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ABSORPTION OF NUTRIENTS BY AQUATIC PLANTS 

BY 

WALTER H. MUNK 
Scripps Institution of Oceanography1 

and 

GORDON A. RILEY 
Bingham Oceanographic Laboratory 

ABSTRACT 
Formulae are derived for the rate of nutrient absorption by aquatic plants approx-

imating the shapes of spheres, discs, cylinders, and plates. Other parameters are 
the size and specific gravity of the plant, the nutrient concentration of the medium, 
and the physical properties affecting the transfer of nutrients toward the plant 
surface. The formulae allow for convection, i. e., the movement of water relative to 
the plant. Hence absorption is aided by a current in the case of attached plants and 
by a rapid sinking rate in the case of plankton. The results are not materially 
modified by turbulence. 

The formulae are applied to problems of diatom growth and adaptation. Any 
division rate of diatoms corresponds to a certain minimum rate of nutrient absorp-
tion; this in turn requires a certain sinking rate and therefore a certain excess in 
specific gravity of the diatoms over that of the surrounding water. In well ferti lized 
laboratory media the excess may be very small, and this is consistent with the slow 
sinking rates usually observed under laboratory conditions. Under impoverished 
natural conditions the excess roust be much larger, and hence there is a flotation 
problem. Accordingly, the analysis was extended to take into account sinking rates 
and vertical overturn in addition to nutrient absorption. The results are realistic 
with regard to observed division rates and sizes of diatoms, but they indicate an 
inherent competitive advantage of small diatoms over large ones. The observed 
size-frequency distribution of diatom species can be accounted for if one introduces an 
arbitrary predation factor which assumes that small cells are eaten more readily than 
large ones and that spheres are more acceptable food for small animals than long 
cylinders and plates. 

1. INTRODUCTION 

It is commonly stated in the literature that the elaboration of 
diatoms into fiat discs, plates, and more intricate shapes is a flotation 
device. However, this hypothesis ignores the existence of equally 
common adaptations that have the opposite effect. For example, the 
formation of centric diatoms into chains reduces the total surface area 

1 Contribution from the Scripps Institution of Oceanography, New Series No. 584. 
We are indebted to Marston C. Sargent for proposing the problem and examining 
the manuscript. 

( 215) 
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and thereby increases the sinking rate. While the necessity of ade-
quate flotation cannot be denied, we must look further for a logical 
explanation of the whole array of observed morphological variations. 

The absorption of essential nutrients is an aspect of phytoplankton 
ecology that involves both surface-volume relations and sinking rates. 
Ecological evidence indicates that the rate of absorption often puts an 
upper limit on plant growth in the sea. This is most likely to occur in 
warm and stable waters that are also critical from the standpoint of 
flotation. If variations in size and shape in the diatoms have survival 
value, the problem should be analyzed in terms of both sinking rates 
and absorption. 

The coexistence of a variety of forms and sizes of diatoms in nature 
implies that each variety has a slight advantage over the other in a 
particular set of circumstances, but no single variety maintains an 
advantage in all circumstances. It remains to be seen whether slight 
differences of this sort can be detected experimentally. In the present 
paper we shall take the obvious preliminary step of investigating the 
underlying physical principles by theoretical methods. Brief atten-
tion will also be given to the related problem of absorption by attached 
plants. 

A small grain of solid material sinking through water will absorb 
heat by diffusion and by forced convection. We shall assume that the 
physical laws governing these two processes give also an adequate 
description of the processes whereby sinking diatoms absorb nutrients. 
This permits us to be quantitative, within limits. 

Unfortunately the theory of forced convection has not been devel-
oped to a point where it can easily be applied to our problem. Our 
knowledge of this subject rests mostly on experimental evidence guided 
by dimensional analysis. The experiments have been performed 
largely on wires, spheres and plates for which the Reynolds numbers are 
larger by at least one order of magnitude than those applicable to 
sinking diatoms. In order to extrapolate the experimental results into 
the region of interest, it is necessary to have some guidance from theory 
as to what should be expected at very small Reynolds numbers. The 
associated mathematical problem is surprisingly difficult, and there 
are several published accounts describing these difficulties without 
giving solutions. The first adequate approximation2 has been found 
only very recently by Kronig and Bruijsten (1951), and this work 
makes it possible to discuss with confidence the relationships for the 
scale with which we are concerned. 

The derivation of these relationships are cumbersome and unin-
teresting and are contained in Appendix I, pp. 235-239. 

2 See footnote 10 on p. 240. 
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2. THE ABSORPTION AND SINKING RATES 

Consider a diatom of mass m, containing rm grams of phosphate. 
Thus r designates the fraction in body weight of phosphate. Suppose 
q grams of phosphate are transferred each second from the surrounding 
water to the diatom. The relative rate of absorption may then be 
expressed by 

q 
T-1 = -

' rm 
(1) 

where r is a measure of the time required to absorb as many grams of 
phosphate as are initially contained. The time required for a diatom 
to split in two cannot be much shorter than r, but it may be longer 
because of other limiting factors. We shall call r the "absorption 
time." 

Different nutrients lead to different absorption times. The nutrient 
with the largest absorption time imposes the most severe limitation on 
the possible rate of growth. 

The problem is to obtain q. It depends on the dimensions of the 
plant and on the physical characteristics of the surrounding fluid. It 
will be much larger if the fluid moves past the plant (or vice versa) 
and continually renews the nutrients in an impoverished film immedi-
ately surrounding the plant than if there is no such relative motion. 
The effect of the moving water is designated as "forced convection," 
the remaining part as "diffusion." 

The forced convection depends on the velocity v of the fluid relative 
to the plant. This velocity is measured at some distance, say at least 
three diameters, from the plant, where the disturbing effect on the 
flow by the plant itself is negligible. We must distinguish between 
attached3 plants and freely sinking plants. In the former case the 
velocity vis an independent variable and is determined by wave action, 
currents, etc. In the latter case v is dependent only on the properties 
of the plant and the fluid, provided the effect of turbulence does not 
have to be taken into account. Apparently this is the case, as will 
be shown. 

The solutions have been derived for five cases: an attached plate, a 
freely sinking plate, disc, sphere and cylinder. The geometry and 
dimensions are given in Fig. 1. Such simple geometric arrays are 
quite inadequate to represent intricate plant forms. All that can be 
said is that this is the best that can be done and that it is better than 
making no calculations at all. An indication of the uncertainties 
arising from the representation of plants by simple geometric bodies 

3 The term "attached" has no bearing here on a flow of nutrients through the stem. 
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Figure 1. Plot of the relative absorption rate, F, as function of the diameter, d, for various 
geometric shapes: a flat plate sinking obliquely along a plane inclined by an angle e, a sphere, 
disc and cylinder sinking vertically as shown. In the case of a sphere, the theoretical relation 
for d/do < 0.4 can be smoothly joined to the empirical relation for d /do > 5. In the case of 
the flat plate the theoretical relation has been confirmed by experiment. In the case of the 
cylinder the relation is wholly empirical. In the case of the disc, it is theoretical. The 
relations bold for water and air, except for cylinders, where separate curves have been con-
structed. 
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is found in the variability of the results among the geometric bodies 
themselves. The terms of the equations are defined as follows: 
v in cm sec-1 velocity of fluid relative to plant, at large distance 

from plant; 
q, in g cm-3 excess in concentration of nutrient at large distances 

from plant over concentration at surface of plant; 
m in g mass of plant; 
r mass of nutrient in plant divided by m; 
p in g cm-3 density of surrounding fluid; 
Ap in g cm-3 mean density of plant minus density of fluid. 

The absorption rates in sec-1 are given by 

cj, 1 
attached plate:4 r- 1 = - - (k'v)2 

; (2) 
rp wd½ 

sinkingplate:4 r-1 =±-(~)\0-
1 (d

2 

sin0)
1
Fv; (3) 

rp P w2 

sinking disc : r-1 = ±_ (~)'r
0
- 1 _<!_ Fd ; 

rp p w 

r-1 = ±_ ( A.p )'r -1 F · 
0 • ' 

rp P 
sinking sphere: 

sinking cylinder: r- 1 = ±_ (~)\0-
1 Fe . 

rp P 

The sinking rates6 in cm sec-1 are 

plate: v = v0 (~ sin 0)'Pr 1 F/; 

w 
disc: v = v0 - F / · 

d ' 

sphere: v = Vo F.'; 

cylinder: v = v0 F c' . 

We shall also need 

(4) 

(5) 

(6) 

(3a) 

(4a) 

(5a) 

(6a) 

4 For the plate we have assumed diffusion negligible compared to forced convec-
tion, as will be the case except for extremely small values of v. 

5 The expressions for the sinking rate are more elaborate than ordinarily required 
in order to make it possible to plot the F and F' function against the same parameter 
d/do. Thus the diffusivity k enters through vo, and hence Vo on one hand, and through 
ao, and hence do on the other hand, but actually the sinking rate is independent of k. 
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do = o0(t:..p/p)-i, Vo = vo(t:..p/p)i. (7) 

Definitions and values are contained in Table I. Scale factors of 
time, ro, of diameter, 00, and of speed, vo, depend only on th~ vi~cosity 
and diffusivity of the surrounding medium. The effect of size 1s con-
tained in the F and F' functions. These are plotted in Figs. 1 and 2 

k 
k' 
Pr 

lio 
Vo 

TABLE I. DEFINITIONS AND VALUES OF CONSTANTS 

cm2 sec-1 

cm2 sec-1 

cm2 sec-1 

viscosity at 20° C 
diffusivity* at 20° C 
1 . 8 k'/3 v-1/3 
Prandtl number, vk-1 

Water 

0 .01 
2x1Q-5 

4 .5xl0-6 

5. 0xl02 

Air 

0.15 
0 .15 
0.27 
1.00 

sec (v2/g2k) 1/3 1. 73x10-2 0 . 54xlQ-2 
cm (72v k/g) 1l3 0 . 24x10--2 12. 0xl0-2 
cmsec-1 (k2 g/72v)1/3 8.17x10-3 1.27 

• The diffusion coefficient may vary by a factor of two depending on the nature 
of the solute. 

against d/d0, where d is the diameter (the length in the direction of 
flow in the case of the plate). Numerical examples are given in Sec-
tion 4. Table I and Figs. 1 and 2 deal with water and air, but no 
application will be made to conditions in air. 

3. ATTACHED PLANTS 

We shall represent a leaf by a thin plate of density p and with the 
dimensions given in Fig. 1. The flow is along d. The surface area on 
both sides is s = 2ld, and the mass m = pldw = p(½ s)w. It follows 
from equation (1) that 

q r m rpw 

s T 8 2r 

is the absorption per unit surface area. Solving equation (2) for v 
yields 

V = (~)2 ~±. 
s <f,2 k' 

Setting the absorption at q/s = 10-10 g sec-1 cm-2, <f, = 3.lxio-s g cm-3 

(1 µg-at P/l), d = 4 cm, yields v = 37 cm/sec. If the nutrient concen-
tration is reduced to 0.5 µg-at P/l, v = 150 cm/sec. It would appear 
that attached plants must obtain their nutrients from the sea bottom 
or a bacterial slime film, or otherwise exist in an environment rich in 
nutrients and exposed to high velocities such as are found in shallow 
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Figure 2. Plot of the relative sinking rate, F', as f unction of the diameter, d, for the 
various geometric shapes considered in Fig. 1. The curves are based on both theoretical 
a.nd experimental considerations. 
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water along open coast lines. Unattached plants can meet their 
nutrient requirements by being small, as will be shown next. 

4. SINKING PLANTS 

The curves in Fig. 1 show the effect of size on absorption time. For 
any given form and shape (w/d constant), the absorption time always 
increases with increasing size. As far as absorption of nutrients is 
concerned, small size is therefore always an advantage. This factor 
is, of course, only a part of a complex problem which involves the 
merits of structural differentiation, the predator-prey relationships, etc. 

Let the slope of the curves be denoted by 
dlog F 

m =--, (8) 
d log x 

where x = d/d0 • For the plate, mv = -1. This means that the ab-
sorption rate per unit mass is doubled when the dimension d is halved. 
For cylinders, me = -1.2. For large spheres, m. - 1. 1; for small 
spheres, m. = - 2.0. The advantage of small size is most pronounced 
for small spheres. The change in slope6 of the curve for spheres repre-
sents a marked change in the advantage of small size for spheres smaller 
than do as compared to spheres larger than do. It may be significant 
that, in the case of water, do is roughly 0.01 cm (100 µ), a value fairly 
representative of the diameter of diatoms. 

In the case of sinking plates, the absorption time varies as w213 d1' 3• 

It is remarkable how much more effectively the production of organic 
material is increased by splitting as compared to dividing lengthwise 
(in the direction of flow). Splitting increases r-1 by 2213, dividing by 2113• 

The number of diatoms resulting from a single diatom by dividing after 
n generations is 2n. In the same time interval the splitting diatoms 
will have gone through 2113 n generations, and the number of diatoms 
will equal 22113n . The ratio 2(21/Li)n equals 100 after 25 generations. 

A few examples will illustrate the application of the formulae and 
the kind of information they provide on the problems of diatom exist-
ence. Assume an array of diatoms approximating the ideal shapes 
of spheres,7 discs, and long cylinders and plates in which the dimension 

6 The physical interpretation of this change in slope is that for d((do absorption 
is largely by diffusion, whereas for d >> do absorption is largely by forced convection. 
An increase in size leads to a smaller surface/volume ratio, and this is always unfavor-
able. In the case of convection, however, some of the disadvantage is offset by an 
increase in the sinking rate. 

7 While true spheres are rare, the specifications will be closely approximated by 
discs in which the thickness equals the diameter and perhaps also by more irregular 
shapes such as Biddulphia. 
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d (Fig. 1) ranges from .0005 to .03 cm (5 to 300 µ). Let the ratio of 
diameter to thickness in the discs be 3 :1 and of width to thickness in 
the plates 5 :1_. . ~he angl_e of the !?late is 10°. Phosphorus is desig-
nated as the hm1tmg nutrient, and its concentration r in the diatom is 
assumed to be .001 (based on the estimate that phosphorus constitutes 
about 1 % of the total organic matter and that the latter is about 10% 
of the wet weight). 

10""'----'---'--~~~~~~~ 
5}'- 10 20 40 60 IOO 200 300 }'- 10 

d 
20 40 60 100 200 300 I'-

d 

Figure 3. Absorption rates ,-, (in sec-•) for bodies of various sizes d (in µ) corresponding 
to example 1 Oeft) and example 3 (right). 

Example I. In well fertilized laboratory media, diatoms generally 
have a nearly negligible sinking rate. A similar condition may exist 
in the sea during flowerings. To simulate this condition in the model, 
let !:1p/p = .0001; <f, = 3.1 x 10-s g cm-3 (1 µg-at P/l). This gives 
do = 0.052 cm, v0 = 3.8 x 10-4 cm sec-1, according to equations (7). 
For a sphere in water with d = 0.01 cm (100 µ), we find d/do = 0.19, 
and hence F. = 19, F.' = 1.5, according to Figs. 1 and 2 respectively. 
From equation (5) we obtain r-1 = 7.1 x 10-5 sec-1, or r = 4 hours; 
from (5a) v = 5.6 x 10-4 cm sec-1, or 2 cm/hour. The computed ab-
sorption rates are plotted in Fig. 3 (left). They set a maximum limit 
to the size of diatoms that can absorb sufficient phosphorus to main-
tain an adequate division rate. For example, one division per day 
(r-1 = 1.16 x 10-6) requires that the width of a plate shall not exceed 
76 µ and that the diameter of spheres, discs and cylinders shall not be 
greater than 260, 300, and 105 µ respectively. More than 90% of the 
marine diatom species fall within the prescribed maximum limits. 
Larger sizes require further reductions in specific gravity in order to 
maintain negligible sinking rates, and nutrient absorption then re-
quires an increase in <f, or a decrease in r. 
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Example 2. If ct, is reduced to 3.1 x 10-9 g cm-3 (0.1 µg-at P/l) and 
other conditions remain the same, the value of r-1 in Fig. 3 (left) will 
be reduced one order of magnitude. Plates and cylinders capable of 
maintaining one division per day will then have a maximum dimension 
d of less than 10 µ. Spheres and discs will have maximum diameters 
of 61 and 65 µ respectively. These are unrealistic results, particularly 
for plates ap.d cylinders. Larger species have been observed in the 
sea under conditions of severe nutrient depletion. 

Example 3. ct, remains 3.1 x 10-9 g cm-3• Let 6.p/p increase to .02; 
i. e., the specific gravity of the diatoms is now about 1.045. Unfortu-
nately the flat disc can no longer be included in the calculation, since 
the value of d/do exceeds the limits of the curve in Fig. 1. The other 
calculations are illustrated in Fig. 3 (right). The relative effectiveness 
of plates and cylinders is now greatly increased. The maximum size 
permitting one division per day ranges between 48 and 95 µ in the 
different groups. 

The change is due of course to the fact that the increase in specific 
gravity increases the sinking rate and thereby accelerates nutrient 
absorption. It should be pointed out in this connection that nutrient 
depletion in experimental cultures is commonly accompanied by an 
increased sinking rate. The same phenomenon may occur in the sea 
toward the end of a flowering and perhaps throughout the summer. 
There may be an increase in specific gravity due to the accumulation 
of storage products that cannot be used for reproduction because of 
nutrient deficiency. If so, we can postulate a self-regulatory device, 
since the accumulation of storage products will automatically increase 
the rate of nutrient absorption. However, the value of such a device 
is limited. It serves no useful purpose if the sinking rate is rapid 
enough to carry the diatoms below the euphotic zone before the neces-
sary cell divisions occur. The calculated sinking speeds shown in 
Fig. 4 are by no means negligible for the larger size categories. Thus 
it becomes necessary to include the problem of flotation in the solution 
of the example. 

It should be pointed out that values for 6.p/ p have been so chosen as 
to yield realistic results with regard to absorption rates. These values 
of 6.p/p may be regarded as minimum values; if they were smaller it 
would be impossible to reconcile the computed absorption rate with 
the observed rate of division. In this regard it can be noted that the 
minimum value under natural conditions (example 3) is several hun-
dred times the value corresponding to well fertilized laboratory media 
(example 1). Values of 6.p/p can be larger than those given. In that 
case conditions other than nutrient absorption must be limiting the 
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Figure 4, The sinking speed v (in cm sec-•) tor bodies of various sizes d (In µ), corre-

sponding to example 3, with l!,.p /p = 0.02. 
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rate of division. Apparently values of llp/ p cannot be very much 
larger, or they would lead to unrealistic sinking rates. For the purpose 
of this paper we shall develop the implications of the hypothesis that 
nutrient absorption is one limiting factor. Our evidence does not 
permit us to say whether this is usually, or even sometimes, the case. 
On the other hand, there is nothing in our quantitative results that 
would make this hypothesis difficult to maintain. 

5. THE FLOTATION PROBLEM 

Perhaps the simplest way to analyze the flotation problem is to make 
use of a theoretical relationship derived by Riley, Stommel; and 
Bumpus (1949: 90). It postulates that a steady state, nonvanishing 
plankton distribution cannot occur if v2 > 4Aw, where vis the sinking 
speed, A is the coefficient of vertical eddy diffusivity, and w is the mean 
coefficient of production in the euphotic zone. 

Other factors may enter the situation and require a lesser sinking 
speed, but for present purposes it is sufficient to assume that equality 
exists in the steady state condition. In addition to the sinking speeds 
in Fig. 4, the analysis requires that we stipulate reasonable values for 
the eddy coefficient and utilize the calculated nutrient absorption 
rates to estimate the mean production coefficient w. The latter was 
originally defined as the net production coefficient, i. e., diatom multi-
plication minus predation. In the first approximation we shall as-
sume that predation is negligible, but we shall have to revise the 
assumption subsequently in Section 6. 

The following considerations enter into the calculation of w: 
1. Although the absorption curves in Fig. 3 (right) theoretically 

permit the small cells to divide many times per day, there exists an 
inherent biological limit that cannot be surpassed. We shall simplify 
the situation by assuming that when nutrients are not limiting, the 
maximum production coefficient, occurring in the upper 20% of the 
euphotic zone, is 2.32 x 10-6/sec (two divisions per day). 

2. It will be assumed that in the remainder of the euphotic zone the 
limiting effect of light produces an exponential decrease with depth to 
1 % of the surface value. The resulting curve for maximum produc-
tion is shown as a solid line in Fig. 5 (left). 

3. Whe~ lack of nutrients reduces surface production, the form of 
the curve 1s assumed to change as shown by the dotted line in Fig. 5 
(left). Fig. 5 (right) shows the relationship between surface and mean 
production that results from these assumptions. 

Thus Figs. 3 (left) and 5 (left) may be used to estimate the mean 
production coefficient w for various sizes and shapes of cells. Exam-
ples are given in Table II, which also lists a critical coefficient w': 



...... 
co 
c,, 

TABLE II. PRODUCTION COEFFICIENTS 

Spher ylinde Plat 

d 106 w 106 w' lQ6 w 106 w ' lQB W 106 w ' g 
µ sec-1 sec-1 sec-1 sec-1 sec- 1 sec-1 ?i" 

A (cm•sec-1) A (cm2sec-1) A (cm2sec-1) A 

10 50 10 50 10 50 R.. 

5 9.2 l .8x10- • 3.6xl0-6 9.2 4 .2x10-s 8.4xIO-• 9 .2 5. 6x10-2 l . lx10-2 :;:i:, 

10 9 .2 3 .0xIO-• 6.0xIO-• 9.2 4. 9x1Q- 2 9 .8x10-a 9 .2 2.2x10-1 4 .4x10-2 "' «:: 
20 9 .2 4.8x10-3 9.6xIO-• 9.2 5. lx10-1 1.ox10-1 9 .2 9 .0x10-1 l .8x10-1 .. 
30 9.2 2.5x10-2 5.0x1Q-3 8 .9 2 .2 4.4x10-1 7 .8 2 .0 4 .0x10-1 ;i,.. 

0-

"' 40 9.2 8. lxI0-2 l .6x10-2 7.3 5.6 1. 2 6.6 3.6 7 . 2x10-1 C 

50 9 .2 2 .0xI0-1 4.0x10-2 6.1 11 2.2 5 .6 5 .6 1.1 ..,, 
60 9 .2 4.2xlQ-l 8 .4x10- 2 5.3 20 4.0 4 .9 8.1 1. 6 C 

70 8 .0 7.8xlQ-I 1. 6x10-1 4.7 32 6 .4 4.4 11 2 .2 
80 7.0 1.3 2. 6x10- 1 4 .2 48 9.6 4.1 14 2 .8 
90 6 .3 2 .2 4.4xlQ-l 3.9 73 15 3 .8 18 3.6 

100 5.6 3.3 6.6x10-1 3 .5 3.5 22 4 .4 & ..,, 
150 3 .7 17 3 .4 2.5 2.6 50 10 "' t 
200 2.9 58 12 1. 9 2.0 "' 
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When w exceeds w', the cells will increase unless predation is equal to 
the diff erence between the two quantities. When w is less than w', 
the species must vanish. Lines in Table II indicate approximately 
the maximum size of cells that can exist in a steady state condition 
(w = w'). 

-----~--~--,---~a 

100L----1 __ .J.. __ ..,_ __ .,_____, 

Ix 10·' 

w. sec-• 
1x10-, 

SURFACE w, sec-I 

' u 
4 

3 

Figure 5. Left: Production coefficient as funct,ion of depth. Dashed line illustrates case 
where nutrient absorption limi ts production to 1 division in 105 seconds in upper 35% of 
euphotic zone, and the light intensity limits production in lower 65 %- Solid line represents 
conditions for unlimited nutrient supply. Right: Relationship between surface production 
and mean production in euphotic zone. 

The results serve only to specify maximum size limits. They reveal 
no good reasons for the evolution of the diatoms into a variety of 
shapes and sizes. Fig. 3 and Table II indicate that it is an advantage 
for them to be small. In all size categories, a primitive centric type 
approximating a sphere appears to be slightly superior to the more 
elaborate shapes. 

6. THE GRAZING FACTOR 

The fact that neither flotation nor nutrient absorption imposes 
severe limits upon cells of less than 20 µ. must mean that some other 
factor is decidedly unfavorable. Otherwise the larger species would 
not be able to compete with the small cells. Predation is a possible 
explanation. Although it has been demonstrated (Harvey, 1937) that 
a large copepod such as Calanus finmarchicus feeds most effectively on 
large cells, it seems likely that the small animals which constitute the 
major bulk of the zooplankton population woi.ild have definite limits 
as to the size of the food they encompass. Therefore, two hypotheses 
are proposed: (a) The average predation coefficient decreases with an 
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increase in the size of the food species; (b) the coefficient of predation 
on a sphere is larger than for a cylinder of the same diameter or for a 
plate of the same width. 

An analysis of the hypotheses may be developed as follows: 
1. Assume a diatom population of spheres, cylinders, and plates of 

varying sizes up to the maximum size that can maintain a steady state 
(cf Table II). In each size category, let the number of spheres, 
cylinders, and plates be initially equal. 

2. Further assume that the total number of cells in the population 
has a steady state existence. This does not necessarily imply that 
any particular shape of cell exists in a steady state, but if, for example, 
the number of spheres of a particular size increases, there must be a 
corresponding decrease of plates or cylinders. The requirements of 
the first two assumptions will be fulfilled if, in each size category, the 
production coefficient equals the mean value of w' (Table II) for the 
three shapes. This in turn requires that the predation coefficient equal 
the mean value of w - w'. The latter decreases with increasing size of 
the cells in accordance with hypothesis (a). 

3. To fulfill hypothesis (b), a modification must now be introduced. 
It is arbitrarily assumed that the coefficient of predation on a cylinder 
of a given diameter and on a plate of the same width will be equal to 
the predation on a sphere with a diameter three times as large. This 
is readily accomplished in the model by comparing 10 µ cylinders and 
plates with 30 µ spheres, etc. 

Thus in the two examples in Table II (A = 10 and A = 50 cm2 

sec-1) , positive values of w - w' are averaged for each of the stipulated 
size groups. For each shape, the deviation of w - w' from the mean 
is plotted in Fig. 6. Within the limits of the simplified assumptions, 
the deviations of each shape from the steady state existence of the 
population as a whole are indicative of the competition pressure exerted 
by a particular size and shape of diatom. 

Cells of less than 20 µ show no striking differences in ability to com-
pete. Within this range, competition must depend primarily upon 
factors that are not considered in the present analysis, namely inherent 
biological potentialities and reactions to the physical variations of the 
environment. In the larger size categories, cylinders appear to be 
particularly effective in the size range of 20 to 55 µ, plates from 30 to 
95 µ. The spheroidal type appears to have a wider range of effective-
ness than the other two shapes. In the present example it is not 
excessively dominant in any size category, but the form of the curve 
can be altered by changing assumption 3. If the spheres are compared 
with other shapes of half the size, instead of one-third, there is a strong 
peak of effectiveness centered at 60 µ. 
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7. COMPARISON WITH OBSERVED SIZE-FREQUENCY 
DISTRIBUTIONS 

To determine whether these results have any meaning, we must 
inquire as to whether they bear any relation to observed di_ato~ speci-
ation. A list of species was prepared, more or less approximatmg the 
ideal shapes under consideration. The list will not be reproduced in 
detail, but the following genera were included: 

Spheroids 
Thalassiosira 
Coscinodiscus 
H yalodiscus 
Lauderia 
Stephanodiscus 
Biddulphia 

22 species 

Cylinders 
Rhizosolenia 
Lauderia 
Schroderella 
Dactyliosolen 
Leptocylindricus 
Guinardia 
Ditylum 
Cerataulina 

31 species 

Plates 
Eucampia 
Climacodium 
Streptotheca 
Hemiaulis 
Striatella 
Plagiogramma 
Pseudoeunotia 
Achnathes 

11 species 

Lauderia glacialis is placed among the spheroids, L. borealis with the 
cylinders. 

The size limits of each species as listed by Cupp (1943) were then used 
to determine the size-frequency distribution of each shape, expressed 
as the percentage of the total number of species occurring in each size 
category. The results, plotted in Fig. 6, show that frequency modes 
of observed speciation correspond with favorable portions of the 
theoretical curves. 

The large and important genus Chaetoceros is not included in the 
analysis. The individual species intergrade between plate-like and 
cylindrical form. The effect of the spines on its behavior is uncertain. 
However, examination of the genus shows a mode in the number of 
species at 12 µ, with less than 20% of the species in any size category 
above 35 µ. It could be placed with plates or cylinders without pro-
ducing serious discord. 

A small number of spheroids and cylinders (primarily Coscinodiscus 
and Rhizosolenia) greatly exceed the maximum size limits predicted by 
the example. They probably represent a special case that does not 
meet the initial assumptions. Coscinodiscus in particular has an un-
usually large vacuole, which probably gives it an abnormally low 
specific gravity and nutrient content. This appears on theoretical 
grounds to be virtually a necessity for large diatoms occurring in stable 
waters deficient in nutrients. For example, the 200 µ sphere in Table 
II requires an eddy coefficient of 200 cm2 sec-1 in order to maintain 
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Figure 6. The dashed lines, corresponding to eddy viscosities of 10 and 50 cm• sec-1, are 
Indicative of the "competition pressure" exerted by diatoms of stated shapes and sizes. 
These curves are based on an analysis which takes into account nutrient absorption , the 
flotation problem (including sinking rates and vertical overturn), and the grazing factor. 
The solid curves give the observed size-frequency distribution for species resembling spheroids, 
cylinders, and plates, respectively. 
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a steady state in the absence of predation. If this cell is increased to 
a diameter of 300 µ solely by the addition of vacuolar space containing 
a fluid of the specific gravity and phosphorus content of the surround-
ing sea water, it will then be capable of maintaining a steady state in 
the absence of predation with an eddy diffusion coefficient of only 17 
cm2 sec-1• 

In short, the analysis has revealed a situation too eomplicated to be 
tested easily by experiments or to be solved indisputably by theory. 
However, the calculated curves of competition pressure in relation to 
size and shape find some degree of support in the observable facts of 
nature. It seems likely that diatom speciation is the product of three 
essential ingredients-responses to proqlems of flotation, nutrient 
absorption, and predation. In large diatoms the chief problems are 
flotation and nutrient absorption, and adaptations that tend to reduce 
these difficulties have been noted. In small diatoms, predation ap-
pears to be more important, and it is common to find chain formation 
and elaboration of shape, which must be of some help in avoiding 
nauplii and other small predators. In the intermediate size range, the 
formation of chains is presumed to be advantageous from the stand-
point of predation, but it tends to endanger flotation and nutrient 
absorption. Here some curious adaptations are found. Thalassiosira 
and some other genera succeed in forming chains without sacrificing 
the advantages of discoid shape. About half of the plate-like species 
form chains that are curved or twisted. This tends to impart lateral 
motion to the sinking cells, thus improving nutrient absorption without 
greatly affecting the vertical velocity. 

8. THE EFFECT OF TEMPERATURE ON ABSORPTION 

A change in temperature will effect the rate of absorption by varying 
the physical constants in the surrounding medium and possibly by 
changes inside the plankton. We shall consider the external effects 
only. These may be regarded as constituting a lower limit on the 
temperature effect. 

By far the most important effect of temperature can be ascribed to 
variations in diffusion coefficient k and viscosity JI. In most sub-
stances the viscosity decreases with temperature by about 2.5%/°C 
whereas the diffusion coefficient increases by about the same amount: 

l dk l dJ1 
a= -- = - -- = 0.025 (°C)-1 

k dT JI dT . 

The coefficients appear in the combination (J1k)1i3 in the parameter do, 
and the temperature effects of J1 and k cancel in the first approximation. 
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The coefficients appear also in the constant -r0- 1 in the combination 
kl/8 11- 2/8, This leads to 

1 d-r-1 1 d-ro-1 

--=---=a 
-r- 1 dT -r0- 1 dT 

(9) 

for sinking plates, spheres and cylinders alike. Goldberg's8 very rough 
estimate on the basis of his experiments is a factor of 5-10%/°C, i.e., 
from 2 a to 4 a. According to (9) the maximum absorption rate in the 
tropics might be roughly twice that in the arctic. Similar results have 
been obtained in studies of the photosynthesis and growth of natural 
phytoplankton populations (Riley, Stommel and Bumpus, 1949: 94). 

9. THE EFFECT OF TURBULENCE AND NOISE ON 
ABSORPTION 

In our discussion we have dealt with sinking through still water. 
Yet whenever suitable measurements have been made, it has been 
found that the ocean is in turbulent motion. 

Turbulence enters the general problem in a number of ways: it 
brings about the replenishment of the nutrients in the euphotic zone, 
i. e., it affects the value of cf, in our equation (1); large eddies help 
maintain the sinking diatoms in the euphotic zone (Section 5); turbu-
lence also erases the tiny trails of impoverished water left behind the 
individual diatoms sinking through the water. These effects enter 
only indirectly into the problem concerning the absorption of nutrients 
by sinking diatoms. 

Here we shall be concerned only with the effect of turbulence in 
increasing the volume of water with which plankton are in immediate 
contact. For this purpose turbulence can be regarded to include all 
the unsteady motion. This motion can be resolved into many dif-
ferent frequencies. Low frequencies, with periods of, say, 10 seconds, 
are due largely to ocean waves (whether the waves are regular or not 
is of no consequence here); noise in the seais associated with frequencies 
above 100 cycles/sec. Consider now a small sphere slowly sinking 
through water. The sphere can follow low frequency oscillations of 
the surrounding water without appreciable lag. However, with in-
creasing frequency a condition is reached where the sphere is no longer 
able to follow the water motion without lag. For even higher fre-
quencies the sphere will remain virtually stationary, while the water 
will wash back and forth along its sides. Such high frequency turbu-
lence is therefore associated with a "forced draft" which can be 
expected to increase the nutrient made available to plankton. 

8 Personal co=unication. 
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For any fixed amplitude of oscillation, the most effective forced 
draft is associated with the highest frequencies, i. e., acoustic noise. 
However it is found that amplitude of oscillations in the ocean drops 
off so rap

1

idly with increasing frequency that the most effective portion 
of the turbulence spectrum lies in the low frequencies. Even there, as 
will be shown, the effect is quite small. 

TABLE III. VALUES OF PERTINENT PARAMETERS 

Surface waves 
10-1 

15,000 
2x10-• 
0.03 

Sound waves 

Frequency a/2,,- in cycles per second 
Wave length Lin cm 
f3 for d = 10-2cm (100µ) 
'Y for d = 10-1cm (100µ) 

102 
1500 

2xl0-6 

0.9 

1Q4 

15 
2x10-a 

9 

The theory is rather involved. Fortunately it is closely related to 
the problem of the attenuation of sound by fog, which has received the 
attention of the mathematicians and experimentalists (Epstein, 1941). 
Let us define the ventilation 

h = Vu,ator - V,ph•re 

VstokH 

as the ratio between the mean slippage through the water associated 
with turbulence, and the sinking velocity v s1.oke1 according to Stokes' 
law. The slippage depends on three dimensionless quantities, 

t:.p 1rd ud2 

p (3 = T ' 'Y
2 

= s v ' 

where L is the wave length, u frequency, and C = Lu/21r the wave 
velocity. Some values of (3 and 'Y are given in Table III. It appears 
that 'Y may be large or small compared to unity but that (3 « 1. In 
addition (t:.p/p) « 1. With these approximations it can be shown 
(Appendix 2) that 

where 

4811 
h = - f(-y)V, 

1rgd2 
(10) 

f = ½, 
according to whether the frequency is small (-y « 1) or large (-y » 1). 
Here Vis the amplitude of the velocity of oscillation of the water. 

Surf ace Waves. For very low frequencies equation (10) gives the 
ventilation arising from the viscous effects only. This can be used to 
analyze the effect of surface waves whose height H equals 2V/u and 
wave length L = 21rg/u2

• Equation (10) then becomes simply ' 

h = 2H/L. 
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The theoretical maximum for H/L equals 1/7 and leads to h = 0.28. 
This value is attained only under extreme conditions; furthermore it 
applies only to a thin upper layer of thickness, say L/10, and dimin-
ishes rapidly with increasing depth. Thus under extreme conditions 
the absorption may be increased by something like 25% in the upper 
10 or 20 feet. 

Noise. For ambient sound it is convenient to convert the amplitude 
of oscillation to pressure amplitude P and express these in the cus-
tomary units (see, for example, Knudsen and Harris, 1950). Thus 

p 1 
V = - p = -- 1ou120 

pC' 5000 ' 

where L' is the sound level in db's above 0.002 dynes cm-2• Measure-
ments of ambient noise (Knudsen, et al., 1948) are well represented by 
straight lines on a graph L' against log u, such as 

L' = 20 a - 20 b log(u/1000) . 
This leads to 

4811 /(-y) 
oh = ----- 1oa+3b u-b O<J' 

5000 1rpgCd2 

for each frequency band ou. We shall overestimate the effect by 
setting f ( -y) = ½. Integrating from u1 to u2, this gives 

where 
2411 

ho=-----
5000 1r pgC d2 

equals 10-9 for d = 0.0l cm (100 µ,). 
For ordinary water noises from 100 to 25,000 cycles, a = 2.25, b = 0.8. 

Since 1 - b is positive, the larger contribution is made by the higher 
frequencies. Between the stated limits, this gives h = 10-3, 

In a very noisy croaker bed one may set a = 4, b = 0 from u = 102 

to 103 sec-1, and a = 4, b = 3 from 103 to 104 sec-1. These values lead 
to h = 10-2 for either range of frequencies. The effect of ambient 
noise is therefore negligible. 

APPENDIX I: DERIVATION OF ABSORPTION RATES 

The three nondimensional numbers that are encountered in problems 
of forced convection are the Reynolds, Prandtl, and Nusselt numbers 
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(11) 

In some texts the Peclet number Pe = Re Pr is referred to. Here vis 
the velocity at large distances, J1 the kinematic viscosity, k the di~u-
sivity, q the grams of a concentrate transferred each second t~ an im-
mersed body of surface area s, <J, the concentration at large distances 
over that at the surface of the body (in g cm-3), and d a representative 
dimension of the body. Let p be the volume, p the density, and 
m = pp be the mass of the body. Then equation (1) can be written 

(12) 

where 
G = sd/cp (13) 

depends on the geometric dimensions, and 

F = 72-213 c Nu(d/d0)-2 • (14) 

The constant c is so chosen as to make Ga ratio of dimensions only. 
With regard to sinking rate, it is convenient to define a quantity 

uo = k/d0• Then it follows from (11) that 
u Re Pr 

Uo d/do 
(15) 

Attached Plate. This problem has been studied theoretically by 
Pohlhausen with regard to a flat plate thermometer oriented parallel 
to flow (Goldstein, 1938: Chap. 14). For one side of the plate 

Nu = 0.67 Prt Re½, (16) 

where d in the Reynolds number now represents the length of a thin 
plate in the direction of flow. The equation has been verified experi-
mentally. For the dimension as given in Fig. 1, substitution of (16) 
into (1) leads at once to equation (2). 

Sinking Plate. The quantity v is no longer an independent variable 
but equals the sinking speed. Consider the plate slicing obliquely 
downward and forming an angle 0 with the horizontal (Fig. 1). Then 
after the plate has reached its terminal velocity, the frictional forces 
on its sides is balanced by the pull of gravity: 

2Tld = g sin 0 !::i.p lwd , 

where T is the frictional stress per unit surface area and !::i.p the density 
of the diatom minus the density of the surrounding medium. The 
stress can be equated to 
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T = vp(±!_) = 2vvp-2- 'JV 
dy 11-0 5 . 83 V ;a: 

I 

according to Von Karman's boundary layer theory (Goldstein, 1938: 
Chap. 4). This leads to the dimensionless expression 

Re312 = O.73(!:l.p/p)g sin 0 wd2v-2 

= (0.73)(72) sin O (w/d) Pr-1(d/d0) 3 (17) 

for the sinking rate v = Re v/d along an axis inclined by an angle 0. 
Combining equations (13) to (17) leads to 

Gp = (d2 sin O/w2) 1i'&, 
F P = (1.34) (O. 73)1/3(72)-1i3(d/do)-1 = 0.29(d/d0)-1 , 

Fp' = (0.73)2/3 (72)2i3(d/d0) = 14(d/do). 

Sinking Sphere. For Pr from 0.7 to 400 and Nu from 10 to 40, the 
following relationship is in agreement with experimental evidence and 
dimensional considerations (Kramer, 1946): 

Nu = 2.0 + 1.3 Pr0·15 + 0.66 Pr0·31 Re0•15 • (18) 

Note the combination Pr0 •31 Re0-5, which is similar to the one encoun-
tered for the fl.at plate. For water and air this becomes, respectively 

Nu = 5.3 + 4.6 Re0-5 

Nu = 3.3 + 0.66 Re0-5 • 

(18w) 
(18a) 

In these experiments the rate of fl.ow past the sphere, as expressed 
by Re, could be varied independently. For freely falling spheres, it is 
already determined by the balance between the gravitational force and 
the drag: 

,r !lp gda = CD pv2(1rd2) . 
6 2 4 

The drag coefficient in the range over which Stokes' law is applicable 
equals CD = 24 Re-1• We shall write, in general, 

CD= 24Re-1 f., (19) 

where the function f. (Re) can be taken from experimental data 
(Goldstein, 1938: 493). This leads to the dimensionless expression 

f, Re Pr = 4(d/d0) 3 (20) 

for the sinking rate v = v Re/d of a freely falling sphere. Thus F .' = 

4(d/d0) 2/f,. The absorption rate for the sphere (eq. 5) is now obtained 
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in the following manner: in eq. (13) we set s = 1rd2
, p = 1rd3/6, and 

c = 6. This leads to G. = 1, and 

F, = 6 x 72-213 Nu(d/d0) - 2 = 0.345 Nu(d/do)-2
• (21) 

We then substitute for Nu in terms of Re according to (18) and for Re 
in terms of d/d0 according to (20). 

For small values of Pe = Re Pr, Kronig and Bruijsten (1951) obtain 
from theory9 

1 581 2 

Nu = 2 + - Pe + -- Pe + . 
2 1920 

(22) 

The empirical and experimental curves are shown in Fig. 1. 

Sinking Disc. According to Oberbeck (Lamb, 1932: 597-604), 
Nu = 8/1r for a disc at rest. This compares to Nu = 2 for a resting 
sphere. Settings = 1rd2/2, p = w1rd2/4, and c = 2 gives Gd = d/w and 
Fa/F. = 4/31r. This ratio applies only to small discs (Fig. 1). We 
know of no empirical or theoretical evidence which would permit us 
to extend these calculations into a more pertinent range. 

In computing the sinking rate of a small disc, we note that, according 
to theory and observations, small (but not too small) objects sink with 
the flat side horizontal. Equating the resistance to the force of gravity, 

61r µ ( :: ) V = 1r ( : y W ~p g 

leads to 

Re Pr = 
9
: ( Y 

for the sinking speed. This yields F/ = (91r/4) (d/d0) 2• 

Sinking Cylinder. Because of the relative ease with which measure-
ments can be made with fine wires, the empirical evidence is more 
complete than for other shapes. For Re > 50, Ulsamer (Kramer, 
1946) finds 

Nu = 0.60 Pr0
·
31 ReO.S . (23a) 

The occurrence of Pr0
·
31 Re0·5 should be noted. For Re from 0.1 to 50, 

Ulsamer finds, on the average, 

Nu = 0.91 Pr0
•
31 ReD.385

• (23b) 

At Re = O.l , Nu ~ Re0
·
3 approximately. There is also some theo-

retical evidence that, for very small Reynolds numbers Nu should be 
a function of (Pr Re) only, hence the exponent of Re ;ould approach 
0.31. Apparently we shall not be far amiss if we set 

' See footnote 10 on p. 240. 
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Nu = 0.8 Pro.31 R eo.s1 

239 

(23c) 

for Re « I. For the long cylinder (unlike the sphere), Nu must ap-
proach zero as R e approaches zero, in agreement with the foregoing 
type of equations. These three equations (23) define the relationship 
Nu(Re) with sufficient accuracy for our purposes. 

We can again express the sinking rate in nondimensional form. 
Using the relationships given by Lamb (1932: 616) we obtain 

where 

-K-~-e-~-:-:-re_ = ! ( :y ' 
81rfe 

CD=------
Re(K - ln Re) 

is the drag coefficient, and f e(Re) can again be determined from em-
pirical data (Goldstein, 1938: 16). For Re« l, Oseen's investigations 
(Lamb, 1932: 616) lead to fe(Re) = I. Here K = 0.5 + log 8 - 'T/ = 
2.00, and 'T/ = 0.577 is Euler's number. Setting s = 1rd, p = 1rd2/4, 
and c = 4 gives Ge = 1, and 

Fe = 4 x 72-213 Nu (d/d0)-
2 = 0.23 Nu (d/do)-2 • (25) 

We then substitute for Nu in terms of Re according to (23) and for Re 
in terms of d/d0 according to (24). 

APPENDIX II. 

The ratio "R" between the displacement of a rigid sphere of density 
p + !:i.p to that of the water (density p) at the position of its center 
when the sphere is absent is given by (Lamb, 1932: 659-661) 

R = I - t:i.p (26) 
pf'+ t:,.p' 

where 

f' = __!_ [2,,2 + 3,, - i (4{3')' + 3')' + 3)]. (27) 
4,,2 

According to Table II, {3 « I. Furthermore, {3 « a, provided 
2vu/C2 « 1 or u « 1012 sec-1• The simplifications resulting from these 
approximations have been incorporated in equations (26) and (27). 

The following extreme cases should be noted: 
1. The sphere oscillates essentially with the surrounding water (R = 1) 
(a) if its density equals that of the surrounding water (t:i.p = 0), (b) for 
low frequencies (u = 0, {3 = 0), (c) for small spheres (d = 0, {3 = 0), 
and (d) for very viscous fluids (11 = oo, ')' = 0). 2. The sphere does 
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not partake in the oscillation of the surrounding water (R = O) if its 
density is large (!lp = oo ). 

If !lp « p, R = I - !lp/pf', then the mean value of v,p11,,, - v..,.,,, 
equals 

V !lp (fr'2 + f/2)-112, 
1( p 

where fr' and f/ are the real and imaginary parts off'. Combining 
this with Stokes' equation for a small sinking sphere leads to 

f(-y) = -y2(4•y4 + 12-y3 + 18-y2 + 18-y + 9)-112 • (28) 
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Footnote 10 (added in page proof). Prof. Paul Epstein has just drawn our atten-
tion to the fact that the method used by Kronig and Bruijsten (1951) leads to a 
divergent series, and that only the first two terms in equation (22) of Appendix I, 
p. 238, are correct. The third term should be - ¼ Pe• ln(tf'e1/ • Pe) instead of 
+ (581/1920) Pe•, where f' = 1.781 is Euler's number. Actually the numerical 
values and the curve in Fig. 1 are not appreciably affected by this correction. 


