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NOTE ON THE DYNAMICS OF THE GULF STREAM 1 

By 

W. H. MUNK,2 3 G. W. GROVES2 AND G. F . CARRIER4 

ABSTRACT 

The nonlinear inertial terms have been neglected in Stommel's and in Munk's 
theory for the wind-driven ocean circulation. Using a method of successive approxi-
mations, the effect of these terms on the mass transport in the Gulf Stream region has 
been computed under greatly simplif ying assumptions. These assumptions involve 
Reid's model of the vertical density structure, which consists of an exponential 
decrease in the density upward to the thermocline and a homogeneous upper layer. 
Assuming first a constant depth of thermocline and a north-south boundary, the 
principal modification is a displacement downstream by about 7° latitude of the 
region of maximum currents. The displacement is smaller in the case of a coastline 
whose orientation deviates from a north-south direction. Assuming next a variation 
in the depth of thermocline across the stream, this asymmetry of the mass transport 
circulation relative to the wind circulation is reduced. It is also shown that the 
density model specifies a relation between the vertically integrated transport and the 
surface transport, according to which tile width of the "cold wall" at the surface is 
only 40% of that of the integrated transport. Two observed features which could 
not be accounted for by the linear theory, the countercurrent inshore and the con-
tinued sharpness of the Gulf Stream's western boundary long after it has left the 
American east coast, are apparently not contained in the higher order solutions. 

INTRODUCTION 

The narrow fast currents that flow along the western boundaries of 
the oceans are among the most striking oceanographic phenomena. 
The outstanding examples are the Kuroshio current off the coast of 
Japan and the Gulf Stream system off the American east coast. 
During the last few years Iselin and Fuglister (1948) and Von Arx 
(1950) have made detailed surveys of the Gulf Stream with new instru-
ments and techniques, among them continuous temperature and cur-
rent recorders and radio aids to navigation. These measurements 
have only served to emphasize the great speed of the Gulf Stream and 
the sharpness of its western boundary. This sharp definition of the 
current, which prompted Benjamin Franklin to call it a great river in 

1 Contribution from the Scripps Institution of Oceanography, New Series No. 496. 
This work represents research carried out for the Office of Naval Research Navy 
Department. ' 

2 Scripps Institution of Oceanography, University of California. 
'Institute of Geophysics, University of California. 
'Department of Applied Mathematics, Brown University. 
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the sea, is perhaps its most striking characteristic. Any adequate 
theory, and there have been many, must account for it . 

Unfortunately there are two theories, both of which explain, though 
for different reasons, the existence of such intense and well defined 
currents. The earlier one is Rossby's (1936) "wake stream" or "jet 
stream" theory, which represents one of his several remarkable at-
tempts to adapt results in fluid mechanics to meteorology and physical 
oceanography. The Gulf Stream is interpreted as "a current moving 
under its own momentum and produced by discharging water into the 
basin through a 'jet"' (the Straits of Florida). The other theory is 
that of Stommel (1948), which explains the westward intensification 
of ocean currents as the result of the earth's rotation on the wind-
driven ocean circulation. The theory has been extended by Munk 
(1950), and for reasons discussed in Munk's paper it will be referred 
to as the "planetary vorticity" theory. 

Both theories have attractive features. The wake stream theory 
accounts for the increase downstream in width and mass transport of 
the Gulf Stream as well as a countercurrent on the inshore side of the 
Gulf Stream.6 The planetary vorticity theory leads to the right order 
of magnitude for the mass transport of the Gulf Stream, and it ac-
counts for a countercurrent on the offshore side. One is therefore 
tempted to combine the two theories into a unified dynamic picture of 
the Gulf Stream. 

The fundamental difference appears to be that in Stommel's and in 
Munk's linear theory the inertial terms in the equations of motion have 
been neglected whereas in Rossby's theory these terms play a pre-
dominant role. Munk estimates the magnitude of these terms a 
posteriori and finds them to be small "except along the inshore edge of 
the we·stern current," where he expects his conclusions to be modified 
in the sense prescribed by Rossby. The procedure here will be to 
consider Munk's solution to the linear theory as a zero approximation 
and to introduce the inertial terms into the fir st and second order 
approximations. 

The mathematics soon becomes so involved that we have found it 
essential to check each step by independent calculations. Only the 
outline of the procedure is sketched here. We suggest that the reader 
confine his attention to the discussion of the somewhat meager results 
from our tedious calculations. 

'The first mention of a countercurrent in the slope water was made in 1590 by 
John White who remarked that in order to stay within the Gulf Stream one had to 
stand far odt to sea, because along the coast there were "eddy currents setting to the 
south and southwest." 
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THE EQUATIONS OF MOTION 

The notation follows Munk (1950); equations from this paper will 
be referred to by the letter A. The inertial terms appear on the left 
sides of equations Al, A4, A6 in the following forms :6 

h h 

pV•VV, f pv•vvdz , - v x f pv•vvdz . 
-ct) -ct) 

In the linear theory it was found possible to write all equations in 
uirms of vertically integrated functions without having to specify the 
manner in which density varies with depth. This is no longer possible 
if the quadratic terms are to be considered. 

Reid (1948) has introduced a simple model for the density distribu-
tion. Let the 2-axis be directed upwards from a level surface just 
beneath the sea surface, and let h designate the elevation of the sea 
surface and H the distance beneath the level reference surface to which 
a homogeneous upper layer of density po extends. Beneath the homo-
geneous layer, Reid assumes an exponential distribution 

p = p"' - dpe1+•JH, 

where dp = p"' - Po, and p"' is the density at great depth (z = - ). 
The horizontal pressure gradient vanishes at great depth, i. e. ,. 

f pdz = constant, which yields 

h 2~p 
-=--
H 

(1) 
Po 

provided the reference level is properly selected. 
The pressure gradient in the x-direction is then given for the upper 

layer by 
apo ah 
-- = gpo- (2) 

ax ax 
and for the lower layer by 

ap l 
- = - gpoel+ z/R (1 
ax 2 

ah 
- z/H)-

ax' (3) 

where use has been made of (1). Similar expressions are valid for 
ap/ay . . Ac~ording to ~he geostrophic law, the pressure gradients are 
proport10na1 to the horizontal velocity components. If v 0 denotes the 
velocity vector in the upper layer, then 

'Here h and - 00 replace zo and - h respectively, in the original notation, 
without any essential change in meaning. ' 
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1 
- Vo ei+•IH(I - z/H) 
2 
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is the corresponding velocity at depths beneath the homogeneous 
layer. It follows that 

,. 
f 29 29 

pV · vvdz = - pH (Vo • v) Vo + - pV 0 (v0 • v) H . 
16 32 -a, 

The second term is negligible since H is nearly constant along a stream 
line. The first term can be combined with 

h 

M = f pVdz = :pllv 0 (4) 
-a, 

to yield ,. 
fpv•vvdz = cM-vM, (5) 

where 
-a, 

c = 29/lO0pH , (6) 

provided variations in density are small compared to the mean density 
p. 

The equation of mass transport A6 then becomes 

(Av• - {3 :x) i/; + curl,~ = c curl. (M • vM) = c (M • v) v 2y;, (7) 

where 
M = k X Vy; 

and curl, designates the vertical component of the vector operator. 
The term on the right side of equation (7) is essentially the advection 
of vorticity and represents the inertial effect. 

For a wind system we set 

T:,; = - r COS ny , T 11 = 0, 

giving maximum easterlies at y = 0 and maximum westerlies at 
y = 1r/n. 

THE CASE OF NORTH-SOUTH BOUNDARIES AND 
CONST ANT DEPTH OF THERMOCLINE 

For this case c is a constant. It is convenient to adopt the following 
nondimensional co-ordinate system: 
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fJ 
x' = kx VI' =-VI 

rnr 

y' = ky fJ (8) M' =--M 
r' = kr krnr 

n4rrc 
y" = ny >. 

4fJ2,y? 
where 

k3 = {3/A , 'Y = n /k. (9) 

It follows that 

a a a a 
-=k- -=k-
ax ax' 1 ay ay' I 

(10) 

so that the differential equation becomes 

( v' 4 - __!_),// =~sin y" + 4-y-1>. curl, (M' · v'M'), (11) 
ax' r' 

M' = k x v'VI' . (12) 

The boundary conditions are 

,j/ = 0' 
a,// 
ax' 

= 0 J (13) 

at the western boundary (x' = 0) and eastern boundary (x' = r'); the 
latter can be replaced by x' = oo as long as we confine our attention to 
conditions near the western boundary. 

Successive Approximations. The first term on the right-hand side 
of equation (11) represents the driving force of the wind, the second 
term incorporates the effect of the neglected inertial terms. The 
relative importance of these inertial terms depends on the value of >-, 
and it seems reasonable to expand the solution in the following power 
series: 

,j/ = r/,o' + >-,J,i' + >.2,J,z' + . . . (14) 

We shall show later that the value of>- is about 0.3 so that the series 
converges fairly rapidly. Substituting (14) into equations (11) and 
(12) and equating equal powers of >- gives 

( v'• - __!_) r/,o' = sin y", (11.0) 
ax' r' 

( v' 4 
- __!_) ,J,t' = 4-y-1 curl, (Mo' · v'Mo'), (11.1) 

ax' 
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( v' 4 
- a:') •h' = 4-y-• curl, (Mo' • v'M 1' + M 1

1 
• v'Mo') , 

.and so forth. Equation (12) holds for each order, that is, 

M;' = k x v'i/;;' i = 0, 1, 2, .. . 

223 

(11.2) 

(12i) 

The Zero Order. To the zero approximation the inertial terms are 
neglected and the solution to (11.0) becomes (Munk and Carrier, 1950) 

i/;o' = X o sin y", (15.0) 
where 

iv'3w 2 iv'3w2 x' 
Xo = 1 +-- e"'•' - -- c"'x' - -

3 3 r' ' 
(16.0) 

and 
1 iv'3 1 iv'3 

w= --+-
2 2 ' 

w2 = -----
2 2 ' 

w3 = 1 

are the cube roots of one. The last term in (16.0) plays a negligible 
role in the western boundary zone of a wide ocean. 

The First Order. The computation is very cumbersome and hence 
only the major steps will be outlined here. The right side of equation 
(11.1) is now a known function of x', since it can be found from equa-
tions (15.0) and (16.0). It reduces to the form 

2F1 sin 2y", (17.1) 
where 

a X o a2 X o aa X o 
F1 = -- --- - Xo--

ax' ax'1 ax'3 
(18.1) 

iv'3w iv'3w2 

_ e-xl _ -- ew'!.xf +-- ewxl • 

3 3 
(19.1) 

The particular and homogeneous integrals of (11.1) are respectively 

[ 
2iv'3w O 2iv'3w2 

] y;/P = -e-:r;I -

9 
X'ew•zl + 

9 
X1e"''

1 Sin 2y" 1 (20.1) 

Y/J1h = [a1e"'2:z;' + a1e"'x'J Sin 2y". (21.1) 

The constants a1 and a1 are determined by subjecting the complete 
,solution y;1' = y;1'P + y;1'h to the boundary conditions (13): 

1 7iv'3 1 7iv'3 
a1 = - +-- . 

2 18 
(22.1) 

The solution is 
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,J;i' = X1 sin 2y", 

X1 = - e-z' + (m1 + in1)ew2x' + (m1 - in1)e"'z', 

[IX, 3 

(23.1) 

(24.1) 

where 
1 1 

m1 = - +-x' 
2 3 ' 

7v3 V3 I 
n1 = - -- + -- X • 

18 9 

The Second Order. Substituting the first order solution (23.1) into 
the right side of the second order equation (11.2) gives 

(2F2 - 4G2) sin y" + (2F2 + 4G2) sin 3y", (17.2) 
where 

a2Xo aX1 a3X1 
F2 = -- -- - X o -- (18.2a) 

ax'2 ax' ax'3 

= (: x' -
1
:) e-z' - (m2 - ini)ew?zl - (mi+ ini)e"'z'! 

4 4 (19.2a) 
__ ezw2zl __ e2w:rJ + e(w2-l)zl + e(w-l)zl , 

9 9 ' 
aXo a2X1 a3Xo 

G2 = -- -- - -- X1 (18.2b) 
ax' ax'2 ax'2 

= (: x' + ~) e-z
1 + : e2w

2
x

1 + : e2wx' } (1
9

_
2
b) 

+ w2e(w2-1) z' + we<w-1>z1 ; 
and 

1 x' 
mi=--+-

2 3 ' 

v3 v3x' 
n2=----. 

18 9 

The particular integral equals 

,J;2'r> = { ( - : x' - 4) e-z' + (m' + in') e"'2x' + (m' - in' ) e"'z' 

4w 2 4w2 1 
__ e2w zl __ e?wzl + _ (13w2 + 11) e(w2-l)zl 

21 21 21 

+ 
2
\ (13w + 11) e<w-l)x'} sin y" + { ( 2x' + 2:) e-z' 

+ ( , + • ') 2 , 4w 4w2 
m tn e"' % + (m' - in') ewzl + - e2w2x1 + _ e2wzl 

63 63 
1 1 } + - (w - 2) e(wZ-l)zl + - (w2 - 2) e(w-l)zl Sin 3y11 

7 7 ' 



1950] Munk, Groves and Carrier: The Gulf Stream 225 

where 

1 1 
- -x'2 - -x' 

9 9 ' 
m' n' 

v3 5v3 
- --x'2 +--x'. 

27 27 

The homogeneous solution is 

y;2'h = [ll2e"'2"''+ ii:i e"'"' '] sin y" + [b2e"'2"''+ b2e"':r:'J sin 3y", (21.2) 

where, according to the boundary conditions, 

11 115iv3 
ll2=-+---

42 378 

1 113iv3 
b2=------

6 378 

and i½, b2 are the corresponding conjugates. The complete second 
order solution is found by adding y;2'P to y;2'h. 

THE CASE OF THE INCLINED BOUNDARY 

Munk and Carrier (1950) have treated the case of a triangular 
ocean, with a western boundary inclined by an angle 8 from a north-
south direction. For an application of the foregoing results to the 
Gulf Stream, whose over-all direction along the western boundary of 
the Atlantic is more nearly eastward than northward, it is necessary 
to see what modifications are introduced by such an inclination. 

It will be convenient to introduce the parameter 

p3 = cos4 8 

and to transform to the co-ordinate system 

I; = px' - py' tan 8, r = y'. 

(25) 

(26) 

Here I; represents the (nondimensional) distance from the inclined 
western boundary. Then 

a a 
ax' = p aI; , 

a 
- p tan8-

aI; , 
a 

ay' 
a a 

v' =q-+j-, 
as ar 

a4 
v'4 =par, 

where q = p(i - j tan 8). The approximations involved 
cussed in Munk and Carrier (1950). It foll ows that 

curl, (M' • v ' M' ) = p312 (if;/if;m' - if;/ if; w ') , 

whereas previously 

curl, (M' · v' M') = y;,/ Yix'x'/ - if; / Ylx'x'/ · 

(27) 

are dis-
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Making the appropriate substitutions, the differential equation (11) 
becomes 

( v' 4 - __!_) if/ = -
1
- sin y" + 4-y-1vp A curl, (M' · v' M' ) , (28) 

at pr' 

with the understanding that all operations now involve ordinary 
Cartesian operators with respect to t and t, and not those defined in 
(27). Thus in equation (28) 

a• a• a• 
v' 4 = - + 2 -- + -

at• ar ar2 ar• ' 
M' k (. 01// + . oif/) = X I- J-

ot at ' 
etc. Equations (28) and (11) are equivalent 
derived solutions apply, provided we write 

and the previously 

pr'' 
for (29) 

A , r' 
' 

x'. 

For fJ = 0, p = 1, the solution reduces again to the case of north-
south boundary. 

DISCUSSION OF SOLUTION 

The solution in real form for the north-south boundaries is then 

if/= Xo sin y" + AX1 sin 2y" + A2 (X2° sin y" + X 2b sin 3y") + . . . (22) 

where 

X o = 1 - [ cos v:3 x' + v:3 sin v:3 x'] e-lz' 
2 3 2 ' 

(23.0) 

[( 
2 ') v3 , ( 1-vs 2v 3 ) . v3 ] XI = 1 + 3x cos 2 X + - -9- + -9- x' sin 2 x' e-lz' 

- e-z' , (23.1) 

[( 
2 2 11) v3 ( 2v3 10v 3 

X2° = - 9 x'2 
- 9 x' + 

21 
cos 2 x' + - 2,7 x'~ + 

11svs) v3 ] [ 4 4v3 + --- sin - x' e-!z' + - cos v 3x' - -- sin v3x' 
189 2 21 21 

- _:_ x' - 4] e-z' + [~ cos VS x' - l
3Y3 sin Y3 x' ] e-~z' 

3 7 2 21 2 (23.2a) 
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X2b = [(- x'2 - _:_ x' - !_) cos v:3 x' + (- 2v3 
x'2 

9 9 3 2 27 

10vl3 173vl3) vl3 ] [ 4 + -- x' - --- sin - x' e-lz' + - - cos v3 x' 
27 189 2 63 

4vl3 . _ , , 28] , [ 5 vl3 + -- sm v3x + 2x + - e-z + - - cos - x' 
63 9 7 2 

+ ~3 
sin ~

3 :t'] e-~,, (23.2b) 

We shall first discuss this solution and then point out the modifications 
introduced by an inclination of the boundary relative to the north-
south direction. · 

The four functions X of the zero, first and second order approxima-
tions are plotted in Fig. 1. The streamlines of the zero, first and 
second order solution are plotted separately in Fig. 2. The three 
parts of the figure must be combined, each part being weighted accord-
ing to the value of A. We shall leave aside for the present the question 
of the value of}.. and consider separately the patterns corresponding to 
the various orders. Allowance must be made for the exaggeration of 
the west-east scale relative to the north-south scale by a factor of 
l01r/96-y, or about 8. Thus the north-flowing currents a.re much more 
intense than they appear on the figures. 

The left part of Fig. 2 gives essentially the solution discussed in 
Munk (1950). The first order solution (Fig. 2, center) reveals four 
vortices with a saddle point at their center. The eastern vortex pair 
is of relatively small interest, as the neglect of the last term in equa-
tion (16.0) introduces errors in the Sargasso Sea area. Of the western 
vortex pair, the southern vortex weakens the Gulf Stream near shore, 
the northern vortex strengthens it. The second order solution (Fig. 2, 
right) reveals three vortices. 

The net modification introduced by the fir st and second order terms 
can be seen qualitatively to consist of !:trengthening the current in 
northern latitudes where all of the terms add and of weakening the 
current in the central portion. As a result the circulation pattern is 
displaced northward. This result could have been anticipated, as one 
would naturally expect the effect of inertia to reduce the current 
strength in a region of acceleration and to increase it in a region of 
deceleration. 7 

7 More precisely, to diminish vorticity in regions where the vortirity increases 

downstream, and vice versa. 
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Figure 1. The finctiona X ot the zero, first and second orders, plotted agalnat Ule non-
dimensional distance z' from the western boundary. 

The quantitative extent of these modifications depends upon the 
numerical value of X. Setting 1r/n = 35° latitude, r" = 6, r = 0.65 
dynes cm- 2

, {3 = 2 X 10-13 cm- 1 sec- 1, -y = 0.04, p = 1.025 g cm- 3 

gives)equations (6) and (8)] 

X = 2784/H, (30) 



·J6 

Figure 2. Streamlines of mass transport. The nondimenslonal west-east scale Is exaggerated relative to the north-south scale by a 
factor of about 8, so that the currents are much more intense t.han they appear In the figure. Left: zero order solution o/,o'; center: first 
order solution ,/,,'; right: second order solution ,J,,'. 
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4 6 

Figure 3 . Streamlines of mass transport, ,{,' , for the sum of the zero, llrat, and second 
order solutions, assurrting >- = 0.4. 
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Figure 4. Profiles across Gulf Stream at various latitudes. The curves to the left repre-
sent sin 11", sin 211", and sin 311" as functions of y", from y" = 0 (15° N) toy" = .- (50° N). 
The two columns to the right represent ,J,' as function of x' at tbe latitudes indicated by the 
arrows, for >. = 0.2 (left) and >. = 0.4 (right) . Unit values of ,J,' correspond to twice the 
vertical distance between arrows. 
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where H is the thermocline depth in cm. Assuming a thermocline 
depth of 70 meters gives roughly>,. = 0.4. Fig. 3 has been drawn for 
this value. The main current reaches its greatest intensity along 
y" = 0.71r instead of y" = 0.51r. This represents a displacement 
northward by 7° latitude. Fig. 4 shows the combined profiles at 
various latitudes, for >,. = 0.2 and >,. = 0.4. 

The general orientation of the Atlantic coastline differs markedly 
from the assumed north-south direction. The effect of the inclination 
of the coastline is to distort the circulation pattern and widen and 
weaken the current by a factor (sec 0) 113, as had already been pointed 
out by Munk and Carrier (1950). The relative effect of the higher 
order terms diminishes with the inclination of the coastline (equation 
29), since the value of >,. is to be multiplied by yp or (cos 0)213• For 
() = 50°, this amounts to 0.74. 

THE CASE OF A VARIABLE THERMOCLINE DEPTH 

We have assumed>.., and hence the depth of the thermocline, to be 
constant. Actually >,. is considerably larger near shore, where the 
thermocline is shallow, than it is further offshore. This variation of 
thermocline depth across the current forms a vital part in Rossby's 
discussion. 

To estimate the importance of this variation, set 

Ho 
H =----

1 - a,J,,' 

29n4rrc 
>..o =----- , 

400p{32-y2H o 
(31) 

where Ho is now the thermocline depth at the boundary. H will thus 
increase with distance from shore, reaching a value H 0/ (1 - a) where 
tj,' becomes unity (Fig. 7). 

Combining (31) with (6) and (8) gives 

( v' 4 
- a:') tj,' = r~ sin y" + 4-y-1>..o(l - a,J,,') curl, (M' • v'M' ) (llv ) 

in place of equation (11). Carrying out solutions of this equation to 
only zero and first orders leads to equation (11.0) as before, and adds 
a new term 

- 2aX oF I sin y" sin 2y" 

to equation (11.1). The particular and homogeneous integrals cor-
responding to X 0F 1 sin y" sin 2y" are 
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I [ 5 iv'3w 2 iv3w2 1 
"'· p = - 6 e-:r.1 - -9- x'ew ,., + -9- x'ew"' + 42 e2w2% , 

1 iv3 • + _ e2w%I ___ (5 + w) e(w-- 1):r.1 
42 126 

(20v) 

iv3 
+ -- (5 + w2) e<w- l)%'] sin y" sin 2y" 

126 ' 

where 
(21v) 

s 25iv3 
a~= - - ---

21 126 ' 

and a. is its conjugate. The complete solution of the zero and first 
order is then 

"1' = Xo sin y" + Ao (X1 sin 2y" - 2aXv sin y" sin 2y") , (22v) 

where 

X. = [- + cos v3x'] e-"' + [( _::_ + 16
) cos v'3x' 

6 21 · 3 21 2 

( 
V3X

1 

25v'3) . V3X 1

] I [ 1 V3X 1 

+ ----- sm-- e-f + -cos--
9 63 2 42 2 

- v
3 

sin v
3
x'] e-k (23v) 

14 2 

has been plotted in Fig. 5. The function is very similar to X 1, and the 
two first order solutions cancel to a large degree. Fig. 6 shows the 
streamlines according to (22v) for a = 0.75, Ao = 0.6. Except for a 
slight tendency for the north-flowing current to "overshoot," there is 
little deviation from the zero order solution. 

It must be emphasized that the results depend somewhat on our 
choice of the numerical constants and on the rather arbitrary form of 
equation (31). This description of the variation in thermocline 
depth was chosen for its suitability in the computation of higher order 
terms. Actually our model for the density structure, when combined 
with the geostrophic equations for the currents, completely specifies 
the law for the variation in thermocline depth, but the resulting 
expression is not suitable for the computation of higher order terms 
(see Fig. 7). 

Let us define a stream function c/>, related to the surface mass trans-
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Figure 5. The function X, (Equation 23v) asaoclated with 
a variable depth in thermocline. 

[IX, 3 

port p0y0 in the same manner as ,J; is related to the integrated transport. 
Then the geostrophic equations, with the aid of (2) and (3), can be 
written 

fv<f, = Vpo = pagvh, 

" f 5pa2g 
fvYI = vpdz = -- vh2 • 

8Ap 
-oo 

Solving for h, and neglecting the variation with latitude of the Coriolis' 
parameter f, leads to 

1 , I sJt:..p 
h = - <f, + ho = ,Y-- YI + ho2 

, 
pag 5pa2g 

where ho is the value of h for 6 = YI = 0. It follows from (1 ) that 
Ha = hopa/2Ap is the depth of the thermocline at the boundary. The 
above equations can be solved to yield 

where 

vl + aYI - l 
<f,=------

5 
4aHa 

H = Ha vl + a,J;, 

2/ 
a=---

5gt:..pHg1 

(32a, b) 

In order for (31) to be a suitable approximation to (32b), it would be 
necessary that a,/;' < < 1 and aYI < < 1. Actually a,J; varies from zero 
to fourteen. 

For a numerical example we choose conditions at y" = 1r/2 the 
approximate latitude of Cape Hatteras. Setting f = 10-4 sec-1,' g = 
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2 4 6 

Figure 6. Streamlines of mass transport. ,J,', for the combined zero and first order solu-
tions pertaining to a variable depth in thermocline (Equation 22v), assuming cz = 0.75. 
The corresponding profile of the thermocline is presented by the dashed curve in the lower 

portion of Fig. 7. 
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i! • O 

Figure 7. Variatlon or parameters across the Gulf Stream according to the zero order 
solution. A unit distance x' equals approximately 60 km. The upper curves denote th.; 
surface stream functlon <1>' and integrated st ream function -1,'. For <1> ' = 1. <I> 4.51 x 108 

g sec-1 cm-1; 'I,' = 1. -/, = 1.95 X 1013 g sec-1. The central curves show t he rorresponding 
surface transports and integrated transports. Form,' = 1, m, = 55.3 g sec-1 cm-•; M,' = l ; 
M . = 2.13 X 10• g sec -1 cm-1. The lower solid curves represent the surface and thermo-
cline profil e according to Equation (32v ). The dashed curve is the assumed thermodine 
according to (31). 
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103 g sec-2, t:.p = 10-3 g cm-3, Ho = 6000 cm, gives a = 1.11 X 10-12 

g-1 sec. Furthermore nr = 6, r = 0.65 dynes cm-2, (3 = 2 X 10-13 

-cm-1 sec-1• The lower portion of Fig. 7 shows the surface profile and 
thermocline profile according to equations (1) and (32b). For com-
parison we have added the thermocline according to (31), assuming 
that the depth at the boundary is 4,640 cm, which gives the value of 
0.6 from equation (30). 

The upper curves show the zero solution for y/ (equation 15) and 
the corresponding surface stream function according to (32a). The 
central curves represent the slopes of the upper curves and are pro-
portional to surface current and integrated current, respectively. 
The distance between maximum current and the left edge is about 25 
km at the surface and 60 km for the integrated current. The reason 
for the displacement of the maximum in the surface current has to do 
with the variation of the vertical structure across the stream. At the 
left side (looking downstream) the current is superficial and the 
surface velocities large. Towards the right the current extends to 
greater depth, and the surface velocities are relatively small. 

CONCLUSIONS 

The westward intensification according to the planetary vorticity 
theory is therefore even more pronounced if surface currents are 
considered rather than the integrated transport. The width of 25 km 
for the "cold wall," which corresponds to a value of A = 2.5 X 107 

cm2 sec-1, p = 0.445 (Munk and Carrier, 1950: fig. 4), is in agreement 
with observations in the Hatteras area. 

Our examination is unrealistic for a number of reasons. We have 
assumed the western boundary to be a vertical wall. The bottom 
rises gradually, of course, and many of the modifications inshore of the 
Gulf Stream take place over the Continental Shelf. We have also 
neglected the effect of the indentations in the coastline. Furthermore, 
the eddy viscosity is taken as constant, whereas in Rossby's theory this 
coefficient varies along the Stream. Our zero order solution, as 
represented by the central curves in Fig. 7, resembles the wake stream 
profile (Rossby, 1936: fig. 4). However, this resemblance is not 
noticeably improved by the inclusion of higher order terms. 

At the outset of this investigation it was hoped that the higher 
order terms might contain a clue as to the continued concentration of 
the Gulf Stream long after it has left the American east coast. An-
other observed feature not contained in the linear solution is the 
countercurrent inshore (Bumpus and Wehe, 1949). Even though the 
validity of the higher order terms is in doubt, largely because of their 



238 Journal of Marine Research [IX, 3 

surprisingly strong dependence on the assumed vertical distribution 
of density, it does not seem likely that these observed features are 
contained in the higher order terms. There is some essential feature 
in the dynamics (or thermodynamics) of the Gulf Stream which has 
not yet been recognized. 
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