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MOMENTUM AND ENERGY INTEGRALS FOR 
GRAVITY WAVES OF FINITE HEIGHT 

VICTOR P. STARR1 

The University of Chicago 

1. Introduction. The analytical study of gravity waves of finite 
height which are periodic and move without change in shape in an 
ideal irrotational fluid is a subject which has occupied the attention 
of physicists and mathematicians ever since Stokes (9) published his 
classic paper entitled "On the Theory of Oscillatory Waves" in 1847. 
However, it was not until 1925 that an existence proof for such waves 
in the case of a basin of infinite depth was published by Levi-Civita 
(4). The corresponding proof for the case of limited depth was 
presented by Struik (10) in 1926. 

Much of the effort that has been expended on this wave problem 
was directed toward the computation of the exact wave form which 
results from the physical circumstances involved. In this paper we 
shall not pursue such a course, but rather we shall seek certain simple 
integral properties of the wave motion, in a sense, directly from the 
differential equations governing the dynamic system considered, using 
only a few general properties of the solutions of these equations. 
In this process we shall assume, of course, the existence of a detailed 
solution, relying for this upon the proofs given by the investigators 
alluded to earlier. In the last section the solitary wave will be studied 
from the same point of view. 

2. General characteristics of 'the wave motion. The waves whose 
study is contemplated here are plane waves, with the crests straight 
and with every vertical section normal to the crests presenting the 
same appearance, namely that given in Fig. 45 by the full lines. The 
basin is assumed to be of a depth D, with a horizontal plane bottom 
and a horizontal plane free surface when there are no waves present. 
A constant and uniform vertical force of gravity is assumed to act 
downward on all the fluid particles. The basin is assumed to be of 
very large dimensions in the direction normal to the crests, but may 
be limited by plane parallel vertical walls normal to the crests. All 
the motions are assumed to take place relative to a nonrotating coor-
dinate system. By-and-large these are the same conditions as were 

1 Present address: Massachusetts Institute of Technology, Cambridge, Mass. 
( 175) 
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assumed by Levi-Civita and Struik, the case of infinite depth being 
approached by making D very large. 

We shall make use of a cartesian coordinate system, with the origin 
below a crest at the mean level of the fluid, the vertical coordinate z 
being counted positive upward and the horizontal coordinate x 
counted positive to the right in Fig. 45. 

When waves are present the free surface is deformed more or less as 
shown, so that at a given instant its shape is given by z = z0 (x) where 
z0 (x) is a periodic function which is symmetric about the crests and 
the troughs. We shall assume that the waves are propagated to the 
right in the figure. Since this propagation is not accompanied by 
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Figure 45. Schematic vertical cross section representing p eriodic gravity waves in a basin 
of depth D . The full lines a re streamlines while the dashed lines a re equipotential lines, both 
for the motion relative t o the moving wa ve. The origin fo r the vertical coordina te is t aken 
at the mean l~vel of the fr ee surface. The shaded area represents a characteri stic region over 
which various integrals are taken as explained in the t ext . 

any change of structure at the surface or below, it follows that the 
only effect is to cause a, translation of the picture with the (constant) 
velocity of propagation c. 

Suppose now that we add a constant horizontal translation, - c, to 
all the particles of fluid involved. The effect of this fictitious added 
translation to the left makes the wave structure stationary, and the 
problem·is reduced to one of steady motion in a plane. The constant 
translation does not introduce any change in the internal dynamics of 
the system and can be allowed for by purely kinematic considerations 
later. 

From the considerations presented above it is apparent that the 
wave problem can be reduced to a special case of a two-dimensional 
steady-state jet problem under gravity, having a "free" streamline 
along which the pressure is constant (or zero) at the top, and a rigid 
horizontal boundary below. Assuming that, by suitable means, a 
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proper solution to this jet problem is specified, there still remains a 
certain arbitrariness in regard to the corresponding progressive wave 
(except for the case of infinite depth). This difficulty arises from the 
fact that any constant horizontal translation added to the solution of 
the jet problem will result in a possible moving wave. This arbitrari-
ness has been mentioned by Stokes (9) and also by Lamb (2). One 
convention which can be followed is to define the wave speed so that 
the resulting progressive waves do not produce a net transport of 
fluid. We shall, however, adopt an alternative ,vhich will be dis-
cussed presently. 

3. A momentum integral for periodic gravity waves. In an article 
published previously, the writer (8) presented a simple derivation of a 
momentum integral for gravity waves in deep water. An integral of 
the same nature was first derived by Levi-Civita (3) using a different 
method. A generalization of the writer's approach will now be given 
for the case of a basin of arbitrary depth. · 

Considering the steady-state two-dimensional motion represented 
in Fig. 45, we have at our disposal the continuity equation which may 
be written in the form 

au aw 
(1) -+- = 0 , 

ax az 
since the fluid is incompressible. In (1) U is the x-component of the 
particle velocity and w is the z-component. Since the motion is 
irrotational, we also have the relationship 

aw au 
(2) - - - = 0. 

ax az 
The steady-state velocity component U is related to the wave speed c, 
which will be discussed later, by the equation, 

(3) U=u-c, 

where u is the x-component of the particle velocity in the actual 
progressive wave. The vertical velocity component w is, of course, 
the same both in the steady motion and in the progressive wave. 

By virtue of equations (1) and (2) we may introduce a velocity 
potential <I> and a stream function lf for the steady motion, such that 

a<I> alf a<I> a\f 
(4) U - - - = - - ; w = - - - + - . 

ax az az ax 
Lines along which lf is constant constitute streamlines for the st(;lady 
motion, and are shown by solid lines in Fig. 45. The free surface and 
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the bottom at z - D are two members of this family of curves. 
The lines along which <I> is constant form a family of orthogonal tra-
jectories to the steady-state streamlines and are shown by dashed 
lines in Fig. 45. Both <I> and qr are undefined by (4) to the extent of 
an additive constant in each case. 

The velocity components in the progressive wave being u and w, it 
follows from (1), (2) and (3) that we may also introduce a velocity 
potential <I> and a stream function (Ji for the progressive wave, such that 

(5) 
a<1> a(JI 

u=--=--; w 
ax az 

From (3), (4) and (5) it follows that 

az 
a(JI 

+-. ax 

(6) <I> = cp + ex + k,i, ; qr = (Ji + cz + k~ , 

k,i, and k~ being constants. Owing to the fact that the actual wave 
motion is strictly periodic in x, we have that, at a given instant, 

(7) [U, u, w]x+L,z = [U, it, w]x,z' 

where L is the wave length. Defining the quantities A <I> and A<p by 
the equations 

(8) <l>x+L,z = <l>x,z + .(lq>; <!>x+L,z = <!>x,z + A<p, 

it is seen from (4), (5) and (7) that A<I> and A<p are independent of x and 
z. As a further consequence of (4), (5) and (7) we may write that 

(9) qrx+L,z = qrx,z; (Jix+L,z = (Jix,z • 

No constants appear in (9), since the stream function is a measure of 
transport which must be the same for successive wave lengths by 
virtue of (7). It follows from (8) and (9) that the pattern of stream-
lines and equipotential lines for regions separated by an integral 
number of wave lengths is congruent. From the first equation in 
(6) and from (8) we obtain the relation that 

(10) A<!> = A <I> - cL . 

Let us now consider a region in Fig. 45 bounded below by the steady-
state streamline qr = qr1 and above by the streamline qr = qr2, where 
the choice of qr1 and qr2 is arbitrary. Let us further consider a closed 
portion of this region bounded at the left by the arbitrary equipoten-
tial line <1>1 and at the right by the equipotential line <1>2 separated 
from <1>1 by one wave length so that <1>2 - <1>1 = A <I> . The kinetic 
energy E of the steady-state motion represented by this closed region, 
per unit distance along the crests of the waves, is given by 
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(11) -3:_ E =ff (u2 + w2) dxdz =ff a(<I>, '¥) dxdz = 
P a~.~ 

ff d<l>do/ = 11<1>11 '¥, 

where use has been made of (4) and pis the (uniform) density.1• With 
the conventions that have been introduced, both 11<1> and 11 '¥ are 
positive. In similar fashion it is possible to obtain an expression for 
the horizontal momentum M of the steady motion represented by the 
closed region. We thus have that 

(12) +M =ff Udxdz = - f f 0

0
: dxdz = - ff dxdo/ = 

- Lil'¥. 

In order to pass from the steady-state motion to the actual motion, 
we may either transform the integrals E and M by means of (3), or 
we may write directly that2 

(13) 

and 

(14) 

E = e - cm + ½ c2µ , 

M = m - cµ. 

Here we define e, m and µ as follows: 

(15) e = ; ff ( u2 + w2
) dxdz m = pf f udxdz 

µ=pf f dxdz, 

so that e is the kinetic energy and m the horizontal momentum of the 
mass µ (per unit thickness) in the actual motion. Upon eliminating 
µ between (13) and (14) and then substituting from (11) and (12) for 
E and M, and finally by using (10), we obtain 

'' In general, limits of integration have been omitted where they are clear from the 
text. 

2 Equation (13) is obtained from the mechanical principle that the kinetic energy 
of a system of particles is the sum of the kinetic energy due to the motions with 
respect to the common center of mass and the kinetic energy due to the motion of 
the center of mass. Thus, if in our problem we denote the first quantity by T and 
the velocity of the center of mass in the actual motion by 1', we have that 

e = T + ½ 72 µ ; E = T + ½ (7 - c)2 
µ, 

from which (13) follows when T is eliminated. 
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(16) 2e - cm = 2E + cM = p(A<l> - cL)A '¥ = pA<)>A '¥. 

In the case of an infinitely deep basin, the physically significant 
solution to the wave problem is one in which all the actual motions 
disappear at great depths. This means that the constant A<!> must be 
zero in this case. We shall make the convention that A<!> = 0 also for 
the case of a basin of finite depth. This convention is equivalent to the 
relationship that 

(17) c =-
L' 

which we assume to be true for all cases whether the depth be infinite 
or not. We thus have the two relationships 

(18) 

and 

(19) 

2E + cM = 0, 

! 2e - cm= 0 ! . 
The last equation states that the kinetic energy per wave length of the 
deformed layer considered, when multiplied by two, is equal to the 
horizontal momentum of the layer per wave length multiplied by the 
speed of propagation. 

There is no limitation in the development which would preclude the 
possibility of applying (19) to the entire depth of a finite basin or to the 
total kinetic energy and total momentum for the case of infinite de_pth.3 

Let us apply (19) to the entire depth of fluid between the free 
surface z0 and - D. Introducing average values ._ and y defined by 

(20) "= L~J J ½ (u2 + w2
) dxdz, 

and 

(21) y = L~ J J udxdz , 

so that" is the mean kinetic energy divided by the density and y is the 
mean transport velocity, we may write (19) in the form 

3 Although the region considered above is bounded laterally by equipotential lines 
for the steady motion, this is not essential. Any region, bounded above and below 
by lines along which 11' is constant and whose lateral boundaries are congruent in 
such a way that they could be brought into coincidence by horizontal translation, 
may serve equally well, provided that the lateral boundaries are separated by an 
integral number of wave lengths. This follows from the fact that the more general 
region may be considered as being composed of a large number of elementary regions 
of the simple type discussed in the text. 
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Equation (22) was first derived by Levi-Civita (3) by other methods. 
From our analysis it is clear that a relationship of the form (22) is 
true not only for the entire layer but also for any layer which has the 
shape indicated earlier. 

It is of interest to examine what further kinematic implications 
follow from the choice of c expressed by (17). If the first equation in 
(4) is integrated along the bottom streamline at z = - D , we have, 
with the aid of (17), 

x1+L 

(23) f Undx = - A<I> 

Using the transformation 

(24) dx 

where tis time, we may write 

0 

Un dt, 

- cL. 

(25) f U n2 dt = - 1 U n2 ti = - cL , 

from (23), where ti is the time necessary for a particle to move from 
x = Xi + L to x = Xi in the steady motion, and 1U n2 is the time 
average of the square of the velocity of the particle during this period 
ti. We may also write 

ti 

(26) f u D dt = - L = /tJ D ti ' 
0 

where I V n is the time average of Un for a particle during the period t1• 

From (25) and (26) we may now form the relation 

(27) c 1Un = - ,Un2 • 

By averaging (3) over the period ti we may write (27) in the form 

(28) 

showing that 1un, the average particle velocity at the bottom in the 
actual wave, is non-negative so that the particles progress in the 
direction of propagation when waves are present. 

From (23), when combined with (3), it follows that 
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x, +L 

(29) f UD dx = 0. 
x, 

Since in irrotational motion all closed circuits must have zero circula-
tion, it follows from (29) that the line integral from x = 0 to x = L of 
the velocity in the progressive wave along any curve joining these 
verticals (which are located at crests) is zero, or that 

L 

(30) f ( udx + wdz) = 0 . 
0 

4. An energy integral for periodic gravity waves. For the purposes 
of the subsequent discussion it is necessary to consider the dynamical 
aspects of the motions studied. The dynamical properties of the 
motions are, in general, specified by the two hydrodynamical equations 
of motion for the x and z-directions and the equation of continuity (1). 
For a nonrotating coordinate system the two former equations, in the 
order mentioned, are: 

dU 
(31) p-= 

dt 

ap 
ax ' 

dw ap 
p- = -gp--. 

dt az 
Here p is pressure and g is the acceleration of gravity. If we intro-
duce a potential K defined by 

K = p + gpz, 

equations (31) become 

dU 
(33) p dt = 

dw 
p-= 

dt 

Equations (33) possess an integral which we may write as 

(34) 
p p 

- ( U2 + W 2) + K = - C 2 
2 2 l 

1 

which is a statement of Bernoulli's equation for the steady-state 
motion in our problem. In general the constant c1

2 may vary from 
streamline to streamline, but for the case of irrotational motion it is 
the same for the whole plane. 

Let us rewrite (34), first in the form 

(35) 
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and then, with the aid of the second equation in (33), in the form 

p aKz dw p 
(36) - ( U2 + w2) + -- + pz - = - ci2 

2 az dt 2 ' 
or 

(37) 
p au ~w 

- ( u2 - w2) + -- + p - -
2 az dt 

p 
= -ci2 

2 

183 

We shall now integrate (37) over the area mentioned in the previous 
section, bounded by two streamlines and two equipotential lines 
separated by one wave length, so that 

(38) E, - E. +ff aa: dxdz + pf f ~tw dxdz = ½ ci2µ , 

where E,, and E, are the kinetic energies of the horizontal and vertical 
components of motion respectively, in the steady-state motion over 
the area taken. From (34) and (7) we know that 

(39) [Kz, wz],,+ L,, = [u, wz],,,,. 

It can easily be shown that under these circumstances the last integral 
on the left-hand side of (38) vanishes.4 With the aid of Stokes 
theorem and (39) we may write that 

(40) ff aa: dxdz = - f Kzdx = lK2z2dx - lK1z1dx, 

where the contributions of the lateral boundaries vanish because of 
the periodicity of KZ over a wave length. We may now eliminate K 

by means of (32) and substitute the result in (38) so that 
4 Let us consider any property H characteristic of the steady-state picture. We 

may write that 
dH aH aH a a 
- = U- +w- = -(UH)+ - (wH), 
dt ax az ax az 

the last equality being obtained with the aid of (1). If we now perform an integra-
tion over the area involved, we have by Stokes theorem that 

Since the top and bottom of the area are streamlines along which Udz - wdx = 0, 
no contribution results from the integration along these portions of the circuit. If, 
further, the quantity H is periodic in x, as is the case with U and w, the contributions 
from the remaining two portions of the circuit will cancel so that the value of the 
entire integral is zero. These conditions are fulfilled when H = wz. 
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(41) E,, - E. + f (p2z2 - p1z1) dx + gp f (z22 - z12) dx = ½ ci2µ. 
L L 

By virtue of the fact that the vertical velocity w is the same in both 
the actual motion and the steady-state motion, we may write that 

(42) E. = e,; E,, = e,, - cm+½ c2µ. 

Here e,, and e. are the kinetic energies of the horizontal and vertical 
components of motion in the actual wave over the area considered. 
The second relation in ( 42) is obtained by subtracting e, from both 
sides of equation (13). Eliminating E:r and E. from (41), one obtains 
the result 

(43) e,, - e. - cm + f (p2z2 - p1z1) dx + gp f (z22 - zi2) dx = 
L L 

½ (ci2 - c2) µ. 

This equation is true for any material layer of the shape considered, 
whether the depth is infinite or not. Moreover, it is independent of 
any convention in regard to the wave speed c. In the case of infinite 
depth, no sensible derangement of the pressure occurs at great dis-
tances below the surface, and hence the pressure must be that which 
is produced hydrostatically when no waves are present. Although it 
is not necessary to do so, we shall take the pressure at the free surface 
to be zero for convenience. Accordingly, K in equation (32) must be 
zero at great depths and c12 in equation (34) must be equal to c2, since 
here w = 0 and U2 = c2. Inasmuch as c12 and c2 are constants, it 
follows that for the case of infinite depth the right-hand side of (43) 
vanishes for all the material layers and hence also for the case when 
the entire depth is considered. 

The most interesting case arises when (43) is applied to the entire 
fluid from the free surface z0 to the bottom. The pressure at the top 
is now zero while z1 = - D, so that 

(44) e,, - e. - cm+ gpfz0
2dx + D f Kndx = ½ (c1

2 - c2) µ. 
L L 

The term involving z0
2 is twice the potential energy per wave length 

for the wave motion. It can be shown that the integral of K with 
respect to x along any steady-state streamline vanishes if the pressure 
at the free surface is zero.6 We thus have 

6 Suppose that we integrate the second of the equations (33) over an area bounded 
by the free surface on top, by a steady-state streamline below and by two equipo-
tential lines separated by one wave length. According to the discussion in the foot-
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(45) e., - e, - cm+ 2v = A, 

in which v represents the potential energy per wave length and A 
½ (c12 - c2) µ.. Eliminating cm by means of (19) we have 

(46) I e,, + 3e. + A = 2v I . 
In this relationship A = 0 for the case of infinite depth and the equa-
tion itself becomes an exact integral for periodic gravity waves relating 
the quantities e,,, e. and v. It thus follows that in this case the sum of 
the kinetic energy of the horizontal motion and three times the kinetic energy 
of the vertical motion is equal to twice the potential energy of the waves. 

5. The partition of energy in periodic gravity waves. Considering 
first the case of infinite depth for which A = 0, equation (46) may be 
written in the form 

(47) e,, - e, = 2 (e - v) = 2io, 

where e is defined as the difference between the kinetic and potential 
energy of the waves. So far as the writer has been able to find there 
appears to be no simple means for obtaining the magnitude or alge-
braic sign of e from general considerations without making use of the 
detailed solution to the wave problem. According to Rayleigh (7), 
who carried out a computation of e from the detailed solution, the first 
term in the power series representing this quantity is positive. This 
first term is furthermore of the fourth order. Rayleigh's work has 
been extended by Platzman (5) so as to include the term of the eighth 
order. Platzman's results corroborate those of Rayleigh, and it seems 
that, to the eighth order of approximation, the kinetic energy of the 
waves exceeds the potential energy by as much as about twelve per 

note on page 183 this integral will vanish since w is periodic in x. We then have by 
Stokes theorem that 

Because K is also periodic, no net contribution results from the integration along the 
lateral boundaries. In the expression (32) for K the pressure along the free surface 
is zero and the mean level of the free surface is also zero so that no contribution is 
qbtained here. It then follows that the integral of K along the lower streamline must 
vanish. 

This result is merely a statement of the fact that on the average the fluid within a 
material layer between two streamlines of the steady motion is in hydrostatic equi-
librium. It is also possible to arrive at this conclusion by applying the momentum 
theorem of classical hydrodynamics to the motions of the fluid. 
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cent when the waves approach the extreme form at the surface. For 
waves of small amplitude this difference becomes exceedingly small. 

Equation (47) gives the result that the kinetic energy of horizontal 
motion exceeds the kinetic energy of the vertical motion by an amount 
equal to 2E. 

In the case when the surface amplitude is infinitely small with 
respect to the wave length and also when the depth is small compared 
to L, we know from the small-amplitude theory that the horizontal 
motion is sensibly the same at all depths and that the kinetic energy 
of the vertical motions is negligible. This case corresponds to the so-
called "long waves." If we integrate (34) along the bottom stream-
line, we obta.in 

x,+L 

(48) J Un2dx = C1
2L, 

x, 

since the integral of K vanishes and w is zero. With the aid of (3) and 
(29) we can also write ( 48) as follows : 

x,+L 

(49) J un2dx = (ci2 - c2
) L , 

x , 

which, incidentally, shows that 11 is a positive quantity. If we now 
form the kinetic energy integral for long waves over one wave length, 
say, between crests, we have 

(50) 

½ (ci2 - c2) µ = 11, 

approximately, since z0 is a small quantity. It then follows from (46) 
that e == v. This is in agreement with the results of the small-ampli-
tude theory of long waves. 

More generally, for the case of small amplitude but arbitrary depth, 
we may accept the principle of equipartition of energy given by the 
classic theory, namely that e == v. When this relation is combined 
with (46) so as to eliminate v, we obtain that 11 == e,, - e,. 

A discussion of the most general case-that of arbitrary amplitude 
and depth-would presumably require an analysis of the detailed 
solution such as was made by Rayleigh and by Platzman for the case 
of infinite depth. 
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6. Applications to the solitary wave. Some of the procedures used in 
this paper may be applied also to the phenomenon of the solitary wave 
studied principally by Boussinesq (1) and Rayleigh (6). This (plane) 
wave consists of a single elevation above the undisturbed level of the 
free surface and is symmetrical about the crest so that it presents an 
appearance similar to that shown in Fig. 46. In the case of the ex-
treme amplitude the crest forms a sharp wedge of 120°. The writer 
is not aware of any direct proof of the existence of this wave similar to 
the demonstrations of Levi-Civita and Struik for periodic waves. 
We shall assume, however, that the solitary wave represents a rigorous 
solution of the dynamic equations of motion, and seek certain integral 
properties of the wave. 

We shall again make use of the artifice of steady motion and con-
sider a region bounded by two steady-state streamlines above and 

Figure 46 Schematic vertical cross section representing a solitary wave in a basin of depth 
D. The origin for the vertical coordinate is taken at the undisturbed level of the free surface. 

below. As the lateral boundaries we shall take two verticals at 
x = + ). and x = - A, where ). is sufficiently large to place the lateral 
boundaries in fluid which is not sensibly disturbed. Under these cir-
cumstances the vertical boundaries will alsp be equipotential lines. By 
means of reasoning analogous to that given in Section 3, we see that the 
kinetic energy E and momentum M of the steady-state motion are 
again given by equations (11) and (12), provided we replace L by 2).. 
With this slight change equation (16) also holds, but we see that now 
Li<!> cannot be equated to zero, since in the progressive wave all the 
particles influenced by the wave have a component of motion forward. 
It therefore follows that equations 

1

(18) and (19) are not valid for the 
solitary wave. 

When the entire depth is considered the quantity Li \f appearing in 
(12) has, in the present case, a simple interpretation, being equal to 
cD, since the steady motion is a uniform translation for large positive 
or negative values of x. From (12) and (3) we may then write that 



188 Journal of Marine Research [VI, 3 

z0 +X z0 +X 

(51) - 2).cD = f f Udxdz = f f (u - c) dxdz 
-D -1- -D -1-

•o +>-+ m - 2AcD-cf f dxdz. 
0 -X 

If we denote the superficial mass-the mass of the fluid above the un-
disturbed free surface per unit distance along the crest-by µ0 , it 
follows that 

(52) I m = cµ 0 I , 
where the integrations may be taken over the entire range of x. The 
momentum of the solitary wave is therefore equal to the momentum of the 
superficial mass moving with the wave speed. 

In view of the fact that the steady motion is a translation at the rate 
c at great distances from the crest, the constant c1 in equation (37) 
must now be equal to c, and the other considerations leading to the 
formulation of this equation are valid for the solitary wave. Further-
more, an equation analogous to ( 43) is valid, so that when the entire 
depth is considered (44) may be written as 

(53) 

+x 

ex - e, - c2µ0 + 2v + D f KDdx = 0 , 

-1-

where use has been made of (52). As explained in the footnote on 
page 184 we have that 

+>- +>-

(54) 0 =f Kdx = JKDdx - gpfz0 dx, 
-1- -1-

so that 

(55) 

Equation (53) thus may be written as 

(56) ex - e, + 2v + (gD - c2) µ0 = 0 . 

The first equation in (31) may be written in the form 

(57) P (au
2 + auw) = ap 

ax az ax, 
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because the motion is steady and free of divergence. We shall form 
the integral of (57) over the area bounded by the bottom, the free 
surface, the vertical at x = - ).. and an arbitrary vertical at some 
value of x within the wave. The area integrals are at once transform-
able into line integrals by means of Stokes theorem so that we have 

(58) pf ( U2dz - Uwdx) = - f pdz. 

Since no contribution to the integral on the left results from the inte-
gration along the top and bottom streamlines, and since the pressure 
is taken to be zero along the free surface, evaluation of (58) gives that 

(59) 

The quantity on the right of (59) is immediately capable of simplifica-
tion, because at x = - ).. 

(60) U2 = C2 ; p = - gpz ; Z0 = 0 , 

We thus have that at any arbitrary vertical 

•o 

(61) f (pU2 + p) dz = pc2D + ½ gpD2 = constant. 

-D 

The pressure p may be eliminated from (61) by means of Bernoulli's 
equation (34), so that, with some reduction, 

•o pf (U2 - w2) dz + pc2z0 - gpz0
2 = pc2D . (62) 

-D 

If this equation be integrated once more with respect to X from - A 
to + )., it follows that 

(63) E z - E, + ½ c2µo - V = pc2DA. 

We may now pass to the actual motion by using equations ( 42). Thus 

(64) ez - e, - cm + ½ c2µ + ½ c2µo - v = pc2D)... 

Keeping in mind the expression for the momentum m given in (52) 
and also the fact that µ = µ 0 + 2pDA, we finally have that 

(65) e, - e, = v j . 
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In the solitary wave the difference between the kinetic energy of the 
horizontal and vertical motions is equal to the potential energy. 

By adding 2e, to both members of (65) we have that 

(66) e = v + 2e,, 

so that the kinetic energy is greater than the potential energy. 
Equations (56) and (65) may be combined so as to give an expression 

for the wave speed by eliminating the quantity ex - e, between them. 
The result is 

(67) 

showing that the speed of a solitary wave is greater than the speed of 
the corresponding long waves. 

For the highest possible solitary wave it follows from Bernoulli's 
equation (34) when applied to the free surface that c2 = 2gzr, where 
zr is the height of the crest above the mean level. By inserting this 
value of c2 in (67), it follows that 

(68) D 31 If Zr = 2 + 4 Z0 
2dx / z0 dx . 

The extreme height is thus greater than half the depth of the basin. 
The ratio of the integrals in (68) may be interpreted as a mean height 
z0 • According to an estimate quoted by Lamb (2), Zr = 0.78D. The 
corresponding value of z0 turns out to be equal to nearly one-half of Zr. 

Equations (52) and (65) of this section were derived in such a manner 
as to be applicable to the entire wave. There is, however, no restric-
tion in the development which would prevent their application to a 
closed region bounded by any two verticals, by the free surface and by 
the bottom. _In the limit we may replace them by integral relation-
ships along a single arbitrary vertical. They then become, 
respectively, 

(69) 1
2

:dz = cz · 
0 ' 

-D 

'o J ( u2 
- w2

) dz = gz0 
2 • 

-D 

If equations (69) are applied to the vertical at the crest, w vanishes 
and Zo is the "amplitude" of the wave which we shall denote by a. 
We may then write 

(70) 
a2 

iJ,2 = c2 ___ _ 
(D + a)2 

a2 
u2 = g----

D + a 
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From the long-wave theory we know that for small surface deforma-
tions of large horizontal extent there is no sensible variation of u with 
depth. For larger amplitudes u varies with depth, so we may write, 
with the aid of the Schwarz inequality, that u2 

7 u2• We then obtain 
from (70) the result that6 

(71) c2
""' g (D +a), 

where the equality holds for very small values of a. 
If we retain only the inequality in (71) and eliminate c2 by means of 

the relation that c2 = 2gzr for a wave of extreme height, we get an 
upper bound for zr, namely D. Since we have already found a lower 
bound we may write that D/2 < Zr < D. 

SUMMARY 

In this paper certain integral properties of gravity waves in a homo-
geneous and incompressible fluid are deduced from the differential 
equations governing such phenomena. The treatment is restricted 
to plane waves in an irrotational medium which move without change 
of form. No assumption is made concerning the amplitude so that 
the results are applicable to waves of finite height. Both periodic and 
solitary waves are considered. The more important results are the 
following: 

1. For periodic waves the product of the momentum and the wave 
speed is equal to twice the kinetic energy. This statement is valid not 
only for the total aepth of fluid but also for the fluid contained between 
any two streamlines of the corresponding steady-state motion. 

2. For periodic waves in a basin of infinite depth the sum of the 
kinetic energy of the horizontal motions plus three times the kinetic 
energy of the vertical motions is equal to twice the potential energy. 
Since it has been shown by Rayleigh and by Platzman that the total 
kinetic energy is greater than the potential energy, this statement 
implies that the kinetic energy of the horizontal motions is greater 
than that of the vertical motions. 

3. For the solitary wave the momentum is equal to the superficial 
mass multiplied by the wave speed. This is valid not only for the 
entire wave but also for any portion of it bounded laterally by two 
verticals. 

4. For the solitary wave the kinetic energy of the horizontal motions 
is greater than the kinetic energy of the vertical motions by an amount 

n According to Weinstein (11), the next term in the series representing c2, in terms 
of a, is negative. 
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equal to the potential energy. From this it follows th.at the total 
kinetic energy is larger than the potential energy. These results are 
valid not only for the entire wave but also for any portion of it bounded 
laterally by two verticals. 

5. For the solitary wave the square of the speed of propagation is 
equal to the depth of the basin multiplied by the acceleration of 
gravity plus three times the ratio of the potential energy to the 
superficial mass. 

6. For the solitary wave it can be shown by means of integral rela-
tionships that the square of the speed of propagation is less than the 
height of the crest above the bottom multiplied by the acceleration of 
gravity, although equality of these two quantities is approached for 
small amplitudes. 
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