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THE THEORY OF THE ELECTRIC FIELD 
INDUCED IN DEEP OCEAN CURRENTS1 

BY 

HENRY STOMMEL 
Woods Hole Oceanographic I 7l8titution 

Woods Hole, Massachusetts 

The Problem. Due to the fact that the water in the ocean is a con-
ductor, and that it is everywhere under the influence of the earth's 
magnetic field, we should expect, by the law of electric induction, that 
wherever the water is in motion electric potentials and currents will 
be established. It is the purpose of this paper to discuss the theory of 
these phenomena in the deep ocean and to indicate certain analytical 
solutions of the problem which demonstrate the important physical 
aspects of electlic fields associated with ocean currents. 

The Fundamental Equation of the Electric Field.2 Let H be the 
vector magnetic field intensity, p the scalar resistivity and i the electric 
current vector. Consider a closed curve fixed in the fluid. Let v be 
the fluid velocity vector. The length of arc along the closed curve is 
given by the vector s. The element of area of the surface enclosed by 
the curve is dS. Faraday's law of induction may then be expressed in 
the following general form, 

:e1 f H · dS + f i · ds = 0 , (1) 

where the d/dt is to be understood in the manner of the substantial 
derivative of hydrodynamics. The fir st equation (1) may be trans-
formed (Abraham and Becker, 1932: 39-40) as follows: 

:e1 f H . dS =ff aa~ . dS 

+ff (div H)v · dS - f f[ curl (v X H) ] . dS. (2) 

1 Contribution No. 453 from the Woods Hole Oceanographic Institution. 
2 The author is particularly indebted to Mr . M. S. Longuet-Higgins of the Admi-

ralty Research Laboratory at Teddington, England, for acquainting him with the 
basic physics involved in this section; see REFERENCES. 

(386) 
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In the ocean a considerable simplification of (2) is possible, because 
over moderately large areas H is constant and uniform. Therefore, 
the first two terms of the second member vanish, and by Stoke's 
Theorem the third term may be transformed to a line integral, 

-ff [ curl (v X B)] · dS = - f (v X B) . ds. (3) 

Equation (1) may now be written in the following form: 

f (v X H - pi) · ds = 0. (4) 

The vanishing of this line integral signifies the existence of the electric 
scalar potential function q,, defined in the following way: 

Vq, = v X H - pi. (5) 
The term pi involving the unknown current vector i may be eliminated 
if p is assumed to be uniform, for then the div pi vanishes, and upon 
taking the divergence of (5) one obtains 

I V'~ H • cud v. (6) 

If Band v are both regarded as known, which is physically the case, 
then we simply have here Poisson's equation to solve for the electric 
potential q,. It is desirable to emphasize the complete generality of 
(6). This equation defines the electric fi eld resulting from any arbi-
trary velocity field in the ocean. 

The boundary conditions upon this equation are obtained from (5) . 
At a nonconducting boundary the normal component of the vector i 
vanishes. If n is the unit vector normal to the boundary, 

so that 
n • i = 0, 

aq, 
-=n-vXH. 
an 

At a conducting boundary, such as occurs between two media of dif-
ferent specific resistivity, the normal component of i is equal in each 
medium, and the potential q, is equal in each medium. The first con-
dition may be expressed in terms of aq,!an for each medium by using (5). 

An Idealized Particular Ocean Current System and its Associated 
Electric Field. The velocity and potential fields of a natural ocean 
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c.urrent system are very complicated functions of position. They may 
be treated numerically as indicated in the section, Numerical Method 
of Solution. An analytically simple model is advantageous, inasmuch 
as it shows the essential features without many complications of a 
purely formal but not conceptual nature. In order to exhibit some of 
the features of the problem, an idealized ocean current system is 
treated here. Rectangular co-ordinates are taken with the x,y-plane 
in the surface of the ocean, with the z-axis pointing vertically upwards. 
This ocean is supposed to be divided into two layers. The top layer, 
no. 1, extends from z = 0 to z = -hi. The bottom layer, no. 2, ex-
tends from z = - h1 to z = - I½. The bottom of the ocean, z = - ~, 
is taken in this discussion as nonconducting. 

The velocity in layer no. 1 is. supposed to be given as 

(7) 

Layer no. 2 is supposed to be at rest. This current system consists of 
alternate bands of water of breadth b moving in the positive and nega-
tive y-direction over a lower layer which does not participate in the 
motion. This picture is artificial, but may be generalized by imple-
menting the Fourier Integral Theorem. 

Let us suppose that the magnetic field of the earth is entirely vertical, 

Substitution of (7) into (6) gives the equations 

V2<1>1 = 'Y sin /3 x, 

V24>2 = 0, 

(8) 

(9) 

(9') 

whe~e the subscript refers to the layer number, and the following ab-
breviated forms have been introduced: 

'Y = - H.vo 1r/b, /3 = 1r/b. (10) 

In o~de~ to obta~ a ~olution of (9) and (9'), one supposes that the 
potential 1s expressible m separable form, which indeed later appears 
to be the case. 

</>1 = sin {3x • Z1 , 

"'2· = sin {3x • Z2 . 

(11) 

(11') 
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Substitution of (11) and (11') into (9) and (9') yields, after cancelling 
the common factor, 

The solutions of these two equations are simply, 

Z1 = A1 cosh {3z + B1 sinh {3z - o , 
Z2 = A2 cosh {3z + B2 sinh {3z , 

where A1, A2, B1, and B2 are constants of integration and 

0 = 13-2 'Y. 

(12) 

(12') 

(13) 

(13') 

These constants must now be determined in terms of the boundary 
conditions. Taken as the unit vertical vector. At z = 0 there must 
be no current across the water surface: 

i . n = 0. (14) 

From (5) we have the electric current in terms of the potential 

i = : [ v X H - V<P] . (15) 

Substituting into (14) we obtain 

act> 
n . v X H - - = 0 . (16) 

az 
In the particular case we are discussing n • v X H vanishes, so that 
the boundary condition at the surface z = 0 is 

a<1> 
- = 0 . (17) 
az 

The boundary condition at the bottom z = -111.l is also one of no cur-
rent, so it is the same as (17). 

At the interface between layers 1 and 2, z = - h1, two conditions 
prevail, for clearly the potential and current must be continuous. 
Therefore at z = - h, 

(18) 

(18') 
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The second of these equations may be expressed in terms of the po-
tential function 

(18") 
az az 

The conditions (17) at z = 0 and z = -h,.,., and the conditions (18) 
and (18") at z = - h1, suffice to determine the constants of integration. 

sinh fJ (h,.,. - h1) 
A -0------

1 - sinh {Jh,.,. ' 

B1 = 0 
sinh {Jh1 

A2 = -o----
tanh {Jh,.,. 

B2 = -o sinh /3h1. 

Therefore, the final solution is 

[ 
sinh {J(h, - h1) ] Voll• 

'Pl = sin {3x 1 - ------ cosh {Jz -- , 
sinh {Jh,.,. fJ 

[ 
sinh {Jh1 ] voH. 

q,:, = sin {3x --- cosh {Jz + sinh {Jh1 sinh {Jz -- • 
tanh {Jh,.,. fJ 

(19) 

(20) 

(20') 

The exact expressions (20) and (20') may be replaced by simpler 
expressions to a first approximation in the case where {Jh,.,. < < 1, that is, 
where the breadth of the current is much greater than the depth of the 
ocean, as most frequently happens in nature. 

[ 
h1 ] Voll, 

'Pl "' 4>, "' sin {Jx h,.,. -{J- . (21) 

According to this approximate formula the lines of equipotential are 
vertical straight lines, and the amplitude of the potential developed is 
directly proportional to the ratio of current depth to ocean depth. 

For shallow surface currents the return circuit beneath, in the resting 
water, is comparatively so large that it effectively shorts the potentials 
developed. 

Numerical Method of Solution. A convenient numerical method of 
solution may be based upon the relaxation methods developed by 
Southwell (1946). Any vertical velocity profile can be investigated 
and the electric potential field computed. 

Equation (6) is expressed in finite difference form. The boundary 
condition at the bottom and at the free surface is expressed by (16). 
The procedure of the solution is then by liquidation of residuals. 



1948] Stommel: Electric Field in Deep Currents 391 

Publication of any of these relaxation solutions is postponed until 
some simultaneous electric potential measurements and sufficient 
bydrographic stations for computation of the velocity field are avail-
able. 

The Effect of the Resistance of the Bottom. Longuet-Higgins and 
Barber (1946) have shown that the potential developed in a tidal cur-
rent through a shallow channel (such as the English Channel) is 
greatly controlled by the resistivity of the bottom. It is important, 
therefore, to discover what the effect of the electric conduction through 
the bottom will be on the preceding analysis, which was made upon the 
assumption of a nonconducting bottom. 

For this purpose we may introduce a layer 3 extending from z = -11.2 
to z = - co which will represent the bottom. The resistivity of layers 
1 and 2 is P1 and P2, and since they are bottom sea water layers Pl = 1'2· 
The resistivity Ps of the bottom is considerably greater than 1'2· For 
convenience we introduce the ratio 

P2 w=-; l>>w~o. 
p3 

The boundary conditions at z = 0 and z = - h1 remain the same u 
before. For z = -h-i. however we now have 

"'2 = tj,3 ' 
iJtJ,2 iJtJ,a 
--=w--. 

az az 
At z = - co the potential vanishes 

(22) 

(22') 

tj,3 = 0 at z = - co • (23) 

The governing equations (13) and (13') still hold, with the adaition of 

Za = Aa cosh {Jz + Ba sinh {Jz • (23") 

The condition (23) immediately determines Ba, so that we have 

Za = A 3 (cosh {Jz - sinh {Jz) • 

Again, at z = 0 the condition (17) shows that B1 = 0 . 
There remain four independent constants Ai, A2, B2, Aa, to deter-

mine and the four boundary conditions (18), (18"), (22) and (22'). 
These give respectively 

A 1 cosh {3h1 - A2 cosh {Jh1 + B2 sinh {Jh1 = o , (24) 
- A1 sinh {3h1 + A2 sinh {Jh1 - B2 cosh {Jh1 = 0 , 

A2 cosh {Jh-i, - B2 sinh {Jh-i, - Aa (cosh {3~ + sinh {3~) = 0, 
- A2 sinh fJh-i, + B2 cosh {3~ + Aa w (sinh fJ~ + cosh {3~) = 0 , 
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For the purpose of determining these constants it will be co_nvenient 
to restrict our thoughts to the case where {J~ < < 1, that 1s, broad 
currents. The above equations are then, to a first approximation, as 
follows: 

Ai - A2 + B2 {3hi + 0 = o , 
Ai {3hi + A2 {Jhi - B2 + 0 = 0 , 

0 + A2 - B2 {3~ - As (1 + {J~) = 0 , 
0 - A2 {3~ + B2 + A3 w (1 + {3~) = 0 . 

(25) 

The values of the constants are determined to be (neglecting second 
and higher powers of {3hi and {J~) 

w + {3 (hi - ~) fJ (~ - hi) - w 
Ai = o ------- = -------

w - {3 fJ~-w 
{3hi 

A 2 = - o--- (26) 
{J~ - w 

B2 = - of3hi, 
o fJhi 

Aa = --------
(1 + fJ~) (w - fJ~) 

Comparison of these values of Ai, A2 and B2 with those obtained for 
the nonconducting bottom (w = O) shows that for small w (w < < 1\) 

the potential developed is affected by the presence of the bottom only 
negligibly. These considerations make it seem justifiable to us to 
ignore the resistivity of the bottom in discussion of the potential fields 
generated by shallow currents in the deep ocean. In the case of cur-
rents in shallow channels these conclusions do not apply. 

Summary. The physical principles which describe the association 
of the water velocity and induced electric potential field in the deep 
ocean are formulated, and with the aid of a simple idealized model the 
chief features are discussed. 
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