;a 1.454 
--=--=--=l.64. 

a<1> a<l)/ii 0.886 

Seiwell (1948) found that in two different localities in the Atlantic 
(off Cuttyhunk Island and off Bermuda) the ratio of am to a<l) was 

'See also Snodgrass (1951) where these and other unpublished observations are 
eum.marized. 
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1.57. Putz (1950) studied 25 wave records from fi ve different locali-
ties; the mean values of the ratios am /a OJ can be found from table 1 of 
his paper. They are respectively 1.59 (Oceanside, 4 records); 1.66 
(Point Sur, 15 records); 1.66 (Hecata Head, 2 records) ; 1.55 (Guam, 
3 records) and 1.54 (Point Arguello, 1 record). The mean of Putz's 
observations, weighted according to the number of records considered, 
is 1.63. The theoreti cal value, from Table I of this paper, is given by 

a <t l l. 416 
- =-- = 1.60 
a <ll 0 .886 ' 

which is in fairly close agreement. 
Wiegel (1949) has studied wave records from three different locali-

ties off the Pacific Coast of the United States. Ha found, in the three 
cases, that 

a ( l/10) 

-- = l. 27, l. 30, l. 30 (mean value l. 29) . 
a <ll 

The individual estimates showed little scatter. Wiegel remarks, 
"Even more surprising was the fact that almost every point was 
within plus or minus ten per cent of this value (1.29)." The theoretical 
value, from Table I, is given by 

a<tl l. 800 
- =-- = 1.27 
a<ll 1.416 ' 

which again is in quite close agreement. 
Wiegel also compared the maximum wave from three 20-minute 

records each day with the mean height of the highest one-third waves. 
His observed values were equivalent to 

E (amax) 
--- = l. 85, l. 91, l. 85 (mean value 1.87) . 

a<t> 

Assuming a mean wave period of 12 seconds, we have 
60 minutes 

N = ---- = 300, 
12 seconds 

for which we find from the asymptotic formula (59): 

E (amax) 
--- = 2.504. 

a 
Thus, theoretically, 

E(amax) 2 . 504 
--- = -- = 1.77 . 

a<t> 1.416 
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A possible explanation of the observed value of E (amax)/am being 
greater than the theoretical value is as follows. Suppose that during 
the day the state of the sea, as represented by the r. m. s. wave ampli-
tude a, underwent a change. If , during one of the three 20-minute 
records, the r. m. s. wave amplitude is much larger than, say twice, 
that in the other two, then the maximum wave amplitude will almost 
certainly be found in that record, and the expected value of the maxi-
mum will not be much less than twice the expected value if the wave 
characteristics had not changed; for E(amax)fa is not much different 
for a 20-minute interval than for a 60-minute interval. On the other 
hand, a<!> will be mult iplied by approximately 4/3. Therefore 
E (amax)/a will be increased by about 2 + 4/3 or by 3/2. The same 
tendency is true in general. 

Darbyshire (1953) has shown that in a 20-minute wave record the 
maximum wave-height is about twice the "equivalent wave-height," 
which is defined by him as the height of the uniform train of waves 
which would have the same total energy as the actual waves. On our 
present assumption that the spectrum of the waves contains only a 
single narrow band, the equivalent wave-height equals the root-mean-
square wave height a; for, each wave in the record is approximately 
a sine-wave of the same length, and the energy per wavelength is 
proportional to a.2. It may be more appropriate, in this case, to 
consider the most probable value µ(amax) of the highest wave rather 
than the expectancy E(amax) , For a mean wave period of 12 seconds 
we should have 

20 minutes 
N =---- = 100 

12 seconds ' 
and so fr om Table II 

µ(amax)fa = 2.17. 

However, we see from Table II that E(amax) is only slightly greater. 
For longer wave periods, N, and therefore µ(amax)fa, would be slightly 
less; the rather slow change in µ(amax) with N would account for the 
success of the empirical rule irrespective of the period of the waves. 

In examples quoted above, the discrepancy between theory and 
observation is in all cases less than 8%, and in some cases it is small er 
still. In view of the somewhat stri ct assumptions made in deriving 
the theoretical probability-distribution, this agreement is surprisingly 
close; and it may indicate t hat the probability-distribution does not 
depend very criticall y upon the narrowness of the wave spectrum. 
For most practical purposes the theoretical values of a<P> /a and 
E(amax)/a can be used with confidence; thus, if one of the quantities 
a, a0 >, a<t>, a<1110> or E (am,x) is known, the others may be estimated 
immediately. 
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The present discussion suggests that waves much higher than the 
average are likely to be extremely rare, for a given state of the sea. 
Table II shows that even in a time interval containing 100,000 waves, 
which for 10-second waves would be about 11½ days, the most prob-
able value of the highest wave is less than 3½ times the root-mean-
square value; of course it is unlikely that the waves would remain 
statistically constant throughout this interval. Equation (73) also 
shows that there is an extremely small chance that the most probable 
value of amax will be greatly exceeded. The general conclusion then 
appears that changes in the strength of the wind or other generating 
forces are more important in producing variability in the wave ampli-
tude than is the statistical variation of the waves at any one time. 
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