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NOTES ON A THEORY OF THE THERMOCLINEt 

BY 
WALTER H. MUNK 2 AND ERNEST R. ANDERSON 

Scripps Institution of Oceanography 
University of California 

La Jolla, California 

INTRODUCTION 

The very large number of bathythermograms which have been 
taken during the last few years have established the essential features 
of the temperature structure in the upper layers of the ocean. When 

these layers are heated during a period 
of calm, the bathythermograms show a 
marked temperature gradient all the 
way to the surface, as shown in Fig. 1. 
If subsequently a strong wind starts to 
blow, the upper layers are stirred until 
an almost homogeneous layer is formed, 
bounded beneath by a region of marked 
temperature gradient, the thermocline. 
The transition from the homogeneous 
layer to the thermocline is usually sudden. 
If the wind increases in intensity the 
thermocline moves downward, but the 
characteristic shape of the temperature-
depth curve remains essentially un-
changed. 

D 
E 
p 
T 
H 

3 Stronq 
· •inds 

-6-,. I ' 

Figure 1. Schematic presenta· 
tlon of the development of a wind 
stirred layer and thermocllne. 

It has been customary to interpret the 
wind-stirring effect in terms of Ekman's 
famous theory for wind driven currents 

on a rotating globe (Ekman, 1905; Sverdrup, et al. , 1942: 492-494). 
Ekman assumes homogeneous water and a constant value3 for the eddy 

1 Contributions from the Scripps Institution of Oceanography, New Series, No. 382. 
This work represents the results of research carried out for the Office of Naval 
Research, the Hydrographic Office, and the Bureau of Ships of the Navy Department, 
under contract with the University of California. 

2 Institute of Geophysics and Scripps Institution of Oceanography, University of 
California. 

8 Ekman (1905) also gives a solution for the case where the eddy viscosity is pro-
portional to the shear. This does not modify the essential meaning of our remarks. 

(276) 
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viscosity, and obtains for a solution current vectors whose azimuths 
vary linearly and whose magnitudes decrease exponentially with depth 
from the very surface downward. Therefore, the Ekman spiral does 
not contain the concept of a homogeneous upper layer with a well 
defined lower boundary. Nevertheless, this concept has often been 
brought in by means of the artifice of identifying the thickness of the 
mixed layer with a depth where the current equals e-" times the surface 
current and is directed opposite to it. 

The difficulty can be resolved, at least qualitatively, by taking into 
account the effect of the density stratification on the scale of turbu-
lence. Ekman (1905) stated: 

It is obvious that [the eddy coefficient] cannot generally be regarded as a constant 
when the density of the water is not uniform within the region considered. For 
[the eddy coefficient] will be greater within the layers of uniform density and com-
paratively small within the transition-layers where the formation of vortices must be 
much reduced owing to the differences of density. 

The reduction in the vertical eddy conductivity in the thermocline 
leads to high resistance to heat flux from above, with ". . . the para-
doxical result that the water-masses below ... are the more 'pro-
tected' against heating the stronger the heating ... " (Helland-
Hansen, 1930: 44). Surface heating therefore tends toward sharpening 
the existing temperature gradient in the thermocline and further 
reducing the turbulence. At the same time, the reduction in turbu-
lence permits relatively easy slippage of water layers with respect to 
one another, and the resulting shear in the thermocline represents a 
source for producing turbulent energy. The ultimate outcome must 
be a steady-state distribution which represents a balance between the 
stabilizing influence of temperature gradients and the unstabilizing 
influence of current gradients. It is this steady-state solution which 
is being sought. 

The foregoing discussion indicates how intimately the problems of 
current and of temperature distributions are related. Mathematically 
they are linked by the coefficients of eddy viscosity and conductivity, 
both of which are functions of the gradients of temperature and 
current. For the eddy viscosity such a function has been introduced 
by Rossby and Montgomery (1935); for the eddy conductivity a new 
relationship will be derived. These functions will be substituted into 
the differential equations governing the distributions of temperature 
and current, and the differential equations solved simultaneously. 

Ekman was well aware of the desirability of incorporating these 
thermodynamic considerations into his dynamic treatment of ocean 
currents. He wrote that " ... this is however a complication which 
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cannot be taken into account in the general theory " We have 
been fortunate to have at our disposal the new Differential Analyzer 
of the University of California. With this computer, numerical solu-
tions have been found for 21 examples; 14 examples correspond to 
actual conditions for which complete observational material was 
available, and which were in agreement with the assumptions underly-
ing the theory. The most restrictive of these assumptions is that the 
net heat flux be directed downward and that there be no convective 
stirring such as might be induced by surface cooling due to evaporation. 

EQUATIONS OF TURBULENT FLUX UNDER 
STABLE CONDITIONS 

The downward flux, per unit area, of momentum, of heat and of 
salt, due to turbulent processes, equal respectively 

FM=-AvV', FT=-cpATT', Fs=-AsS', (la,b,c) 

where Cp is the specific heat at constant pressure, Av, AT, and As the 
dynamic eddy coefficients (dimensions mass length-1 time-1) of 
viscosity, conductivity and diffusivity, respectively. The accents (') 
denote differentiations with respect to depth: 

V' = iJV/iJz, T' = iJT/az, S' = iJS/az, (2) 

positive z being directed downward. It is customary to refer to V' as 
shear and to 

(3) 
as stress. 

The coefficients Av, AT and As are not physical constants of the 
fluid but depend upon the state of its motion and may vary with time 
and position. Two factors tend to reduce the values of the turbulence 
coefficients: boundaries and stable stratification. Since the effect of 
the boundary is limited to the upper few meters of the ocean, we shall 
be concerned only with stability. 

~et the subscript "o" denote the case of neutral stability. The 
rat10 A/A. for any one of the three coefficients in equation (1) is 
assumed to depend explicitly on stability, shear and gravity: 

AIA. = f (E, V', g), (4) 

where the stability E depends upon the temperature and salinity 
distributions 

E = E (T', S', T, S), (5) 

and these distributions vary with depth and time. The theory of the 
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wind-stirred layer is contained in the solution T(z) of equations (4) 
(5) and the three equations (1). ' 

Stability, Temperature and Salinity Gradients. It is convenient , 
whenever possible, to express the stability as a function of temperature 
gradient or salinity gradient only: 

E = a T' or E = bS'. (6) 

To examine the implications of equation (6) and to determine the 
coefficients a and b, we make use of equation XII, 12-14, in Sverdrup, 
et al. (1942), according to which 

1 op . 
E=--= 

p oz 
10-3 ou1 

oz (7) 

except at great depth. Expanding by partial differentiation one finds 

E = 10-s (au, T' + au, S') = 10-3 (~+cf> au,) T', ,(8) 
aT as aT as 

or 

E = 10-s (2- au, + au1) S' 
cf> aT as ' (9) 

where, provided S and T are functions of z only, 
S' dS 

cf>= T' = dT (IO) 

is the slope of the line denoting the T-S relationship of the water mass. 
Comparison between equations (6) and (8) or (9) gives 

a= 10-3 -+cf>- b = 10-3 --+-. (
ou1 0<11) ( 1 au1 au1) 
aT as ' cf> aT as 

(11) 

To simplify computations, the parameters a or b will be considered 
independent of depth in subsequent integrations. This involves the 
assumptions that over the range of integrations the T-S relationship 
is linear, with variations in temperature and salinity small. The 
errors introduced by these assumptions are generally small compared 
to those inherent in Ekman's assumption of a constant eddy viscosity. 

TABLE I. V ALOES OF o<T1/0T TABLE II. V ALUEB OF O<T1/0S 

33°/00 35°/00 37°/o0 33°/o0 35°/o0 37°/00 

0 °C - .045 -.055 -.060 0°C .806 .806 .807 
10 °C - .170 - .172 - .175 10 °C .779 .780 .780 
20 °C -.260 -.262 - .265 20 °C .760 .761 .763 



280 Journal of Marine Research [VII, 3 

Effect of Stability and Shear on Eddy Coefficients. According to the 
TT-theorem in dimensional analysis, the quantities E, V', and g, on 
which the ratio of eddy coefficients was assumed to depend (equation 
4), can be combined into only one type of nondimensional number, the 
Richardson number r (Brunt, 1939: 237): 

r = g E/(V')2
• (12) 

In selecting a particular functional relationship we are guided by the 
limiting conditions 

A - A. for r - 0, 

A - 0 for r - oo • 

(13) 

(14) 

Equation (14) states that for very high stability the flux of momentum 
heat and salt takes place by molecular processes only. 

A simple set of equations which satisfy (13) and (14) is 

Av = A 0 (1 + {3v r)-nv, 

AT = Ao (1 + /3T r)-nT = As, 

where the eddy coefficients for neutral stability 

Av,.= AT,o = As,o = A. 

(15) 

(16) 

(17) 

have been assumed equal,4 and where f3v, nv, /3T, nT are positive con-
stants, not yet determined. The coefficients pertaining to heat flux 
and salinity diffusion are assumed to equal one another but to differ 
from the coefficient pertaining to momentum flux (see below). 

Equation (15) is a relationship derived by Rossby and Montgomery 
(1985). It will be shown that the constants in (16) can be evaluated 
from known relationships, and that the resulting equations are in 
agreement with observations. 

DETERMINATION OF CONSTANTS 

Application of Investigations by Rossby and Montgomery and by Sver-
drup. From energy considerations, Rossby and Montgomery (1935) 
derived an equation identical in form to equation (15), with nv = ½-
Sverdrup (1936), on the basis of his measurements over a snow field 
at Spitzbergen, estimates /3v at 10 to 13, and probably nearer the lower 
limit . We shall adopt the value f3v = 10. 

' "In recent years a great deal of work on the relationship between As and Av has 
been done in the field of Aeronautics. The assumption of Reynold and Prandtl that 
As = Av has been confirmed in all cases when the fluid is homogeneous" (Taylor 
1931, notation ours). ' 



1948) Munk and Anderson: Notes on Thermocline 281 

Jacobsen's Investigation. From his extensive analysis of salinity and 
current observations in Randers Fjord and Schultz Ground, Jacobsen 
(1913) postulates that under stable conditions the turbulent elements 
give off their momentum rapidly to their surroundings, whereas other 
properties, such as temperature and salinity, are exchanged slowly. 
The elements are therefore moved to new surroundings by gravita-
tional forces before equalization can take place. As a consequence, 
". . . the effect of stability on turbulence is two-fold. In the first 
place, the turbulence is reduced, leading to smaller values of the eddy 
viscosity, and, in the second place, the type of turbulence is altered in 
such a manner that the accompanying eddy diffusivity becomes 
smaller than the eddy viscosity" (Sverdrup, et al., 1942: 477). 

The first conditions, Av Ao, is already satisfied by equation (15); 
the implication of the other condition, 

X; = As/Av 1, (18) 

remains to be investigated. Substituting from equations (15) and 
(16) gives 

X; = (1 + f3v r)nv (1 + m f3v r)-",-, (19) 
where 

m = f3T!f3v. (20) 
For r = 0 one finds 

X; = 1, d X; Id r = - f3v nT (m - nvlnT), (21) 
so that 

(22a) 

in order for Jacobsen's condition (18) to be satisfied (Fig. 2). The 
special case 

m = nv/nr, (22b) 

for which X; approaches 1 asymptotically as r approaches zero, seems 
more likely from a physical point of view than the general case for 
which d X; /d r has a finite value at r = 0. 

For very large values of r, 
(23) 

and 
nT > nv, (24) 

in order for (18) to be satisfied. Equations (22) and (24) impose 
certain restrictions upon the numerical values of nr and f3r. 

Taylor's Investigation. Further restrictions are imposed by an 
entirely different condition proposed by Taylor (1931): 
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Figure 2. Limitations imposed by Jacobsen's and by Taylor's conditions upon the constants in equations (15) and (16), See text, 
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In the case of a stratified fluid with density increasing downward any disturbance 
to steady laminar flow necessarily involves an increase in gravitational potential 
energy. It is this increase which causes infinitely small disturbances of a fluid at 
rest to be stable. In cases of turbulent flow the rate at which energy flows into a 
layer of the fluid owing to the action of the fluid above and below it must be greater 
than the rate at which gravitational energy increases in the same portion of the fluid. 

Taylor shows that the fraction of available energy which is used to 
increase gravitational potential energy equals r AT/Av, and his 
argument requires therefore that 

Xi= rAT!Av 1. (25) 

Again returning to (15) and (16) one finds 

X, = r (1 + f3v r)"v (1 + m f3v r)-n:r. (26) 

For very small values of r, equation (26) reduces to X, == r, indepen-
dent of f3T and nT (Fig. 2). For large values of r, 

(27) 

so that nT:> 1 + nv, or 

nT = 1 + nv + E, E > 0, (28) 

in order for Taylor's condition (25) to be satisfied. 
In general X, reaches a maximum, to be designated by (X ,)mu:, for 

r = r,,. (Fig. 2), where r,,. is a root of the equation 

m E f3v2r,,.2 + f3v [m (nv + E) - (1 + nv)] r,,.- 1 = 0. (29) 

As long as Taylor's condition holds for (X ,)max it certainly must hold 
for any other values of X 1, and we may express equation (25) in the 
more definite form 

(X ,)max 1. (30) 
For the special case 

E = 0, and m (1 + nv)/nv, (31) 

a true maximum does not exist, but X, remains bounded (Fig. 2). The 
term (X 1)max in equation (30) is then interpreted as m-(i+nv> fJv-1, the 
value of X, at r = co. The special conditions stated in equation (31) 
appear more reasonable than any of the other possible combinations, 
as these other combinations require that, with increasing stability, the 
fraction X, of the available energy going into potential energy should 
first increase and then decrease. 

E!quations (28), (29), and (30) define a minimum value form for any 
fixed value of E. Limitations imposed by Jacobsen's and by Taylor's 
conditions on the constants nT and f3T are summarized in Table III. 
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Taylor's condition imposes the more severe restrict!o~ on n,,1 whereas 
Jacobsen's condition imposes the more severe restnct1on on m, or fJr, 

Constant 
Source 
Equation 
Values 

TABLE III. LIMITS TO CoNsTANTB IMPOSED BY JACOBSEN'S 

AND BY TAYLOR'S CONDITIONS 

nv 
ROBBby 

0 .5 

....--nr----, 
Jacobsen Taylor 

(24) (28) 
>,0.5 >,1.5 

Assumed 

o.o• 
0.5 
1.0 

n., 

(28) 
1.5 
2.0 
2.5 

Jacobsen 
(22a) 

>0.3.3t 
>,0.25 
>0.20 

Taylor 
(28) (29) (30) 

>,0.22 
>,0.10 
>0.07 

• Preferable for reasons stated following equation (31). 
t m = 0.33 preferable tom > 0.33 for reasons stated following equation (22b). 

For reasons referred to in the footnotes to Table III, the combination 

E = 0, nr = 1.5, m = 0.33 (32) 

appears to be the most reasonable. Substituting from (15) and (16) 
gives 

Av= A. (1 + /3v r)-1l2, /3v = 10 
As = AT = A0 (1 + /3T r)-3l2, f3r = f3v/3 = 3.33. (34) 

Some Numerical Values. Taylor (1931) has used Jacobsen's obser-
vations to test the validity of his criterion, and he finds condition (25) 
satisfied. The same observations have been used in Fig. 3, eliminating, 
however, the observation at 15 meters, where the shear shows a sudden 
change from neighboring depths which is inconsistent with the general 
trend. 

The left part of Fig. 3 indicates the validity of equation (15), using 
f3v = 10. It has already been stated that this value was derived from 
meteorological observations; its applicability to oceanographic data 
may indicate that f3v represents a universal constant. The curves in 
the middle and right parts of Fig. 3 were computed for three values of 
E and the corresponding minimum values of m (second column from 
right in Table III.) Increasing m shifts the curves toward the left 
away from the observations. The empirical data are consistent with 
the choice of values proposed in equation (32) on the basis of physical 
reasoning. 

THE DISTRIBUTIONS OF VELOCITY AND TEMPERATURE 

General Solution. The problem consists of solving simultaneously 
the five equations 
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-r = Av V', 

Av = Ao (1 + fJv r)-112, AT = A 0 (1 + fJT r)-3/2 

r = g a T' (V')-2 

in the five unknowns V, T, Av, AT and r. Solving for r gives 

g (-a) FT Ao 
----- = r (1 + fJv r) (1 + fJT r)-312 

C11 r 1 

285 

(la, b) 

(33, 34) 

(35) 

(36) 

where, in general, a, FT, Ao, and ., are all functions of z, and these 
functions must be specified in order that solutions r = r (z) can be 
found. It will be convenient to introduce functions K and R so that 
equation (36) becomes 

K (z) = R (r). (37) 

The distributions of velocity and temperature are best expressed in 
terms of r; 

V' (1 + fJT r)3l4 
-=-----
Vo' r112 

T' 
To' = (1 + fJT r)3l2, 

g (-a) FT 
Vo'=----, 

Cp A 0 

To'= 

The above relationships are plotted in Fig. 4. 

(38) 

(39) 

Depth and Sharpness of Thermocline. Before taking up the special 
case of the Ekman spiral, a few quite general remarks concerning the 
character of the thermocline can be made. These remarks are appli-
cable to transient as well as steady-state conditions. 

Two features which are usually prominent on bathythermograms 
are: (a) the maximum temperature gradient, T' = Tmax' at depth 
z = Zgj (b) the "knee," T" = Tmax" at depth z = Zc• As a simple case, 
assume To' independent of z. It can be seen from Fig. 4 that in order 
for the temperature gradient to have a maximum value, rand hence 
K (z) must reach a maximum. Other factors remaining equal, the 
stress must be at a minimum where the temperature gradient is at a maxi-
mum. The maximum temperature gradient will be the larger, the smaller 
the value of the minimum stress. 

At the depth Zc of maximum curvature T"' = 0, or, according to 
(39), 

r" + (½) fJT (1 + /3T r)-1 r'2 = 0. (40) 
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Combining this with the equations 

dR 
K' = -r' , (41) 

dr 

d2R dR 
K" = - r' 2 +-r", (42) 

dr2 dr 

and substituting f3T = f3v/3, gives, after much manipulation, 

where 

Q 

I 2 

i..o 

08 

I 

0 .6 J 
' 

04 "" 
I 

\ .......... K I 

0 . 
' ..._ / V 

2 

-f-/ ., 
/ 

K" + QK'2 = 0, (43) 

2 f3v (l + f3T r) 3l 2 (f3v2 r2 + 16 fJv r - 15) 

(f3v2 r2 + 11 f3v r + 6)2 

K 
i::-'-

(44) 
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Figure 4. Plot of shear, temperature gradlent, and the parameters K, K, and K, (see text) 
as functions of Richardson's number r. The shear reaches a minimum for r = 0.6. 

is a function of r, or in view of (37), a function of K.. The solution to 
(43) is 

where 
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has been plotted in Fig. 4. Except for large values of r, K 1 == K. 
Therefore the depth Zc of maximum curvature in the T(z) curve equals 
approximately the depth of zero curvature in the K(z) curve. 

The maximum curvature can be computed from 

T max" = 3/2 flr (1 + flr r) 112 r'. 

According to ( 40) and ( 45) 
K' C

1 
efQdK 

r' =- = ---
R' R' 

and 

where 
(47) 

(3/2)f3r(l +f3rr)ti2efQdK 
K2=----------R' (48) 

is plotted in Fig. 4. Thus if K(z) is known, the depth of the thermo-
cline and the sharpness of the "knee" on the temperature-depth curve 
can readily be computed. 

Minimum Shear Layer. The shear reaches a minimum value 

V'min = [3v3 g (-a) Fr f3r ]
1
'
2 

(49) 
2 Cp A. 

when 
r = rn = 2/flr = 0.6. (50) 

The corresponding values of Av/A., Ar/A0 and Kare 0.38, 0.19, and 
0.81 respectively. The region of minimum shear occurs somewhat 
above the thermocline (Fig. 6). At greater depths the shear is larger 
because of the high stability which permits relatively easy slippage of 
water layers with respect to one another; at lesser depths the shear is 
larger because of the driving effect of the wind. Measurements to 
determine the possible existence of a minimum shear layer could 
serve as a critical test of this theory, especially as no corresponding 
feature is contained in Ekman's solutions. 

The Modified Ekman Spiral. For steady-state conditions, with the 
frictional force balanced by the Coriolis force, the equations of motion 
take the form 

d 
T,/ = - (Av V/) = - C vii 

dz 
d 

T/ = - (Av Vi/) = CV,,, 
dz 

(51) 
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where 
C = 2w sin cp, 

w being the earth's rotational velocity, and cp the latitude, and where 

V = V:2 + Vi,,2 (52) 

are the magnitudes of the stress, shear and velocity vectors, respec-
tively. Equations (51) are identical in form with those solved by 
Ekman, the difference being that here Av is a function of temperature 
gradient and shear, whereas Ekman treated Av as constant, or a 
function of shear only. 

Solutions were obtained by solving equations (1), (33), (34), (35) 
and (51) simultaneously on the differential analyzer. In order to 
have steady-state temperature distribution, the heat flux FT was 
assumed independent of depth. 

At the surface we set, with Ekman, 

for z = 0, (53) 

where Ta is the stress of the wind on the sea surface, assuming the wind 
to blow along the positive y-axis. At great depths the only reasonable 
boundary condition is the one prescribed by Ekman, namely that the 
velocity vanishes. This condition cannot be reconciled with the 
existence of a minimum value for the velocity gradient unless the heat 
flux vanishes at great depth (equation 49). It appears that the dis-
tribution of temperature and current cannot both be stationary at the 
same time. 

Without the bottom boundary conditions the solutions to the 
equations are no longer uniquely determined. To make the problem 
definite, we shall assume the components of surface current to be given 
by Ekman's equations 

To 
V: = Vu = for z = 0. 

v2pA.c · 
(54) 

Values of A. and Ta as functions of the wind speed were read off Fig. 5. 

The former are based on a comparison of Ekman's theory with observa-
tions (Sverdrup, et al., 1942: 494), the latter on recent calculations5 

taking into account the roughness of the sea surface and the gustiness 
of the wind. 

!i_g. 6 shows th~ results of a sample calculation (run 3b, Table IV). 
Mm1mum shear 1s found at a depth of 15 meters, the maximum 

6 A discussion by Mr. T. Saur is in preparation. 
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Figure 6. Relationships between wind speed at standard anemometer elevations, the wind stress per unlt area of sea surface, and 
the eddy coefllclent tor homogeneous water . 
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curvature in the temperature depth curve at 17.5 meters, and the 
maximum temperature gradient at 18.5 meters. At the latter depth 
the stress reaches a minimum as predicted by the general theory. 
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Because of the simplifying assumption that FT is a constant the solu-
tion becomes increasingly inadequate the greater the depth

1

• 

Variation in Parameters. All parameters entering the differential 
equations and, according to our theory, the distributions of tempera-
ture and current in the upper layers of the oceans, depend upon four 
factors: the wind speed U, heat flux FT, latitude cp, and the T-S corre-
lation factor a. Some of these factors enter the equations more than 
once; U enters in three places. To determine the role played by each 
factor, computations have been carried out for typical conditions 
varying one factor at a time. ' 

The first five lines in Table IV show the results of the computations. 
Doubling the wind speed lowers the thermocline from 22 to 61 meters! 
Other factors have a much smaller effect. Doubling the latitude 
raises the thermocline by 40%, doubling the heat flux by 20%, dou-
bling a by only 15%. 

The next two lines in Table IV indicate that the computed depth of 
the thermocline does not depend critically upon the assumptions made 
in equation (54) as to the relative direction and velocity of the surface 
current. 

COMPARISON WITH OBSERVATIONS 

In selecting specific cases to be used for comparison with theory the 
following considerations were involved: (1) bathythermograph obser-
vations must be adequate; (2) evaporation relatively small; (3) heat 
flux positive; and (4) advection small, i. e., no strong currents. The 
depth of thermocline was computed for: (1) a relatively clear-cut 
situation ob~erved from a weather ship; (2) a broad strip in mid-
Pacific, for which the computed and observed changes of thermocline 
depth with latitude could be compared; and (3) a lake at various times 
of the year, for which the computed and observed changes with 
season could be compared. Results are summarized in Table IV. 

The weather ship was located at Lat. 49° 50' N, Long. 145° 30' W; 
the time of observation was September 28-29, 1943. Five bathy-
thermographs taken during the 20-hour period were averaged to 
minimize the effect of internal waves. During this time interval 
there was condensation on the sea surface. The heat flux was com-
puted from the general heat budget, following the method described 
on pp. 100-124 of Sverdrup, et al. (1942). The constant a was ob-
tained from a hydrographic station occupied by the USS BusH-
NELL on August 19, 1934, at Lat. 49° 29' N, Long. 174° 31' W. 
The observed depth of maximum curvature of the bathythermogram 



t..:) 

TABLE IV. SUMMARY OF COMPUTATION S ON DIFJl'ERENTJAL ANALYZER 
t..:) 

Run Wind Latitude Heat Flux T-S Surface Wind Wind Eddy ~ Depth z in Meters~ 
Number Speed Correlation Speed Angle Stress Viscosity 

u "' 10'FT 10• a (•)z=O e T Ao Minimum Thermocline (T'" =0) 
(cm sec-•) (cal cm-•sec-') c•c>-' (cm sec-') (dynes (gcm-1 Shear Computed Obser•ed 

cm_.) sec-') 

Variation of Parameters 
lh 600 30°N. 2.00 2 .00 9 .60 45.0° 1.02 156.0 19.6 22. 0 
2a 1200 30 2 .00 2 .00 24.30 45.0 6 .15 619.0 58. 9 61.0 c:... 
3a 600 60 2.00 2 .00 9.60 46. 0 1.02 165. 0 14. 0 C 

4 600 30 1.00 2 .00 9 .60 45.0 1.02 156.0 22. 8 26.5 'i 
5 600 30 2.00 4.00 9 .00 45. 0 1.02 166. 0 14.7 19.0 ;;:! 

lj 600 30 2 .00 2.00 9 .60 48. 4 1.02 166. 0 18. 1 21 . 6 
3b 600 60 2.00 2.00 7.30 46.0 1.02 156. 0 13.6 17.6 

Weather Shtp (September, 1943) 
6 630 49 3 .89 2.18 8.75 45.0 1.20 171.0 13.8 16. 2 38. 0 ~-

Mid-Pacific NW-SE Strip (A•erage Summer) (1) 

7 617 15 0.49 2 .86 14.25 46. 0 1.12 164.0 38. 6 44.0 76.0 
17 605 21 0 .76 2 .86 6 .58 46.0 0 .60 110.0 16. 6 20.0 43 .0 

(1) .. 
13 630 24 0 .97 2 .80 7 .46 46.0 0 .63 121.0 16.0 

(1) 

19.0 48.0 A 
18 462 28 1.32 2.66 3 .91 46.0 0.31 91.8 6.6 11 .0 33.0 

'i 
C) 

8 365 32 1. 73 2.72 2.59 46.0 0.16 49. 6 6.6 19.0 ;::,-

16 440 38 2 .04 2.80 2.78 46.0 0 .24 83. 2 6 .3 14.0 
19 440 43 2.10 2 . 60 2 .64 46.0 0 .24 83. 2 0 . 6 6 .0 17 . 0 
9 642 48 2 .14 2 .43 6 . 90 46.0 0 .69 126.0 10.0 13. 0 27.0 

Sweetwater Lake (April, May, June, July, August) 
10 360 32 1.18 1.89 2.58 46.0 0 .16 43. 7 3 . 6 7 . 2 6 . 5 
14 330 32 2 .28 2 .07 2 .63 45.0 0 .14 36. 6 4 . 5 6.5 
11 365 32 2 .00 1.33 2.59 45.0 0 .16 49. 6 2 .3 7 . 5 5 . 5 < 16 325 32 2 .20 2 .23 2.60 45.0 0.13 3 5 .0 3 . 0 4.0 
12 300 32 1.18 1.83 2.39 4 5 . 0 0 .11 27.5 2 .3 4 . 5 4.0 

Cl) 
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trace was at 38 meters, the computed depth at 16 meters giving a 
ratio of 0.43. ' 

Computation for a mid-Pacific NW-SE strip was made for the 
summer season, during which evaporation is relatively small. The 
region is shown in the inset of Fig. 7. Values of a were computed from 
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Figure 7. Comparison between computed and observed depths of thermocline as func-
tions of latitude for the broad strip In the mid-Pacific shown In inset. The upper part gives 
the variations of the basic parameters entering the calculations. 

selected USS BusHNELL hydrographic stations. Wind speeds were 
obtained from pilot charts of the North Pacific. Values of heat 
flux for each five-degree square were kindly put at our disposal by 
Dr. W. C. Jacobs. These were computed on the basis of energy budget 
considerations, and they may be considerably in error because of un-
certainties involved in some of the data. The observed depths of the 
thermocline were taken from a compilation by Mr. E. · C. LaFond, 
using all data available prior to January 1945. For the extreme 
northern and southern portions of the area, the averages were adjusted 
for recent observations. Fig. 7 shows the variation with latitude of 
the basic parameters and of the observed and computed depths of 
thermocline. The computed depth is much too shallow, bearing 
roughly the same ratio to the observed depth as was found for the 
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weather ship. Except for the southernmost station, the percentage 
variations in the depth of thermocline are similar for the computed and 
observed values. 

Observations for Sweetwater Lake, California, taken during 1944 
and 1945 have kindly been placed at our disposal by Mr. B. E. Holts-
mark. Temperature observations were taken from a barge in water 
of about 50-foot depth. No wind observations were taken at the time, 
and it has been necessary to use wind data taken at Lindberg Field, 
San Diego, located approximately 12 miles from Sweet':ater Lake. 
Values of a were obtained from standard tables of density of fresh 
water at various temperatures. The heat flux, which was computed 
by Mr. Holtsmark, using the energy budget method, was positive 
during the months under consideration. The agreement between the 
computed and observed depths of thermocline is fairly good. In 
addition, computations revealed an appreciable temperature gradient 
from the very surface downward, a feature in agreement with observa-
tions. 

CONCLUSIONS 

In view of the difficulty experienced in selecting conditions under 
which heat loss by evaporation is relatively small compared to heat 
gain by radiation, it would appear that convective stirring is as 
important as wind stirring in many, and perhaps most, cases. There-
fore, it would be preferable to refer to the upper mixed layer by a less 
implicating term than "wind stirred layer." 

The present model is greatly over-simplified. The effects of con-
vective stirring, and of the convergence and divergence of the hori-
zontal current field, must exert predominant influences in certain 
regions. If the heat flux had been assumed to decrease quasi-exponen-
tially with depth, to take into account the absorption of radiation, 
more consistent results would have been obtained. In view of the 
close inter-relation between the temperature and current distributions, 
the turbidity of the water might be an important factor in the dy-
namics of wind currents. 

Except in the case of Sweetwater Lake, where the winds were quite 
low, the computed depths of the thermocline are somewhat less than 
half the recorded depths. Perhaps this discrepancy is due to the 
assumed relationship A. ( U) (Fig. 5) for the eddy coefficient under 
indifferent equilibrium which is based largely on measurements made 
when the density stratification was stable. 

_It has been demonstrated: that the sharp transition between the 
m1x_ed layer and the thermocline can be accounted for theoretically by 
lettmg the eddy coefficients be functions of the stability and shear; 
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that the theory gives a thermocline depth which, although too shallow, 
is of the right order of magnitude; that this depth depends on wind 
speed, latitude, heat flux, and the T-S correlation, in the order stated, 
and that the variation with each of these factors occurs in a reasonable 
direction. 
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