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THE EFFECT OF OCEAN CURRENTS ON 
INTERNAL WAVES 

BY 
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and 

College of Engineering, New York University 
New York, N. Y. 

In a fluid whose density changes with the height, either abruptly at a 
sharp surface of discontinuity or gradually, it is possible to have 
internal wave motions whose amplitude is greatest at the density 
discontinuity or, in the case of a gradual density change, somewhere 
in the interior of the fluid and not at the free upper surface where the 
surface waves have their maximum amplitude. The occurrence of 
such internal waves has been demonstrated by Ekman (1904), Seiwell 
{1937, 1942), Ufford (1947), and others. A review of our theoretical 
and empirical knowledge of internal waves has been given by Sverdrup, 
et al. (1942: 585-602). In the theoretical investigations it has always 
been assumed that the mean velocity of each layer, i. e., the velocity 
apart from the wave motion, is zero. In many cases, especially where 
ocean currents are present, this assumption will not be satisfied. It 
is the purpose of the present paper to investigate whether or not 
modifications in the internal wave motion would be brought about by 
the existence of such currents on which the internal wave motion may 
be superimposed. 

The presence of undisturbed currents on which the wave motions 
are superimposed complicates considerably the expressions for the 
wave periods, wave velocities, amplitude ratios at different levels, etc. 
Therefore, a very simple model will be considered which consists of two 
fluid layers (Fig. 1). The free upper surface (0) may be at the level 
z = 0, the rigid lower surface (2) at the level z = - H. Both fluids 
are separated by an internal boundary at the level z = - h1

• Each 
of the two fluids is incompressible and homogeneous, the densities 
being p1 and p11, respectively, for the upper and lower fluid layers. 
The velocities in both layers, in the absence of wave motion, are U 1 

and U II, respectively, both parallel to the x-axis. These current 

1 Contribution No. 445 from the Woods Hole Oceanographic Institution. 

(217) 
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velocities may also be assumed to be constant within each layer and to 
change abruptly at the surface of discontinuity. In the absence of 
wave motion the pressure distribution is given by the expression 

P = gpz + const., 

where p is the density and g the acceleration of gravity. The wave 
motion may be considered as a small perturbation superimposed on 
the horizontal current U, and the velocity components in this case 
may be U + u, w while the pressure is P + p. Under the assumption 
that the perturbation quantities are small (designated by small letters), 
the equations of motion and continuity may be written 

au au 1 ap 
-+u-+--=0 at ax p ax 

(1) 
aw aw 1 ap -+ u-+-- =O, at ax p az 

au aw -+- =0 . ax az 

0----,.----------r-----Z=O 
ur 

I 

II 

2 

Figure 1. Stratiftcatlon of ftuid. 
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The equation of continuity is satisfied if a stream function ,fl exists, 
such that 

a,fl a,fl 
u=--, w=-. 

az ax 
(2) 

Since the rigid lower boundary at z = - H must be a stream line, the 
solution of (1) for the lower layer in the case of waves travelling in 
the x-direction may be written in the form 

(3) 

(4) 

,fill = K II sinh a(z + H) ei(az-(Jc) ' 

pll = - acIIpIIKIIcosh a(z + H) e•<u-fJll 

Here, KII is an arbitrary constant, a = 21r/L, where Lis the wave 
length, {3 = 21r/T, where T is the period, c = (3/a, the wave velocity, 
and ell = C - urr. 

For the upper layer, the solution of (I) may be written in the form 

(5) if;I = (K1Ie'" + K2Ie-a•) ei(az-(JI) J 

(6) pl = - aclpl (- K1Iea• + K2Ie-a•) e•<az-fJI) ' 

where K11 and K21 are arbitrary constants and where c1 = c - U1. 
Since at the free surface the pressure must remain constant, 
(7) pr+ P,=--01 = - gpiz + acrpr (- K11 + K2l) e•<az-fJi> = const. 

In the expression for p 1 the actual height of the free surface has been 
replaced by the height of the free surface in the undisturbed position, 
z = 0. This simplification involves only an error of higher order. 
It follows that the equation of the free surface may be written in the 
form 

(8) z - Zo ei<az-fJ,> = const., 

where the amplitude of the free surface 
a 

Zo = -c1 (- K1 1 + K21). 
g 

The kinematic boundary condition requires that a particle which was 
once part of the free surface remains in this surface. If in general the 
equation of the disturbed free surface is 

F+f=O, 
where F = O denotes the equation for the undisturbed boundary, the 
kinematic condition becomes 

(~ + U 1 ~)! + w,=o1 aF = 0. 
at ax az 
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Here, only an error of higher order is involved if the value of w at the 
actual disturbed position of the boundary is replaced by the value at 
the undisturbed position. The last equation leads to the following 
equation for Zo, 

c1Zo = - (K11 + K21
). 

By means of the two expressions for Zo, (5) and (6) may be written as 
follows: 

(9) 

(10) 

if,, 1 = - zo[...!!_ sinh aZ + c1 cosh aZ] eiC=-/JI} 
ac1 

p1 = ac1p 1Zo[...!!_ cosh aZ + c1 sinh aZ] eHaz-/Jtl 
ac1 

The equation of the internal boundary, which, in the absence of wave 
motion, is z = - h 1, is given by the condition that the pressure at this 
discontinuity must be continuous. There are two kinematic boundary 
conditions which express the fact that particles in the upper as well 
as in the lower layer, which at one time were at the boundary, must 
remain there. Similar to the procedure in the case of the free surface, 
these conditions permit one to express the arbitrary constant K 11 in 
(3) and (4) by the amplitude of the internal boundary Z1, 

(11) 
Z1 c· • 

KII = - ----
sinh ah11 

Furthermore, the ratio of the amplitudes of the free surface Z0, and of 
the internal boundary Z1, is found to be 

Z1 g 
- = - -- sinh ah1 + cosh ah1 

Zo ac 12 

(12) 

and the wave velocity c must satisfy the equation 

g g2 
(13) er• + uarar Icr2cr 12 - - u(aI IcI r2 + aicI2) + - (u - 1) = 0. 

a a2 

Here the following abbreviations have been used: 
pII 
- = u coth ah1 = a1 coth ah11 = a11 • 
pl ' ' 

. The amplit~des Zo and Z1 of the free and of the internal boundary 
give the amplitudes of the vertical motion at the levels z = O and 
z = - h

1 where the two boundaries are situated in the undisturbed 
case. In order to find the amplitude z of the vertical motion at other 
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levels, an additional integration has to be performed. If again quanti-
ties of higher than the first order in the perturbation terms are ne-
glected, 

dz az az 
-=-+U-=w. 
dt at ax 

By integration of this equation, for the upper layer it follows that 

zl = ( a:12 sinh az + cosh az )zo ei(az-PI) 1 

and for the lower layer, if the expression (11) is used for K 11, 

sinh a (z + H) 
zll = . Z1ei(az-Pt). 

sinh ah11 
(14) 

At the internal boundary, z = - h1, the vertical displacements in 
both layers must be the same, which leads again to the relation (12). 
If by means of this relation Zo in the foregoing expression for z1 is 
replaced by Z1, 

(15) 
(glac12) sinh az + cosh az 

zl = ------------ Z1 eiCaz-Pt) • 

- (glac12) sinh ah1 + cosh ah1 

As (14) shows, the amplitude of the vertical motion increases from 
zero at the bottom, z = - H, to Z1 at the internal boundary, z = - h1. 

In the upper layer the amplitude of the vertical motion at a given 
depth depends on the magnitude of c1 in addition to the parameters 
which determine the vertical amplitude in the lower layer. It is 
necessary, therefore, first to determine the wave velocity c from (13). 

A rigorous solution is quite complicated because equation (13) is 
of the fourth degree, but approximate solutions can be obtained 
without much difficulty. For this purpose the conditions in the 
absence of currents, U 1 = U II = 0, may first be reviewed briefly. 
Let E = (pII - p1)/p1 , which in all actual cases is small compared to 
unity. If powers higher than the first of E are neglected, the following 
two well known roots of (13) are obtained: 

(16) 

and 

(17) 

g al+ aII [ a12 + a112 _ a12a112 _ 1] 
C12 = - ---- 1 + E ----------

a 1 + alaII (al + aII)2 (1 + alaII) 
(surface wave) 

g E 
C22 =-----

a a1 + aII 
(internal wave). 
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The bracket in (16) is very closely equal to one and may be replaced 
by this value. The expressions for c1

2 and ~ 2 show that, of the four 
roots of (13) the two for the internal waves are considerably smaller 
than the other two at least as long as the density discontinuity is 
small, a condition ;hich is always true for internal boundaries in the 
ocean. 

For this reason it may now be assumed that in the more general case 
where U 1 and VII are not both zero, the values of c1 and cII for the 
internal waves are also sufficiently small so that the first two terms in 
(13) may be neglected, these being of the f?u~th and thi~d degre~ in 
these quantities. The solution of the remammg quadratic equat10n, 

(18) <1 (aI rcr r2 + aicI2) - .!!_ (<1 - I) = 0 ' 
a 

results in the following expression for c, 

(19) 
1 urar + u11a11 [ g PII _ Pr 

C = ------ ± - ----
al + all a P11 all + al 

(UI - UI1)2 ]½ 
------a1a11 . 
(al + aII )2 

In order to obtain a correction to this approximation let the rigorous 
solution of (13) be c + j, where j is a small quantity if c is a good ap-
proximation. If c + j is substituted for c in (13), if powers higher than 
the first in j are neglected, and if it is taken into account that the value 
of c given by (18) makes the combination of the last two terms in (13) 
equal to zero, the following expression is obtained for the correction .i 
to the approximate wave velocity 

- c14 - <1a1a11c12cn2. 

It should be noted that the value for c to be inserted in this formula is 
t~e one given by (19). For any particular numerical example it is 
simplest ~o check the ap~roximation represented by (19) by direct 
computat10n of the correct10n term j from (20). 

After the wave velocity c has been determined the distribution of 
the vertical amplitude can be found from (14) 

1

and (15). As (14) 
s~ow:s, t?e velocity of the undisturbed current does not affect the 
d1stnb:1tion of th~ verti_cal_amplit~de in the lower layer if the amplitude 
of the mternal d1scontmu1ty Z1 1s taken as the basic constant. But 
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U 1 and U 11 affect the value of the vertical amplitude in the upper 
layer, since (15) contains c1 = c - U1, and since c depends on U1 
and U 11. However, it can be seen that the effect of the current on the 
distribution of the vertical amplitude as a function of the depth will be 
small. With the actually occurring current velocities, c1 will be con-
siderably smaller than g/a. Consequently, the first terms in the 
numerator and denominator of (15) will be considerably larger than 
the second terms, except very close to the free surface, z = 0. Con-
sequently 

sinh az 
zl = - ---

sinh ah1 ' 

except in the closest vicinity of the free surface, and the distribution of 
the vertical amplitude is practically independent of the current 
velocity. 

In order to amplify this statement, consider the smallest possible 
value of gla for which the waves do not become exponentially unstable. 
In this case the square root in (19) is zero, so that 

g (UI - Ull)2 pll 
------ ala I I----

OI al + all pll - pl 

and 
g al+ all pll 

-- =----al ___ _ 
acI2 all pll - pl 

Since the percentual density difference (pll - p1)/p11 is a small 
quantity, g/ac12 could be comparable to one only if (a1 + a11)a1/a11 

were small. But since a1 is a hyperbolic cotangent it cannot be less 
than one, and it follows that a11 would have to be negative, which is 
impossible. 

The case of long waves may also be considered separately. When 
the wave length is large compared to the depth of the fluid layer, the 
hyperbolic cotangent may be replaced by the reciprocal of its argu-
ment. The expression (19) for the velocity of the internal wave then 
becomes 

(VI_ U11)2 hlhll ]'· 
H2 



224 Journal of Marine Research [VII, 3 

Further, since the hyperbolic sine may be replaced by its argument, 
from (14) 

(22) 
z+ H 

zll = --- Z1 ei(az-/ll) 

hll ' 

and since the hyperbolic cosine may be replaced by one, 

gz 

(23) 

-+1 
cI2 

zl = ------Z1 ei(a:i-/ll) • 

ghl 
--+1 

CI~ 

Equation (21) shows that in the case of long waves the vertical ampli-
tude increases linearly from the bottom to the internal boundary, as is 
well known in the absence of a basic current. 

It can be shown similarly that in the upper layer the vertical ampli-
tude decreases practically linearly from its maximum value at the 
internal boundary to the free surface. This statement is certainly 
true as long as the depth h 1 of the upper layer is not very small, be-
cause for sufficiently large h1 the first terms in the numerator and 
denominator of (22) are much larger than one. Only for very small 
depths z the first term in the numerator of (22) will be of the order 
one, but at these levels the vertical motion due to the internal waves 
is very small anyway. If h1 is small compared to the total depth H 
of the fluid, it follows from (20) that approximately 

1
2 PII - PI (UI - UII)2 hl 

C = gh1 ----

If h1 = 10 m, 
instance, 

PII H 

H = 1000 m and (pII - p1)/pII = 2 . 10-3, for 

-~----
cI2 PII _ pl 

so_ that t~e first terms in the denominator and numerator of (22) are 
still considerably larger than unity except very close to the surface 
where the amplitude is very small, as pointed out before. ' 

In order to show t~e modifications in the wave velocity produced by 
a current, the followmg example may be considered: 

P
1 = 1.024 pll = 1.026 

h 1 = 100 m h II = 3000 m 
L = 1000 m. 
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The fluid in the lower layer may be at rest. In Fig. 2 the wave velocity 
is plotted as a function of the current velocity U 1 ii:_i the upper_ layer. 
For each value of U 1 two different values of c most, dependmg on 
whether the positive or the negative sign before the square root is 
taken. The two solutions for c become identical when U 1 = 2.18 
m/sec which represents the limit between stability and instability. 
The ;alue of c for this value of U 1 is indicated by a dot in Fig. 2, but 
the two curves are not joined here for the sake of clearness. 

The depth distribution of the amplitude of the vertical motion can 
be computed from (14) and (15). The result is shown in Fig. 3 for 
the foregoing numerical example. As just explained, the velocity of 
the undisturbed current has only a very small effect on this distribu-
tion, and the curve shows consequently well known features, viz., a 
rapid decrease from the internal boundary to the free surface in the 
relatively shallow surface layer and a less rapid decrease from the 
internal boundary to the bottom through the relatively deep lower 
layer. 

As mentioned previously, only very close to the free surface does 
the amplitude of the vertical motion change substantially with differ-
ent speeds of the undisturbed current. This fact is clearly shown by 
(12), which gives the amplitude ratio of the two boundaries. But 
even though the percentual variation of this ratio with different current 
velocities can be very large, its practical significance is very small, 
because the oscillation of the free surface produced by internal waves 
is negligible in any case. 

Finally, the horizontal motion due to internal waves may be con-
sidered briefly. A certain modification of this motion occurs, of 
course, because it is now superimposed on basic currents, not on a 
state of rest. In addition, the amplitude of the horizontal motion 
will also be modified somewhat, as can be shown in the following 
manner. According to (9) and (12), 

(glac12
) cosh az + sinh az 

(24) u 1 = ac1 Z1 ------------- e•(az-/ll) 

- (glac12
) sinh ah1 + cosh ah1 

and according to (3) and (11), 

cosh a (z + H) 
(25) u11 = ac11Zi------e•(a:r-/ll) 

sinh ah11 • 

In the numerator and denominator of (23) the second terms are for 
most of the layer, much smaller than the first terms as discdssed 
befo~e, so tha~

1
u1 is la~gely proportional to c1• Simila;ly, uII is pro-

portwnal to c accordmg to (24). Any modifications in the value of 
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c caused by the existence of an undisturbed current will therefore be 
reflected in the amplitudes of u 1 and uII. 

SUMMARY 
The effect of a basic current on internal waves in the ocean is 

studied. It is shown that, while the wave velocity is modifi(;ld by the 
existence of such a current, the distribution of the vertical amplitude 
of the wave motion as a function of the depth is very little affected by 
the presence of an ocean current. The amplitude of the horizontal 
motion is modified to a certain extent by the presence of ocean currents. 
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