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ABSTRACT 
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The purpose of this paper is to discuss some fundamental aspects of horizontal 
diffusion in the sea and to present some observations that were made especially to 
obtain quantitive data. 

The subject falls naturally into two parts: 
Part I. It is shown that the classical Fickian equation of diffusion does not de-

scribe diffusion in th!_l sea. The Richardson law of diffusion is introduced, and it is 
shown from observations of diffusion in the ocean that this new equation of diffusion 
does indeed describe the process. 

Part II. Recent theories of turbulence are reviewed. The Weisaecker-Heisenberg 
theory of the spectrum of turbulence for large Reynolds number and the Kolmogoroff 
theory of locally isotropic turbulimce are discussed. The applicability of these 
theories"to oceanic turbulence is considered. It is shown that a 4/3 law for eddy 
viscosity is deducible from the theories of Weisaecker-Heisenberg and Kolmogoroff. 

Part I seems safely applicable to the ocean because of the inductive nature of the 
theory. Part II, being deductive, contains certain assumptions and hypotheses 
which are discussed in oome detail. Just how closely the Weisaecker-Heisenberg 
theory or the Kolmogoroff theory describes the turbulent regime in the ocean is open 
to question, but the fact that they both predict a 4/3 law, which is observed in certain 
ranges of scale, demands that they be seriously entertained. 

1 This work was supported from public funds made available through the Office of 
Naval Research. 

2 Contribution No. 496 from the Woods Hole Oceanographic Institution. 
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I. INDUCTIVE METHOD 

[VIII, 3 

1. Introduction. The word "turbulence" is used in so many loose 
connections in oceanography that its meaning is often fuzzy and ill-
defined. The dictionary definition of turbulence as "tempestuous 
state" or "great agitation" is obviously of little physical significance, 
because a physical quantity must be capable of measurement; that is, 
it must possess a numerical magnitude and dimensions. A fluid flow 
is said to be turbulent if it possesses a "turbulent velocity," the mean-
ing of which arises in the following manner. 

In laboratory experiments it is fairly easy to define the turbulent 
velocity exactly. For example, when air is drawn through a wind 
tunnel which is fitted with a coarse mesh screen at the entrance, the 
flow of air through the tunnel is complicated by large numbers of 
eddies set up by the screen. The size of these eddies immediately be-
hind the screen is roughly the size of the mesh of the screen. In 
thinking of the velocity of the air at some fixed point within the wind 
tunnel it is a natural concept to regard this velocity as the sum of two 
terms: (1) a basic velocity which remains unchanged with time, or, in 
other words, the time mean velocity; (2) a fluctuating term which de-
pends upon the eddies in the main stream and whose time mean van-
ishes, this term being called the turbulent velocity. Depending on the 
magnitude of the turbulent velocity, the flow can be said to be more or 
less turbulent, so that in this sense, and in this sense only, does the 
word turbulence make physical sense. In mathematical terms we may 
restate the foregoing remark as follows. 

2. Definition of Turbulent Velocity. Suppose that at some fixed 
point the x-component of the fluid velocity is u(t), a function of the 
time t. If the time mean of u(t) is taken over a sufficiently long time 
T we approach a mean value U in the following manner, 

11T U = lim - u(t)dt , 
T 0 

(1) 

where U is called the basic velocity. The instantaneous velocity u(t) 
is therefore expressible in the form 

u(t) = U + u(t) , (2) 

where, by definition of U, 

lim - u(t)dt = 0 . 11T 
T-+00 T 0 

(3) 

The additional term u(t) is called the x-component of the turbulent 
velocity. Similarly, the other components of instantaneous velocity 
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v(t) and w(t) may be expressed as the sums of component basic ve-
locities V and W and component turbulent velocities Y and w. 

The time mean square of the turbulent velocity, 

11T u2 = lim - u2(t)dt , 
T--+ 00 T O 

(4) 

does not vanish. The root time mean squares of the turbulent veloc-

ity components Vu2, W, Vw2 are often called the component in-
tensities of turbulence. 

The kinetic energy of turbulence is defined as 

½ P (u2 + Y2 + w2) . 

These definitions show what is meant by turbulent velocity, intensity 
of turbulence, and energy of turbulence. It is also evident that these 
definitions depend entirely upon the premise that limits do exist as the 
value of T becomes very large. In the case of the wind tunnel experi-
ment there is no question that the limits exist. 

In large natural bodies of fluid, such as the ocean, it is by no means 
so obvious that limits do exist. If T is of the order of magnitude of 
one hour, then small scitle turbulence, such as local mixing, will appear 
in the term u(t), whereas tidal currents and seasonal changes will occur 
in the basic velocity U. If a week is taken as T, then tidal currents 
will fall into the term u(t). If ten years is taken as T, then,the sea-
sonal changes will occur also in u(t). If a geological age is taken for 
T, even long range secular changes will appear in the turbulent velocity 
term u(t). Thus it is immediately obvious that in a large natural body 
of fluid the motion is vastly more complicated than in a well controlled 
wind tunnel. There are eddies of all sizes and velocities present, and 
it is by no means evident just what the basic velocity and what turbu-
lent velocity should be called. This situation is remediable, however, 
as may be seen in the Weisaecker-Heisenberg theory. In the foregoing 
the averages have been time averages exclusively. It is equally pos-
sible to use space averages; in fact, we shall do so in the development of 
the Weisaecker-Heisenberg theory. 

3. The Fickian Equation of Diffusion. In the Fickian equation of 
diffusion we assume that the limits of the integrals of equations (1), 
(3), and (4) exist. For simplicity of the exposition we shall limit 
ourselves to a study of the diffusion in the x-direction only. 

If P(x, t) is the concentration of a diffusing substance, and k is the 
molecular diffusivity_, then the Fickian equation of molecular diffusion 
18 
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a-,, + u(x, t) a-,, = .!._ (k a-,,)· 
at ax ax ax 

(5) 

Because of the difficulties of specifying u(x, t), it is convenient to absorb 
the effect of the turbulent velocity upon the concentration into a so-
called eddy diffusivity K. The Fickian equation of diffusivity is then 
written as 

a-,, a-,, a ( a-,,) 
at + U ax = ax K ax · (6) 

Equation (6) is applied frequently in oceanographic problems, and at-
tempts are made to calculate the magnitude of K from observations of 
U and -,, as functions of position and time. It is also possible to express 
K in terms of the turbulent velocity and a mixing length, following 
Prandtl. In oceanography it has become customary to think of K as 
an empirical constant. A knowledge of the eddy diffusivity alone is 
obviously not enough to determine the turbulent velocity, or the tur-
bulent energy. 

If the eddy diffusivity is taken as constant with x and U = 0, then 
the Fickian equation of diffusion (6) takes on the simple form 

a-,, a2-,, 
-=K-. 
at ax2 

(7) 

A variety of integrals of this equation is available from the theory of 
heat conduction. From our point of view, perhaps the simplest is the 
solution for the diffusion of an instantaneous point source of an amount 
v0 of the diffusing substance, where X1 is the point at which the instan-
taneous source was introduced. Since this diffusion is the result of the 
random motion of the diffusing particles, it is correct to regard the 
solution above as being indicative of the form of the curve describing 
the probable separation of a single particle from its starting point. 
In other words, the probability that a particle at x1 at t = 0 will find 
itself at x at time t is 

1 (- (x - X1)
2

) exp ----- . 
Vhlt 4Kt 

This notion of probability is important in the theory of diffusion in 
order to form an intuitive picture of what diffusion really means. It 
states, in effect, that the future probable position of a particular particle 
is independent of the concentration of neighboring particles -,,(x) (or of 
a-,,/ax or a2-,,/ax2 for that matter). The important idea to keep in mind 
is that in simple diffusion there is no "pressure" or "force" which tends 
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to push particles from regions of greater to regions of lesser concentra-
tion. A net flow of particles does occur in such a direction, but merely 
through the operation of random motion. 

We shall now proceed to use this notion of probability for making 
measurements of the diffusion in the sea. 

4. Failure of the Fickian Equation of Diffusion. It has been known 
for some time (Richardson, 1926) that the Fickian equation of diffusion 
does not apply to the diffusion of clusters in the atmosphere. The 
question of the applicability of the Fickian equation to diffusion in the 
ocean may be answered by the following test. 

If two particles are placed at time t = 0, one at x = 0 and the other 
x = bo, then at time t the probability of the first being at x and the 
second at x + b1 is, respectively, 

1 exp (- x2) 
-V41rKt 4Kt ' 

and 
1 ( (x + b1 - b0)

2
) exp - . 

-V41rKt 4Kt 

These relations are simply integrals of the Fickian diffusion equation. 
The probability P(b0, b1) that these two particles will be a distance b1 
apart at time tis the product of the two expressions above integrated 
over all x: 

1 (- (b1 - bo)
2 )Joo P(bo, b1) = -- exp ----- exp 

21rKt 4Kt 

( 
1 ) 1 ( (b1 - b0)

2 
) - - (x2 + x [b1 - b0]) dx = ---exp - ---- . 

Kt 2-v 1rKt 4Kt 

Therefore we see that the Fickian equation of diffusion leads to the 
result that the probability of a pair of particles a distance bo apart 
along the x-axis being a distance b1 apart after an interval of time t 
depends upon (b1 - b0) 2 only and not upon either bo or b1. The obser-
vations of Richardson and Stommel (1948) show that this conclusion 
is at variance with the observed facts. In the ocean the probability of 
large values of (b1 - b0) 2 actually increases greatly with bo and b1. 
The data from the aerial photographs of floats at Woods Hole and 
Bermuda, discussed later in this paper, also exhibit this discrepancy. 
There appears to be no way in which the Fickian diffusion law can be 
modified to meet this diffic,ulty. 
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Sverdrup (1946), in a consideration of the horizontal diffusion of dye 
spots in the ocean, has suggested that the Fickian equation of diffu~ion 
be used with the diffusivity as a linear function of the "average radms" 
of the spot. C. J. Burke (1946) has analyzed the diffusion of several 
dye spots over periods up to seven hours and has shown that Sverdrup's 
suggestion does provide a better fit than the assumption of any con-
stant diffusivity. Although this suggestion is a useful expedient, it 
does not meet the fundamental difficulties. In a cloud of dye such as 
that envisaged by Sverdrup the diffusivity (even though it changes 
with the mean radius of the dye spot) is instantaneously the same 
everywhere in the cloud, for both close and wide pairs of particles. 
However, this is contrary to fact. The same objections seem to apply 
to 0. G. Sutton's work (1932) in atmospheric diffusion. 

5. The Search for Another Law of Diffusion. In molecular diffusion, 
which is successfully described by the Fickian equation of diffusion, the 
motion of each molecule is independent of that of its immediate neigh-
bors; but in turbulent fluid flow, neighboring particles of fluids tend to 
have increasingly similar turbulent velocities as the distance between 
them is diminished. The reason for this is easily seen if a regime of 
turbulent eddies of all sizes is contemplated. The distance between 
two initially close particles will be changed at first only by the smallest 
eddies, the effect of the large eddies being simply to transport the pair 
as a whole while not tending to change their separation. However, 
when the separation of the two particles is larger, the large eddies, in 
addition to the small ones, can act to change the separation, so that as 
the separation is increased the dispersing influence of larger eddies is 
brought into play. 

It is important to recognize, when thinking of a turbulent regime 
of eddies of all sizes, that the meaning of the term eddy is not to be 
restricted to a simple rotary motion of a certain mass of liquid. The 
term eddy is frequently used in this limited sense, as may be seen by 
such terms as "clockwise eddy," the implication being a rotary motion 
of the fluid in a clockwise sense. 

Eddies, although they may be simple rotary motions of a fluid, need 
not be so. The essential idea of an eddy, as conceived in this paper, 
is as follows: In the neighborhood of a point of fluid A the particles at 
a distance a from A will have turbulent velocities to some degree similar 
to the turbulent velocity of A, and this similarity or local correlation 
of turbulent velocity extends to some distance a = a1, the quantity a1 

then being thought of as the radius of the eddy. 
Richardson (1926) saw that this essential difference between molec-

ular diffusion and the diffusion in a turbulent regime necessitated a 
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complete reformulation of the equation of diffusion. The important 
independent variable was not position of a particle but its separation 
from its neighbors. This necessitated expressing the concentration 
of a diffusing substance as a function of the mutual separation of the 
particles of the diffusing substance, not as a function of position. 
Guided by the form of the Fickian equation, he postulated a new law 
of diffusion in which the term corresponding to the diffusivity in the 
Fickian equation was a function of mutual separation. 

6. The Richardson Equation of Diffusion. The concentration of dif-
fusing substance as a function of position is v(x). This may be con-
strued as meaning that there are v(x)dx particles of the diffusing 
substance between x and x + dx. If we denote the separation be-
tween two particles by l, calling this the "neighbor separation" for 
convenience, then we can denote the number of particles which have 
neighbors with neighbor separations of between l and l + dl as q(l)dl. 
The quantity q(l) may be called the "neighbor concentration" in anal-
ogy to the concentration. Thus we may express neighbor concentra-
tion as a function of the mutual separation of particles rather than as 
a function of the position of the particles. The mathematical trans-
formation from v(x) to q(l) is accomplished in the following way: 

co 

q(l) = f v<x) v(x + l) dx. 

The equation of diffusion which Richardson postulated is 

aq = !___ [F(l) aq] ' 
at al al 

which is analogous to the Fickian equation, but with neighbor separa-
tion replacing position as the independent variable. The quantity 
F(l) is analogous to the diffusivity K of the Fickian equation and may 
be called the "neighbor diffusivity" in order to distinguish it from the 
ordinary diffusivity of Fick. Because F(l) is a function of l, it is pos-
sible to reconcile it with the observed facts. This, indeed, is the whole 
reason for the transformation from x to l as independent variable. 

From a large number of observations with different values of Zin the 
atmosphere, Richardson (1926) induced that the neighbor diffusivity 
is of the form 

F(l) = El413 

in the air, where E is a constant. This equation will be spoken of 
frequently as the "4/3 law." 
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The observations of Richardson and Stommel (1948) and the data 
from aerial photographs of floats at Woods Hole and Bermuda suggest 
that this law is generally operative in the diffusion of material in the 
ocean. 

Although both neighbor diffusivity F(l ) and eddy diffusivity K have 
the same dimensions, it is clear that in general they are in no direct 
way comparable, for both are functions of different variables and are 
defined by different equations. However, in certain special cases it is 
possible to argue from the magnitude of one to that of the other. A 
discussion of this comparison is given in some detail in Richardson's 
(1926) paper. In the special case where F(l) is independent of l, 
F = 2K. In the special case where the 4/3 law holds, that is, where 
F(l) = El413, it is possible to get a rough idea of the comparison of K. 
Then F(l) -.--. 3.03 K. 

7. A Method for the Determination of the Neighbor Diffusivity as a 
Function of the Neighbor Separation. In a previous section we saw that 
the Fickian diffusion equation predicted that the probable change of 
separation of two floats did not depend upon the separation itself. 
This result was contrary to observed fact. We shall now make use of 
observations of this sort to indicate a method for determining the 
neighbor diffusivity as a function of the neighbor separation. 

If floats are released in pairs at a fixed initial separation lo apart, and 
if the separation l1 is measured again after a time interval T which is 
small enough so that l1 - lo averages only a small fraction of l0, it is 
seen that the scale wi ll be practically the same for the observation of 
each pair. The Richardson equation of diffusion may then be written 
in the following form: 

aq a2q 
- = F(lo) -. 
at al2 

A solution of this equation is 

q(l1) = -- exp - ----
const. [ (l 1 - l0)

2
] 

-VT 4TF(lo) ' 

which shows the distribution of q(l1) about the mean separation at 
time T. Of course at time t = 0 the entire population is at a separation 
lo. The standard deviation of l1, from the mean lo, is V2TF(l0); there-
fore the neighbor diffusivity is given for the value lo by the following 
equation, where the bar denotes mean of all pairs: 

(li - lo)2 

F(lo) = ---
2T 
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In practice the lo for each pair will not be identical, so it will be 

necessary to compute a mean of the type ½(l1 + lo) as a measure of 
the scale. 

F(½(l1 + lo)) = (li - lo)2 
2T 

This equation is the one used in the reduction of the data observed 
in this paper. Many pairs were dropped into the water at different 
places simultaneously, so that from the photograph the various pairs 
are chosen at random in groups of approximately equal ½(l1 + lo). 

The quantities ½(li + lo) and (l1 - lo) 2/2T are computed for each of 

these groups separately, each group giving a value of F[½(l1 + lo)] for 
a particular neighbor separation. 

8. Methods of Observation at Sea. The observations of Richardson 
and Stommel were very restricted in range of scale and were made in 
only one Scottish Loch. For universal application to the ocean these 
observations need to be repeated widely, and the range of scales must 
be greatly extended to include much greater distances. In the follow-
ing paragraphs suggestions are made for methods of observation on 
various scales. 

9. The Scale from 10 M. to 1 Km. Aerial photography of suitable 
floats answers best in this range, the floats being so submerged as to 
a void the direct stress of the wind. 

A number of ideas suggested themselves to this end. At first the 
use of fluorescein dye in water soluble form, distributed over the ocean 
surface in spots, seemed to be best. There could be little doubt that 
the motion ~f the dye and the water would be identical-at least in the 
horizontal direction. Two methods were used for dispersing the dye: 
(1) dropping it in cardboard ice cream containers which burst upon 
striking the water, leaving easily discernible splotches, and (2) intro-
ducing the dye directly .into the ocean with a hose from a slow-moving 
surface ship. The greatest difficulty with the dye spots was judging 
the centers, errors of judgment in this respect being particularly bad 
for determination of neighbor diffusivity for small neighbor separa-
tions. In addition,' the spots of dye themselves diffused and became 
indistinct so rapidly that they were no longer measurable in the time 
required for appreciable motions of wide pairs. This placed an upper 
limit on the neighbor separation as well. 

It then occurred to the writer to try meteorological balloons, brightly 
colored and inflated with sea water instead of air. Enough fresh 
water could be added to balance the weight of the rubber itself so that 
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Figure 1. T wo batches of paper flo ats di ffu sing on the sea surface. The boat gives a measure 
of the scale of the phenomenon . 
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tli e ball oorn; fl oakJ just below the surface, the winJ thus having li ttle 
eff ect upon t hem. They were so heavy, however, that i t was necessary 
t o infl ate them in the sea (handlin g them with fish-nets), and since the 
pumps avail able did not have a great capacity it t ook too long to 
infl ate enough ball oons to make a profitable seriC:s of photographs. 
However, the ball l)ons were clearly vi sible and possibly the technique 
could be used for other purposes. 

The most promising type of fl oat was suggested by Dr. R. B. 
Montgomery-namely pieces of paper. The wri ter t ri ed vari ous kinds 
of paper fr om a ski ff, and it appears that standard mimeograph paper 
answers well, t his being suffi ciently absorbent to become quickly 
wetted yet li ght enough to fl oat. Several hundred sheets of such paper 
may be dropped fr om the airplane at an altitude of a hundred feet; 
they immediately scatter in t he air, and upon striking the water surface 
they make a well defin ed pattern of points which may be photographed. 
Fig. 1 shows such a pattern of papers scattered on the sea surface. 

10. The Scale frorn 1 K.m. to 1000 K.m. Large scales might be in-
vestigated by the use of long range sound transmission techniques in 
places where the detecti on stations are already establi shed. Small 
fl oats, containing fr om t wo t o fiv e explosive pressure detonated charges 
which are dropped successively, could be set at wide distances apart 
on the sea surface from steamers in the regular lanes. The positi ons 
of the explosions might then be determined by the standard triangula-
ti on procedure. 

The bombs could be released by salt blocks, a small compensating 
fl oat being released with each bomb t o preserve the trim of the re-
maining apparatus. 

1 l. General Remarks on the Observati on of Floating Pairs. Since the 
turbulent exchange is t o be determined as a functi on of the scale of t he 
phenomenon, it is important that the time interval between successive 
observati ons of the same pair be small enough so that the scale is not 
signifi cantly altered between observati ons. On the other hand, the 
time interval should be large enough to avoid the influence of the ob-
servati onal errors in the distance measurements. The time interval 
of 30 seconds, employed in the observations of Richardson and Stommel 
(1948), was rather t oo large. A rough indication of the time intervals 
desirable for diff erent scales may be obtained from the assumption that 
the preceding theory is correct. The follo wing t able was computed in 
this fashion and should give an indication of the time intervals that are 
1 i kely t o be useful. 
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Scale lo 

10 cm 
lm 

10m 
100m 

1 km 
10km 

100 km 
1000 km 

Time interval between 
successive measurements, T 

5 sec 
25 sec 
2 min 
7 min 

40 min 
3 hr 

12 hr 
3 days 

[VIII, 3 

A careful examination of the errors of observation must be made for 
any method of observation adopted, since random errors will have the 
effect of increasing the value of the turbulent exchange. 

12. Observations: Blairmore, Woods Hole, Bermuda. Blairmore-
The first observations made in the ocean for the purpose of testing the 
4/3 law were those of Richardson and Stommel (1948), quoted here: 
"In the sea we used floats of parsnip because it is easily visible, and 
because it is almost completely immersed so as not to catch the wind 
which, moreover, was slight. The floats were about 2 cm in diameter. 
An optical device was used for measuring the distance l in a fixed 
azimuth. The observations were made in latitude 56° O' N, longitude 
4° 54' W from Blairmore Pier, Loch Long, Scotland, on 6 January 1948, 
where the sea water was about two meters deep. In order to eliminate 
any change in F(l) with time, we observed alternately with large and 
small l. The function F(l) was computed separately for the wide and 
close pairs": 

l 
F(l) 

Wide pairs 

187.7 
84.3 

Close pairs 

26.7 
6.4 

Unit 

cm 
cm2 sec-1 

Woods Hole-A number of observations of the diffusion of floats 
were made in Vineyard Sound near Woods Hole. Some of these were 
not successful for a variety of reasons, such as difficulty with the camera 
or an insufficient number of floats. Of the half dozen series of observa-
tions, two are chosen as being fairly representative. 

Series 1: Dye spots were introduced into the water by means of a 
hose from a slow-moving boat. A wooden frame-work was floated in 
the water so that it would also appear in the photographs and thus pro-
vide an accurate scale for each picture. The depth of water was about 
25 m, and a strong tidal current prevailed. The time interval was 2 
mm. 
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Close pairs: Wide pairs: 
lo l, lo l, 

cm cm cm cm 
1450 1040 9500 8500 
1540 1670 9200 8400 
1805 1670 9500 6900 
2450 1990 7400 8600 
1370 1350 11600 10350 
2140 1840 
2120 2150 
2120 2150 
1820 2130 
1660 r 920 
2320 1990 
1820 1680 

In addition to the observations of the motion of pairs of dye spots, 
there was the diffusion of the dye in the spots themselves which gave a 
rough approximation of the diffusion on even a smaller scale. For 
this purpose one may compute the ordinary diffusivity K and then 
convert it to F(l) by multiplying by 3.03, although admittedly this is 
not a completely satisfactory or strictly logical procedure. In this 
way the following table was computed: 

l 
F(l) 

Wide pairs 

9000 
2400 

Close pairs 

1800 
120 

Dijf usion of a Units 
single spot 

290 cm 
50 cm2 sec-1 

Series 2: Pieces of mimeograph paper were dropped from an airplane 
in Vineyard Sound off the Falmouth Beach in about 4 to 10 meters of 
water. There was a very strong tidal current. From the air, clouds 
of sediment, stirred up from the bottom, could be seen. The time 
interval was 80 secs. 

Close pairs: Wide pairs: 

lo l, lo l, 
cm cm cm cm 

61 102 466 353 
87 22 466 493 

105 29 484 210 
61 61 448 492 
79 61 353 529 
87 51 475 598 

12.3 95 448 407 
123 73 456 368 
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Close pairs: Wide pairs: 

lo l, lo l, 

cm cm cm cm 

96 44 456 456 
87 44 353 370 
87 80 
52 86 
87 44 
96 87 
87 114 

The reduction of these observations leads to the following values: 

l 
F(l) 

Wide pairs 

430 
92 

Close pairs 

77 
10.4 

Unit 
cm 
cm2 sec-1 

Bermuda-A typical series of measurements from aerial photographs 
off Bermuda in deep water is given in the following table. The water 
was about 2,000 meters deep. 

FIVE MILES SE OF CATARACT HILL , BERMUDA, NOVEMBER 22, 1948 

Close pairs: Wide pairs: 

lo l, lo l, 
cm cm cm cm 
111 91 600 585 
66 80 840 695 
66 128 870 951 
45 131 690 805 
69 146 810 329 
45 0 810 768 
81 201 1050 1207 
75 110 990 1299 

114 146 540 480 
84 219 810 1006 

150 36 750 860 
150 201 915 256 

The reduction of these measurements leads to the following values: 

l 
F(l) 

Wide pairs 

795 
337 

Close pai rs 

103 
36 

Unit 
cm 
cm2 sec-1 
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Figure 2. Data plotted for measurements given In the text. The crosses are for data ob-

tained at Blairmore; circles, Woods Hole, Series l; squares, Woods Hole, series 2 ; triangles, 
Bermuda. 

13. Summary of Observations. The values of the neighbor diffusivity 
are plotted against the neighbor separation (for the observations listed) 
in Fig. 2. Lines are drawn on these graphs to show the direction of 
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the 4/3 slope. The constant of proportionality E is not the same for 
all the graphs. 

The data plotted seem to justify the supposition that the 4/3 law is 
satisfied. If the classical Fickian law were obeyed, the points for any 
particular set of observations would have equal F(l) instead of an 
increase with l. 

II. DEDUCTIVE METHODS 

14. Introduction. The observational methods of studying ocean 
turbulence, as described in the first part of this paper, were based upon 
an attempt to find a law of diffusion which fitted the observed facts. 
The method involved a number of theoretical ideas, all inductive in 
nature. The result of this process was the rejection of the Fickian law 
of diffusion and the introduction of the Richardson law. The obser-
vations confirm the discovery that in the ocean, as well as in the at-
mosphere, the neighbor diffusivity of fluid particles is proportional to 
the 4/3 power of the neighbor separation measured along a fixed 
azimuth. 

We now turn to a completely different mode of study, in which the 
energy decay of large scale motions of a fluid is examined, the method 
being a deductive one based on von Weisaecker (1948) and Heisenberg 
(1948). The remarkable result emerges that in turbulent regimes of 
large Reynolds number the eddy viscosity obeys a closely analogous 
4/3 law. This deduced result is entirely independent of the previous 
inductive approach. 

15. The Necessity of a Spectrum of Eddies in the Ocean. The semi-
permanent wind systems, such as the trades and the prevailing wester-
lies, impart large scale motions to the ocean surface layers by virtue 
of the frictional stress of the wind acting upon the water. The source 
of energy of the large scale ocean currents, such as the Equatorial 
Currents, is explained in this way. The stress of the wind, working 
upon the ocean water, tends to increase its kinetic energy. However, 
the mean kinetic energy of the ocean currents remains fairly constant, 
so that on the whole as much energy must be dissipated into heat as is 
gained from the work done by the wind stress. Molecular viscosity 
alone is insufficient to dissipate enough kinetic energy to act as an 
effective brake upon the major ocean currents. However, ocean cur-
rents break up into eddies, which in turn degenerate into smaller 
eddies, and so on, until eddies are formed that are of a size sufficiently 
small to be dissipated irreversibly by molecular viscosity into heat 
energy. The exact dynamical explanation of the cause of the break-
down of the ocean currents into eddies of various sizes is yet to be 
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formulated, but the empirical fact of their existence is not disputed 
(Iselin and Fuglister, 1948; Spilhaus, 1940). The existence of an entire 
"spectrum" of eddies is apparently necessary as an agency capable of 
dissipating the kinetic energy of the ocean currents that is supplied by 
the stress of the wind. 

The completely detailed field of motion in the ocean is therefore 
exceedingly complicated, constantly changing with time and defying 
minute description in much the same way as the individual molecular 
motions of a liter of air. 

The eddy motion of fluids in flumes and wind tunnels has been treat-
ed in a statistical fashion (Taylor, 1935, 1938; Dryden, 1943), but until 
recently there has been no similar attack upon the problem of the large 
scale motions of the atmosphere and ocean. 

In practical oceanography it has long been recognized that the term 
"velocity," when applied to an ocean current, always involves a mean 
over a certain time interval or volume, or both, depending on the 
method of observation employed. For example, the determination of 
currents from a compilation of the drift of ships involves an averaging 
of velocity over at least several hours and scores of miles. Another 
oceanographic example is the determination of a velocity field by the 
standard method of dynamic computations, in which the spacing of the 
hydrographic stations defines the scale of the averaging; the velocities 
obtained are averages over the distance between successive stations. 
A picture of the velocities determined in this manner lacks the finer 
scale features which are present. Therefore, it is important to recog-
nize that the term "velocity" is meaningless unless accompanied by some 
indication of the mode of averaging employed in its determination. 

Once the mode of averaging has been decided, the velocity field has 
a meaning. The components of water motion that occur on a scale 
smaller than that used in the velocity averaging process do not appear 
in this "average velocity field," but they do exert an influence upon the 
dynamics of the average velocity field as Reynolds stresses. The 
Reynolds stress involves a quantity known as the eddy viscosity which 
depends upon the mode of averaging. In other words, the term eddy 
viscosity is meaningless unless accompanied by some indication of the 
mode of averaging employed in its determination. 

16. Recent Theoretical Studies of Turbulence at Large Reynolds N um-
ber. During the war years the fundamental nature of turbulence was 
temporarily neglected. However, three remarkable papers appeared 
quite independently which shed light on the spectrum of turbulence at 
large Reynolds numbers. The first of these was by A. N. Kolmogoroff 
(1941) of Russia; in the original form, these Kolmogoroff papers were 
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extremely condensed, so that Batchelor (1947) was led to discuss the 
theory at some length to make it available to investigators in general. 
The second paper was by L. Onsager (1945) in the United States. The 
third in this remarkable series was by the German astrophysicist, C. F. 
von Weisaecker (1948), whose ideas have been developed and elabor-
ated by Werner Heisenberg (1948). With certain modifications of a 
minor kind, such as those indicated by the writer, these theories may 
prove to be valuable in getting at a clearer picture of the spectral dis-
tribution of energy in the turbulence of the ocean. First we shall 
introduce certain hypotheses about the eddies in the ocean which lead 
to the Weisaecker-Heisenberg development. Then we shall re-
examine these hypotheses in the light of actual facts-so far as we know 
them-to see how they must be modified for a closer fit to things as they 
are. This latter process will be particularly valuable because it will 
point out where our empirical ignorance lies and where observational 
material is desperately needed. 

17. The Weisaecker~Heisenberg Theory. Suppose that in the ocean 
we could take as premises: · 

Hypothesis 1. There exists a continuous series of eddies of all sizes 
which are horizontally isotropic; that is, the quadratic time mean 
square of the velocity is independent of choice of co-ordinate direction. 

Hypothesis 2. A constant supply of kinetic energy is available to the 
large eddies (ocean currents driven by wind stress). 

Hypothesis 3. This energy sifts down to smaller eddies. 
Hypothesis 4- The smallest eddies lose their energy into heat energy. 
Can we now discover, on the basis of these hypotheses, from the 

equations of viscous flow and continuity: 
(1) How the energy is distributed over eddies of different size (that 

is, the spectrum of turbulence)? 
(2) In what manner the average velocity is dependent upon the 

mode of averaging? 
(3) In what manner the eddy viscosity is dependent upon the mode 

of averaging? 
The work of W eisaecker and Heisenberg makes it possible to give 

answers to these questions provided an additional hypothesis is intro-
duced, the nature of which will be shown when it is introduced. 

In this section we adapt the W eisaecker argument to lateral turbu-
lence in the sea, where it is more natural (except for the smallest scales) 
to average over surface areas than over volumes. We shall need to 
average over a wide variety of size areas. 

The largest area may be taken as a square of side L0 • Suppose that 
this area is divided into smaller squares of side L1, where Lo = rL1• 
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Each of these squares is divided into smaller squares of side L 2, and so 
on, the process being repeated according to the formula 

(1) 

where r is some positive integer independent of n. The scale-finer 
as n increases-is represented by the quantity Ln, and an average over 
a square of side Ln may be spoken of as then-th mode of averaging. 

Let the x-component of the velocity be u and the y-component be v. 
We may divide these velocities into a sum of terms such as follows: 

U = Uo + U1 + U2 + . . . 
V = Vo + Vi + V2 + . . . , 

with the subscript quantities defined as follows: 

uo = average of u over square Lo 
u1 = average of (u - uo) over square L1 
Un+i = average of (u - Un) over square Ln+1 

m=n 

(2) 

(3) 

where Un = L Um• Since u,. is a function of time with a definite 
m=O 

root time mean square, this is denoted by 

I 111· Un = lim - ( U n)2 dt . 
T-<X> T O 

(4) 

It is convenient to define another quantity, Un, in the following manner: 
m=8 

Un= L Un. 
m=n+l 

The total velocity u may then be written 

U =Un+ Un, 

(5) 

(6) 

where, with respect to the n-th mode of averaging, Un is the average 
velocity and Un the turbulent components. Depending upon the par-
ticular mode of averaging (value of n), the values of U,. and u,. are 
different. If we introduce time averages as in equation (4), the equa-
tion (2) may be rewritten in the following manner: 

U = Un + Un . (7) 

In a similar manner averages of the derivatives may be denoted 

:: = ( :: )0 + ( :: } + . . . (8) 
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We denote 

Un' = • / lim fT(~) 2 

dt. 'V T--t~Jo ax n 

(9) 

It is necessary to discover some relation between Un and u,.', and for 
this purpose we write the formal relation 

(10) 

We now find it necessary to introduce an hypothesis: 
Hypothesis 5: The eddy motion is kinematically similar; this re-

quires that all statistical characteristics of turbulence are independent 
of the absolute linear dimensions. 
Therefore, a is independent of n. 

The energy dissipation per unit time and unit volume is 

s = µ [ 
2 G:Y + 2 G:Y + G: + ::YJ · (11) 

in which µ is the molecular viscosity. If µn is introduced as the time 
average turbulent exchange, equation (11) may still be used. The 
turbulent exchange µn depends upon Un and may be written formally 
in the way Prandtl introduced it, 

µ,. = P ln Un 1 (12) 

where ln is the "mixing length" of then-th mode of averaging. The 
quantity ln is defined in terms of Ln by 

l,. = f3Ln , (13) 

where, by Hypothesis 5, (3 is independent of n. Because of the isotropy 
introduced by Hypothesis 1, equation (11) becomes 

m=n 
Sn = µn 8 L (um')2. (14) 

m=O 

Now, Sn must be independent of n because the flow of energy cannot 
depend upon a division into average and turbulent fl ow. Quite 
formally we write 

Un+i = Un 1 (15) 

where < 1 and is independent of n by Hypothesis 5. Therefore, Un 
may be replaced by the following identity: 

-
U,. = -- Un • (16) 

1 -
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Substituting from equation (10) into (14), 

and by virtue of (15) this may be summed to 

Sn = 8µn a2 ( Un )2 (M2 
Ln (~r)2-l, 

and from equations (12), (13) and (16) 

u,.s 
S=I'-

Ln' 
where 

is independent of n. This is von W eisaecker's result. 
spectral law for velocity is the following: 

The spectral law for eddy viscosity is as follows: 

The spectral law for energy is as follows: 

(17) 

(18) 

(19) 

(20) 

Therefore the 

(21) 

(22) 

(23) 

In discussing the spectral laws, von Weisaecker used a discrete 
spectrum, but Heisenberg has elaborated this technique and extended 
it to cover a continuous series of modes of averaging. 

18. Critique of the Applicability of the Weisaecker-Heisenberg Theory 
to the Ocean. It is important to examine the hypotheses of the 
Weisaecker-Heisenberg theory in the light of how they bear upon the 
application of the theory to the turbulence in the ocean. 

First of all, the semipermanent wind systems, though of primary 
importance, are not the only cause of w!ater motion. Local winds 
supply energy to smaller scale eddy systems, and so do local tidal cur-
rents. In addition, thermal convection in the surface layers may play 
a role at certain levels of the eddy spectrum. These secondary sources 
of kinetic energy prevent the dissipation Sn from being entirely inde-
pendent of n, rather making Sn increase with n. To the extent that 
t.hese effects enter, Hypotheses 2 and 3 must be altered. 
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Hypothesis 1 is certainly not true for the real ocean. That there is 
a spectrum of eddies is not disputed, but the supposition that they are 
horizontally isotropic is open to question, particularly for the large size 
eddies. Certainly for the largest eddies- the major ocean currents-
there is no isotropy at all. If the initial mode of averaging n = 0 is 
taken, so that La2 is approximately the area of the ocean (for example, 
the North Atlantic Ocean), it is clear that for n = 0, I, 2, up to some 
value n = pat least, Hypothesis 1 cannot apply. Whether Hypoth-
esis 1 applies in the actual ocean for n greater than pis a question that 
must be answered by observation. This is really a result in itself, be-
cause it points out the need for and the nature of certain types of cur-
rent observation at sea. We may venture to introduce an alternate 
hypothesis which is more likely to be applicable to the ocean but which 
is as yet not thoroughly tested by observation. 

Hypothesis 1': The series of eddies in the ocean is horizontally 
isotropic for modes of averaging for which n is greater than p, but not 
necessarily so for n p. 

The Hypotheses 2, 3, and 4 apply to the ocean as it actually is. Hy-
pothesis 5 must be replaced by another in the following fashion. 

Hypothesis 5': The eddy motion is kinematically similar for n > p. 
On the basis of these slight changes in hypotheses, we introduce 

Q_jp = Uo + U1 + , . , Up 1 (24) 

where Q.1P is the sum of the large size averaging components of velocity 
which do not fulfill the restrictions of isotropy and kinematic similarity. 
Equation (2) may then be written in the following form: 

U = Q_jp + Up+l + Up+-2 + . . . (25) 

Quantities such as Un and Un still retain their meanings, but the sum-
mation processes cannot be carried out for all n. The independence 
of a and {3 of n holds onl~for those n > -1!· It will be helpful also to 
define another quantity U p,n similar to Un but in which the range of 
summation extends from m = p + I to m = n, 

(26) 

Therefore, 
U = C/.1p + U p1n + Un . (27) 

This equation illustrates clearly the meanings of the various terms 
from a physical point of view. Therms (quadratic time mean square) 
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point velocity is regarded as being made up of three parts, each of 
which is a sum over a certain range of the spectrum of turbulence. 
The first term represents the sum of the rms velocities of the aniso-
tropic, kinematically dissimilar largest scale horizontal motions; the 
second term is the sum of the rms velocities of the isotropic, kinemat-
ically similar horizontal eddies down to and including the n-th mode 
of averaging; the third term is the sum of the eddy rms velocities 
smaller than n-th mode of averaging. The firs~ two terms are, from 
the point of view of then-th mode of averaging, the "average velocity" 
of the fluid and the third term contains the turbulent fluctuations of 
the velocity. 

19. Kolmogoroff's Theory of Locally Isotropic Turbulence: The Eddy 
Cascade. The theory of Weisaecker (1948) and Heisenberg (1948) was 
anticipated by A. N . Kolmogoroff (1941) of Russia, but the form in 
which it was written was analytically quite different, so that the im-
mediate connection of Kolmogoroff's work with the type of observa-
tion on diffusion of clusters described in Part I was not evident to the 
writer. It was only after the writer had seen the manuscript of 
Weisaecker that he saw the connection; then later, when he came across 
the paper of Batchelor (1947), the fact that Kolmogoroff had been 
treating the same problem was made clear. 

Kolmogoroff treats the correlations of the differences of parallel 
velocity fluctuations at two points in a certain domain G in which the 
turbulence is isotropic and statistically steady. This is insured by 
choice of domain G and by placing an upper bound upon r, the distance 
between the two points. Now, supposing that the Reynolds number 
of the flow as a whole is very large (as it is in natural bodies of fluid 
like the ocean), Kolmogoroff introduces two similarity hypotheses: 

(1) The statistical characteristics of the turbulent flow are functions 
of the molecular viscosity and the mean energy dissipation per unit 
mass of the fluid only. 

(2) The statistical characteristics of the large eddies depend upon 
the mean dissipation of energy per unit mass of the fluid only. 

Batchelor (1947) finds that these two hypotheses hold reasonably 
well in the turbulence of a wind tunnel. The observations given in 
Part I of this paper seem to indicate that the hypotheses hold for the 
ocean as well. 

From these hypotheses Kolmogoroff then proceeded to show by a 
dimensional argument that the double parallel velocity correlation is 
of the form 1 - Ar2' 3, where A is a constant and r is limited to a 
certain middle range. This equation is similar to Heisenberg's (1948) 
equation 57. 
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20. Onsager's Theory of the "Violet Catastrophe."3 The theory of L. 
Onsager (1945), published in abstract only, has much in common with 
the other two theories. It, too, deals with turbulent flow in which the 
Reynolds number of the entire motion is indefinitely large, in which 
molecular viscosity has little influence except near r = 0, in which the 
energy of each size eddy comes from larger ones and is dissipated into 
smaller ones until the smallest eddies are reached, which are laminar 
and dissipate their energy into heat via molecular viscosity. Onsager 
starts by describing the turbulent regime in terms of three-dimensional 
Fourier series. From the equations of mean motion he is able to de-
termine the transfer of kinetic energy from one wave-length velocity 
component to another, determining the distribution of energy with 
wave-length. He then uses the Fourier transform to obtain (Taylor, 
1938) the correlation coefficient which agrees in form with that found 
by Kolmogoroff. 
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Figure 3. The solid llne is a hypothetical spectrum of the root mean square turbulent 

velocity In the ocean. The dashed portion on the curve is the more uncertain portion of the 
hypothetical spectrum. The dotted line is the pure Weisaecker-Heisenberg theoretical 
spectrum. 

21. Hypothetical Spectrum of Turbulence in the Deep Ocean. Pre-
sumably the velocity spectrum of turbulence at a point in the deep 

3 So-called because all kinetic energy degenerates toward the short end of the 
spectrum. 
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ocean will look something like Fig. 3. The scale of the ordinates is 
linear but in arbitrary units, a constant factor being indeterminate 
until observed values of the intermediate scales are available. The 
left-hand portion of the curve is dashed to indicate that it is particu-
larly uncertain due to the anisotropy and kinematic dissimilarity it 
exhibits. It is important to remember, in considering this hypotheti-
cal picture, that the Weisaecker-Heisenberg theory applies only to that 
part of turbulent energy descending from large scale systems. The 
additional effects of local winds, bottom friction, and of irregularities 
in the bottom, are not taken into account in the W eisaecker-Heisenberg 
approach, which, after all, is hardly to be expected. Inshore localities 
and tideways exhibit turbulence of a local nature, but even this turbu-
lence, in the middle range, appears to follow the 4/3 law, as is shown 
by the Blairmore and Woods Hole observations. 

The right-hand portion of the curve is drawn with slightly less neg-
ative slope than the W eisaecker-Heisenberg theory in order to indicate 
that energy is also received by the ocean from sources other (local 
winds) than descent from the large scale motions. 

22. Summary. As explained in the prefatory abstract, this paper 
represents a synthesis of two independent methods of approach in the 
study of turbulence and turbulent diffusion as applied to the ocean. 
The first part of this paper, dealing with inductive methods, stands 
quite by itself, supported as it is by observation. It represents a 
marked departure from ordinary notions of diffusion in the sea. The 
second part of this paper, summarizing the deductive theories of locally 
isotropic turbulence, is more abstract, less substantiated by observa-
tion; however, since it fits so well as a possible mechanism which ex-
plains the somewhat anomalous behavior of a turbulent regime as 
induced from the first part, it seems well worth considering when we 
turn attention to the details of the turbulent motion which is producing 
the diffusion in question. 

It is always tempting in preparing a techical paper to refrain from 
discussing unsettled questions, in this way giving the finished pro-
duct a polished appearance. Had this been the goal, the first part 
alone would have been enough by itself, with a new law of diffusion for 
the sea and observations to support it. But one inevitably inquires 
as to the "why" of this new law of diffusion, and in so doing must refer 
to the nature of the turbulent regime itself. This naturally leads to 
questions about the various scales of turbulence in the ocean dealt with 
in the second part of this paper. By a happy coincidence, investiga-
tors in other branches of fluid mechanics have already begun to study 
the spectrum of turbulence at large Reynolds number, or as it is altern-
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atively called, the "eddy cascade" and the "violet catastrophe." The 
immediate applicability of these notions to the sea is controversial, but 
oceanographers should consider them seriously. 

And finally, what is the value of studies such as these, other than 
any practical application of the diffusion law? The writer thinks there 
is a question of morale. At present oceanographers recognize that 
there is no perfectly simple circulation in the ocean, that currents are 
not clearly defined rivers in the sea, and that even the Gulf Stream 
wanders and meanders, so that the more closely one looks at it the 
more bewildering it is. In fact, there seems to be no means of achiev-
ing a sharply focused picture in the study of the ocean currents. What 
appeared yesterday as a smooth broad stream appears today as an 
amazingly corrugated irregular one, and tomorrow probably even finer 
details of greater complexity will make an appearance. So the ocean-
ographer is assailed by growing doubts as to whether or not he can ever 
hope to describe the details with any meaning. The W eisaecker-
Heisenberg theory shows in principle, at least, how such a description 
can be made in the language of the statistical theory of turbulence. 
Therefore it is a useful tool in thinking about the ocean's motion. 
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