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The writer has received requests on several occasions to give esti-
mates in concise form of the intensity of the transport of water caused 
by surface waves. It is hoped that the following discussion will be 
helpful in answering such questions, although it should be pointed out 
from the beginning that the actual conditions in the oceans depart 
very significantly from the ideal circumstances presupposed in the 
theory of the subje'ct, so that great caution must be exercised in 
applying the theoretical results to practical problems in oceanography, 
pending comparison with observational data.1 

1 Under the actual circumstances in the oceans there are present such additional 
factors as the effect of the earth's rotation, pronounced irregularities in the waves 
themselves and, generally speaking, a certain horizontal stress at the surface due to 
the wind. It would therefore be of great interest to secure data on the actual trans-
port produced by the waves in order to see whether, in spite of the added complexities, 
the simple theory here presented can be used at least as a firs.t approximation. 

In order to speculate concerning the possible state of affairs in an actual case, let 
us suppose that we are dealing with a large deep ocean which (for simplicity only) 
we assume to be free from permanent currents. Let us suppose further that there is 
present a steady and uniform wind which, after a suitable interval of time, establishes 
a stationary wave regime and also a system of steady drift currents near the surface. 
Since under these conditions it is necessary that the surface wind stress be exactly 
balanced by the Coriolis force associated with the momentum of the water, it follows 
that the total water transport must be at right angles to the stress. If there is to be 

( 1) 
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Dealing only with plane and periodic waves on the surface of a basin 
of very great depth, the instantaneous transport of mass across a fixed 
vertical plane normal to the direction of wave propagation (per unit 
distance along the crests) is given by .. f pudz. (1) 

-oo 

Here z is the vertical co-ordinate counted positive upward, zo is the 
elevation of the free surface, p is the (constant and uniform) density 
and u is the x-component of the particle velocity. The x-axis is taken 
positive in the direction of wave propagation. If expression (1) is 
integrated with respect to time t over one wave period T, we obtain an 
expression for the net mass of water transferred, µ,. Thus 

T •o 

µ1 = ff pudzdt . (2) 

0 - oo 

Since we assume that the waves move without alteration of their 
structure, it is possible to replace the time integration in (2) by a space 
integration over a wave length. Thus we shall employ the trans-
formation 

dx = cdt ; L = cT , (3) 

where c is the wave speed and Lis the wave length, so that (2) becomes 

I cµ, = m I - (4) 

In equation (4) mis the horizontal momentum per wave length. We 
thus see that the horizontal momentum per wave length and per unit 

a component of this total transport in the direction of wave propagation, it would 
seem that the waves should run somewhat at an angle to the stress, a little to the 
right in the northern hemisphere and to the left in the southern. As an illustration, 
a wind of 15 m/sec would eventually establish waves which we might estimate to be 
3 m in amplitude and to have a period of 13 sec. The same wind would produce a 
stress of about 7 dynes/cm2 according to customary formulae. Computation shows 
that at middle latitudes the ratio of the wave transport to the total transport should 
be roughly about as 2 is to 7, so that the angle between the stress and the direction 
of wave propagation is 16 degrees. For the purpose of this illustration it has been 
assumed that the wave transport is given by Table I . 

It is not clear, however, what the situation might be when waves are present but 
when the surface stress vanishes, since under such circumstances the total transport 
should also vanish. 



T I L d 

(m 
(sec) (m) per (m) 

sec) 

3 14 04. 7 01.1 
4 25 06.2 02.0 
5 39 07.8 03.1 
6 56 09.4 04.5 
7 76 10.9 06.1 
8 100 12.5 07 .9 
9 126 14.0 JO. I 

JO 156 15.6 12.4 
11 189 17 .2 15.0 
12 225 18. 7 17. 9 
13 264 20.3 21.0 
14 306 21.8 24.3 
15 351 23.4 27 .9 
16 399 25.0 31. 8 
17 451 26.5 35.9 
18 505 28.1 40.2 
19 563 29. 6 44.8 
20 624 31.2 49. 6 

TABLE I. APPROXIMATE VOLUME TRANSPORT DuE TO SURFACE WAVES IN DEEP WATER 

(g = 980 cm per sec per sec) 

a= 0.5 m a= 1.0 m a= 2.0 m a= 3.0 m a= 4.0 m 

Vt h UQ V t h lto Vt h '" V, h u, v, " 
(m' (cm (m' (cm (m' (cm (m' (cm (m' (cm 
per (cm) per per (cm) per per (cm) per per (cm) per per (cm) per 
m sec) m sec) m sec) m sec) m sec) 

per per per per per 
sec) sec) sec) sec) sec) 
0.26 05.6 23.4 - - - - - - - - - - - -
0.20 03.1 09.9 0 . 79 12.6 39.5 - - - - - - - - -
0.16 02.0 05. 1 0. 63 08.1 20.2 2.51 32.2 81.0 - - - - - -
0. 13 01.4 02.9 0.52 05.6 11. 7 2 .09 22.4 46.9 4. 71 50.4 105.5 - - -
0.11 01.0 01.8 0 .45 04.1 07.4 1.80 16.4 29.5 4.04 37.0 66.4 7.18 65.8 118. 1 
0.10 00. 8 01 .2 0.39 03. 1 04.9 1.57 12. 6 19.8 3 .53 28.3 44.5 6.28 50.4 79.1 
0 .09 00.6 00.9 0 .35 02.5 03.5 1.40 09.9 13.9 3.14 22.4 31.2 5.59 39.8 55.6 
0 .08 00.5 00.6 0.31 02.0 02.5 1.26 08. 1 10.1 2.83 18. I 22.8 5.03 32.2 40.5 
0.07 00.4 00.5 0.29 01. 7 01.9 1.14 06. 7 07.6 2.57 15.0 17.1 4.57 26.6 30 .4 
0.07 00.3 00.4 0.26 01.4 01.5 1.05 05.6 05.9 2.36 12.6 13.2 4.19 22.4 23.4 
0.06 00.3 00.3 0 .24 01.2 01.2 0. 97 04.8 04.6 2.17 10. 7 10.4 -3 .87 19. 1 18.4 
0.06 00.3 00. 2 0 .22 01.0 00. 9 0.90 04.1 03. 7 2 .02 09.2 08.3 3.59 16.4 14. 8 
0 .05 00.2 00.2 0.21 00.9 00. 7 0 .84 03. 6 03.0 1.88 08.1 06. 7 3.35 14.3 12.0 
0.05 00, 2 00.2 0.20 00.8 00.6 0 . 79 03.1 02.5 I. 77 07.1 05.6 3.14 12.6 09. 9 
0 .05 00.2 00. 1 0.19 00. 7 00.5 0. 74 02.8 02. 1 1.66 06.3 04.6 2 . 96 11.2 08.2 
0.04 00.2 00.1 0 .17 00.6 00.4 0. 70 02.5 01. 7 1.57 05.6 03.9 2. 79 09.9 06.9 
0.04 00.1 00.1 0 .17 00.6 00.4 0.66 02.2 01.5 1.49 05.0 03.3 2. 65 08.9 05.9 
0 .04 00. 1 00. 1 0.16 00.5 00.3 0.63 02.0 01.3 1.41 04.5 02.8 2.51 08.1 05.1 

a= 5.0 m a = 6.0 m 

V t h uo Vt h 

(m' (cm (m• (cm 
per (cm) per per (cm) per 
m sec) m sec) 
per per 
sec) sec) 

- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

9.82 78. 7 123.6 - - -
8. 73 62.2 86.8 12.57 89.5 125.0 
7.85 50.4 63.3 11.31 72,5 91.1 
7 .14 41. 5 47 .5 10.28 59.9 68.5 
6.54 35.0 36. 6 9.42 50.4 52.7 
6.04 29.8 28.8 9 .00 42. 9 41.5 
5.61 25. 7 23. 1 8.08 37.0 33.2 
5.24 22.4 18. 7 7.54 32.2 27.0 
4. 91 19. 7 15.4 7.07 28.3 22.2 
4. 62 17.4 12. 9 6.65 25.1 18.5 
4.36 15.5 10.9 6.28 22.4 15.6 
4.14 13. 9 09.2 5. 95 20. 1 13.3 
3. 93 12.6 07.9 5.65 18. 1 11.4 
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distance along the crests is equal to the wave speed multiplied by the mass 
of water transported during one wave period per unit distance along the 
crests. The momentum per wave length is thus the same as that of 
a mass of water µ1 moving with the wave speed. 

In papers published previously by the writer (Starr, 1947a, b), at-
tention was called to a relationship originally established by Levi-
Civita, namely that for periodic waves in an irrotational medium, 

cm = 2e ; ( e = j j'P u
2 

: wi dzdx) , (5) 

0 -00 

where w is the vertical component of the particle velocity, so that e is 
the kinetic energy per wave length and per unit distance along the 
crests. Elimination of m between (4) and (5) yields the equation 

! e= ½u1c2 ! - (6) 

Thus the kinetic energy per wave length and per unit distance along the 
crests is equal to one half the mass transported per wave period and per 
unit distance along the crests, multiplied by the square of the speed of 
propagation. The kinetic energy per wave length is thus the same as 
that of a mass of water µ1 moving with the wave speed.2 

In order to provide a means readily grasped by the imagination for 
representing some of the concepts discussed above, let us suppose that 
a mass of water µ, per wave length is spread horizontally in the x-
direction so as to form a layer of uniform thickness h. It follows that 

µ, 
h = - . (7) 

pl, 

If v is the potential energy of the actual waves per wave length (and 
per unit distance along the crests), this energy is equivalent to the work 
done in lifting the layer h through an appropriate vertical distance d. 
If, in addition, we impart a uniform horizontal translation to the layer 
h, equal to the wave speed c, the following statements are true: 

(1) The average potential energy of the waves per unit area of sea 
surface is equal to the work done per unit area in lifting the layer h 
through a vertical distance 

2 In the papers by the writer already alluded to, it was shown that an equation of 
the same form as (5) is valid not only for the entire depth of the water but also for 
any material layer bounded above and below by streamlines for the m~tion relative 
to the moving wave. It remains to be pointed out that an equation of the form (4) 
and consequently also one of from (6), is also valid for such a material layer. ' 
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V V 

d = gphL = gµ, ' (8) 

where g is the acceleration of gravity. 
(2) The average volume transport per unit time and per unit dis-
tance along the crests is the same as that of the layer h, namely, 

cµ, 
V, =ch=-. 

pL 
(9) 

(3) The average horizontal wave momentum per unit area of the sea 
surface is the same as the horizontal momentum of the layer h per 
unit area, namely, 

m cµ. 1 
-=pch=-. 
L L 

( IO) 

(4) The average kinetic energy per unit area of the sea surface is the 
same as the kinetic energy per unit area of the layer h, namely, 

e c2µ1 
- = ½ phc2 = - . (11) 
L 2L 

It is, however, important to observe that the layer h cannot serve as 
a dynamic substitute for the wave motion in certain other ways. In 
particular it is especially important to note that in the layer h the 
transport of kinetic plus potential energy during one wave period is 
equal toe + v, whereas in the actual wave motion it is generally recog-
nized that this transport is about one half as great , at least as a first 
approximation. 

The material presented above is independent of any restriction to 
small amplitudes. However, in order to present some idea of actual 
magnitudes in specific cases we shall now use certain approximate 
expressions derived from the small-amplitude theory. These a.re that 

e = v = ¼ gpa2L , (12) 

gL 
c2 = - (13) 

27t ' 

where a is the amplitude of the waves at the free surface which is as-
sumed to be of sinusoidal form. From (6), (12) and (13) it follows that 

µ.1 = 7tpa2 • (14) 

From (7) and (14) it follows that 
-xa2 

h=-. 
L 

(15) 
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From (8), (12) and (14) it follows that 

L 
d=-. 

41t 

From (3), (9) and (14) it follows that 
1ta2 

V,=--. 
T 

[VII, 1 

(16) 

(17) 

Numerical values of c, T, d, hand V, are given in Table I, together 
with u0 the surface particle transport velocity for various values of 
amplitude and wave length. The surface particle transport velocity 
is calculated by means of an approximate formula3 given by Lamb 
(1932), namely, 

41t2a2c 41t 
---exp-z. 

L2 L 
(18) 

APPENDIX 

Although it may seem somewhat surprising that the surface wave 
problem is characterized by three exact relationships as simple as (4), 
(5) and (6), still it might have been anticipated purely on a priori 
grounds that equations of this form should exist, provided that the 
present subject is brought into proper relation with another topic in 
classical hydrodynamics. The writer has in mind the theory of the 
motion of a solid through an infinite liquid, according to which the 
solid in certain cases reacts to the action of an external force in a 
manner as though its inertia were artificially increased by a constant 
amount depending upon the configuration of the solid and the direction 
of the applied force. For a discussion of this theory the reader is 
referred to Lamb (1932). 

In order to apply the principle to the wave problem, let us consider 
an admittedly artificial but nevertheless theoretically satisfactory mode 
of generating surface waves of a given wave length and height. We 
shall suppose that we have at our disposal a rigid corrugated metal 
sheet of negligible mass per wave length, having the precise shape of 
the profile of the waves to be generated and also having a large number 
of wave lengths. We may suppose that the waves are to be generated 

• Th.is formula was obtained through the use of the second-order approximation to 
the solution of the wave problem. It is to be noted that when integrated it gives a 
result in agreement with (17). Mr. G. W. Platzman has informed the writer that 
he has carried out a computation of the transport velocity which includes terms of 
the eighth order. From his results it appears that, for waves of the extreme form 
the surface transport velocity is equal to about one fifth of the wave speed. ' 
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in a canal of great depth but of unit width. If the sheet is placed on 
the surface of the water in such a way that no space remains between 
it and the water, an amount of work equal to v will have been done 
per wave length in producing the deformations. 

Let us suppose next that, with the sheet constrained to move hori-
zontally, a certain constant arbitrary force f per wave length is applied 
horizontally to the sheet. The effect will be to accelerate the sheet 
until after some appropriate time t1 it will be moving with the velocity 
c, the (predetermined) wave speed corresponding to the chosen wave 
length and wave height. At this time the force f may be discontinued 
and the sheet removed. 

The process which has taken place may be analyzed as follows. 
Assuming that, with the sheet in place at time t = o, the water is at 
rest, all the motions subsequently generated are irrotational and hence 
determined completely by the motion of the boundary. Except for 
end effects which become of negligible importance if a very large num-
ber of wave lengths are used, at time t = t1 the motion of the boundary 
is the same as the motion of the geometric curve representing the 
moving profile of the desired waves, hence the particle motions must 
be those corresponding to the desired waves and the dynamic reactions 
of these motions will produce a constant pressure at the upper boundary 
as is needed. If the force f is taken very large, in the limit the motions 
may be considered as being started instantaneously by impulsive 
action, although it will be more convenient to suppose that the process 
takes place during a finite time interval. 

At this point an assumption must be made which however seems 
reasonable. The sheet used, instead of being immersed in fluid, is in 
contact with water only on the lower side. Since, in the limit when 
the number of wave lengths used is very large, the two regions above 
and below are independent of each other, we shall assume that the arti-
ficial mass of the sheet is simply some fraction of what it would be in 
the case of immersion. Actually the presence of the artificial inertia 
is due to the fact that as the solid object is accelerated certain motions 
must be generated in the fluid. In our case the motions generated in 
the water are known to be periodic in the x-direction so that the arti-
ficial mass must be regularly distributed along the sheet. Without 
making any supposition as to magnitude, we thus assume that this 
virtual mass is an amount µ.1 per wave length and proceed to write an 
equation of motion for it, namely, 

<flx 
µ, - =f. 

d(l 
(19) 
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Since µ1 is a constant determined by the shape of the sheet, a single 
integration gives 

dx ( dx ) µ, - = ft ; - = 0 for t = 0 . 
dt dt 

(20) 

For time t = t1, dx/dt = c and ft = m , so that cµ, = m, which is (4). 
A second integration gives 

µ.,(x - xo) = ½ft2 ; (x = Xofor t = O) . (21) 

For time t = t1, the quantity f(x - Xo) is the work done, which must 
be equal toe the added energy, so that, with the aid of (20), 

flt12 
e = f (x1 - xo) = ½ -- = ½ µ,c2 , (22) 

µ., 

which is (6). Elimination of µ., between (4) and (6) finally gives (5), 

The writer wishes to express his thanks to Mr. G. W. Platzman for 
reading the manuscript. 

SUMMARY 

In this paper it is shown that for periodic surface gravity waves in a 
basin of great depth there exists a theoretical integral relationship ac-
cording to which the horizontal momentum per wave length and per 
unit distance along the crests is equal to the wave speed multiplied by 
the mass of water transported horizontally during one wave period per 
unit distance along the crests. It is also shown that, in the case of 
irrotational waves, the kinetic energy per wave length and per unit 
distance along the crests is equal to one half the mass of water trans-
ported per wave period and per unit distance along the crests, multi-
plied by the square of the speed of propagation. An attempt is made 
to explain the existence of these relationships, as well as the existence 
of another similar integral discussed by the writer previously, by bring-
ing the surface-wave problem under the general scope of the classical 
theory of the motions of solids through liquids. 

The various concepts a.rising in the discussion are illustrated by 
means of a simple dynamic analogue consisting of a plane horizontal 
sheet of water moving with the wave speed and having the same po-
tential energy, mass transport, and kinetic energy as the actual wave 
motio~ . . A table givin1_1: the magnitude of the water transport in specific 
cases 1s mcluded. This table was prepared with the aid of the small-
amplitude theory of gravity waves. 
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