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A MOMENTUM INTEGRAL FOR SURFACE WAVES 
IN DEEP WATER 

BY 

VICTOR P. STARR 

University of Chicago 

It has been demonstrated by the studies of Stokes (1847) and Levi-
Civita (1925) that surface waves of finite height which are irrotational 
and periodic can exist in a liquid under the influence of gravity. 
Furthermore, it was pointed out by Stokes that such waves produce 
a transport of mass in the direction of propagation and hence possess 
a certain horizontal momentum relative to the undisturbed water at 
great depths. The present purpose of the writer is to show that there 
exists a simple relationship betwee'n the momentum and the kinetic 
energy in such wave motion. An equation of similar form was first 
derived by Levi-Civita (1924) using a different approach, but, so far 
as the writer is aware, no oceanographic applications of it have been 
made.1 It is possible that the relationship may be of significance in 
the study of wave growth due to wind action. 

The theory for waves of finite amplitude, developed by the writers 
mentioned above, indicates that the waves are symmetrical about the 
crests and troughs, not only at the surface but also at greater depths, 
although there is a rapid diminution of the amplitude downward. 
This circumstance implies that there is no variation of phase of the 
waves with depth. Also the theory indicates that the speed of propa-
gation is constant, and that the waves travel without alteration of 
their form at the surface or below. The fluid motions are assumed to 
take place without any viscosity being present, and relative to a non-
rotating coordinate system, so that the treatment does not include the 
effects of Coriolis forces. Since there are no motions or variations in 
the motions in the direction parallel to the crests of the waves, it 
suffices to consider a vertical section across the crests as shown sche-
matically in Fig. 35. The problem may thus be considered as one in 
two-dimensional motion. 

We shall suppose that the actual waves are propagated from left to 
right in the figure, but in order to treat the problem as one in steady-
state motion we shall suppose that a constant translation from right 

1 A somewhat similar relationship was derived by Rayleigh (1914) for the case of 
long waves by approximate methods. 

(126) 
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Figure 35. Schematic cross section of a wave normal to the wave crests. 
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to left, equal to the wave speed c, has been added to the actual motions. 
This artifice does not alter the fundamental properties of the dynamic 
system and produces greater simplicity in the picture of the motions. 
The vertical coordinate z is counted positive upward and has its 
origin in the undisturbed free surface of the water. The horizontal 
coordinate x is counted positive to the right and has its origin at a 
crest. The free surface Z is a streamline in the steady-state motion. 
Other streamlines similar to Z, but with progressively smaller ampli-
tudes, lie below Z, but these are not shown in the diagram. The hori-
zontal line z = - D is assumed to be located at a sufficiently great 
depth where the wave disturbance is no longer of sensible intensity. 

Since the motion is irrotational, it follows that we may introduce a 
velocity potential <I> such that 

a<1> 
U= --

ax 
w= 

a<1> 

az 
(1) 

Here U is the particle velocity in the x-direction, and w is the particle 
velocity in the z-direction, in the steady-state motion. If drawn in the 
diagram, lines along which <I> is constant would constitute a set of 
curves orthogonal to the streamlines, and hence it follows that <I> has a 
constant value at the verticals x = 0 and x = L (where Lis the wave 
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length). The velocity potential is indeterminate to the extent of an 
arbitrary additi ve constant so that we may choose cp to be zero at x = 
O. At the depth z = - D the motion of the fluid is a simple horizontal 
translation at the rate c, so that here U = - c. Integration of the 
first equation in (1 ) thus gives the value for cp at x = L to be cL. 

By the use of Green's theorem it can be shown that the velocity 
potential obeys the foll owing equation in a simply-connected space 
(see Lamb, 1932): 

J J.J [ ( :: y + ( :: y + ( :: y] dxdydz = 

-J J <I> ;: ds . (2) 

In this equation ds is an element of surface area of the volume con-
sidered, and acp/ an is the derivative along the inward normal to this 
area. In our application of this relationship acp/ ay = 0, and the 
volume integral becomes an area integral, since we are concerned with 
a section of unit thickness. The right-hand member of (2) becomes a 
line integral. Choosing the region bounded by the verticals x = 0 and 
x = L, the free surface Zand the line z = - D, the only nonvanish-
ing contribut ion to the right-hand member of (2) results from the 
integration along the vertical at x = L , because cp = 0 at x = 0 and 
acp/ an = 0 along the free surface and the line (streamline) z = - D . 
Since acp/an = + UL at x = L , we get 

L Z Z L J J ( U2 + w2
) dzdx = - cL J UL dz (3) 

0 -D -D 

after substitution from (1) in the left-hand member (Z Lis the value of 
Z at x = L ). The integral on the right of (3) is simply the volume 
transport between the two streamlines considered, and hence we may 
replace it by a similar integral at an arbitrary vertical so that 

ZL Z J ULdz = j Udz = constant. (4) 

- D -D 

. Introducing the horizontal velocity component it , which is present 
m the actual wave motion, and which is related to U by the equation 

u = u - c , (5) 

we may rewrite (3), after substit uting from ( 4), as follows: 
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L Z z J f (u2 + w2 
- 2cu + c2

) dzdx = - cL f (u - c) dz. (6) 
0 -D -D 

Since the area over which the integration extends is equal to LD 
because of the choice of the origin for z, it is possible to simplify (6) 
so that we have 

L Z • z ff (u2 + w2 
- 2cu) dzdx + c2LD = - cL f udz + c2L (Z + D ) , 

0 -D -D 

and finally, 
L Z L Z ff (u2 + w2

) dzdx - 2c ;·1 udzdx = 
0 -D O -D Z 

- cL f udz + c2LZ = K, (7) 

-D 

where K is a quantity which is independent of x. From the last 
equality in (7) we obtain by integration over one wave length 

L Z 

K = -cf f udzdx. 

0 -D 

(8) 

If K is eliminated from (7) by means of (8) and the resulting equation 
multiplied by p/2, where p is the (uniform) density of the fluid, we 
obtain the relationship, 

J
LJZ u2 + w 2 C JLJZ 

P 
2 

dzdx = 2 pudzdx . (9) 

0 -ao O -oo 

In view of the fact that the disturbance in the actual wave disappears 
at great depths, it is permissible to extend the integration downward 
to - ro. 

This last equation states that the kinetic energy per wave length and 
per unit distance along the crests of the waves is equal to one half the wave 
speed multiplied by the momentum of the same water mass in the direction 
of wave propagation. Once the distribution of the velocity potential 
in Fig. 35 has been specified, equation (2) can be applied in the manner 
described, not only to the region between the surface and depth D, 
but to any region bounded above and below by two streamlines and 
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by the two verticals at x = 0 and x = L. We might thus choose two 
streamlines, Z1 and Z 2, which give a region whose area in the figure is 
numerically equal to L, and thus a volume in the section of unit 
thickness equal to L. For such a material layer we may then write 

1 JLJZ, u2 + w2 C JLJZ, L p 
2 

dzdx = 
2

L pudzdx . 
0 z, 0 z, 

(10) 

For the material layer considered, equation (10) states that on the 
average the kinetic energy per unit volume is equal to the momentum 
per unit volume multiplied by one half of the speed of propagation.2 

It is of some interest to compare the value of the momentum given 
by equation (9) with the value obtained by Lamb (1932), who used the 
second order approximation to the wave solution presented by Stokes 
(1847). For this purpose it is necessary to have available an expres-
sion for the kinetic energy. Let us take for this quantity the approxi-
mate value given by the small-amplitude theory, namely, ¼gpa2L, 
where a is the amplitude and g is the acceleration of gravity. Elimi-
nating the product gL from this expression by means of the relation 
that 27tc2 = gL, also given by the small-amplitude theory, and placing 
the result into (9), we obtain the expression 7tpa2c for the momentum 
per wave length. This is in agreement with the result obtained by 
Lamb, except .that in Lamb's result a is, strictly speaking, not the 
amplitude but rather an amplitude parameter which becomes very 
nearly equal to the amplitude for waves of small height. It should be 
remarked, however, that both the present method and the method 
used by Lamb for obtaining the momentum are approximate [although 
relation (9) is an exact one]. · 

The extent to which the theoretical results obtained in this paper 
are directly applicable to surface waves which actually occur in the 
ocean is, of course, an open question. The waves which are found in 
nature are irregular in general, and the medium in which they are 
found departs considerably in its properties from an ideal fluid. 
Moreover, the motions take place in a rotating coordinate system so 
that it would appear that Coriolis forces are of importance in connec-
tion with the momentum associated with the waves, although such 
forces are probably of negligible consequence as far as the purely 
oscillatory components of motion are concerned. Temporarily laying 

2 This relationship is analogous to the principle in the electromagnetic theory of 
light, which states that in the case of plane waves the energy per unit volume is equal 
to the electromagnetic momentum per unit volume multiplied by the speed of propa-
gation (see Page and Adams, 1931). 
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aside all such difficulties, it is a matter of at least some academic 
interest to see what use might be made of equation (9) in the study of 
the growth of waves due to wind action. The possible utility of the 
equation for this problem li es in the fact that , whereas it is a matter of 
great diffi culty to estimate the energy imparted to the sea surface by 
a given wind, estimates of the momentum transfer are more easily 
made. · 

For this purpose let us substitute the approximate values mentioned 
above for the energy per wave length and for the wave speed c, given 
by the small-amplitude theory, into (9) . The result may then be 
written in the form 

(11) 

where M is the average wave momentum per unit area of the sea 
surface. We shall assume that the wave system considered remains 
under the influence of a uniform wind which feeds energy and momen-
tum into it during a given period of time. Since for a given wave 
length there is a limit to the amount of energy which can thus be fed 
into the waves, beyond which the waves break, it must be assumed that 
such breaking does take place and that longer waves with greater 
momentum and energy capacities are continually generated. For 
this reason it might be expected that the ratio of the amplitude a 
to the wave length L should be relatively large. The theoretical 
limiting value for this ratio is about 1/14, but it would be unreasonable 
to expect that this value would be reached due to the observed irregu-
larities in the waves and to the presence of waves which have not at-
tained the maximum height. As a more reasonable supposition, let us 
take an average value of 1/24, so that we have 

a l 1 
-=-=-
L b 24 

(12) 

Eliminating the amplitude a from (ll) by means of (12) and solving 
for L, we obtain 

L= .a~. v~ (13) 

Assuming, for purposes of orientation, that the total momentum 
transferred from a steady wind over a period of time tis used in creating 
waves on an originally undisturbed sea, we have 

M = -rt . (14) 
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Here ,: is the tangential wind stress and hence is the rate at which 
momentum is imparted to the sea. Rossby (1936) has given a rela-
tionship for obtaining the stress ,: in terms of the wind velocity, 
namely 

(15) 

p* being air density, Wh the wind at height hand Yh a resistance coeffi-
cient appropriate for the level h. If h is approximately 15 meters, the 
value of Yh is about 5 X 10-2 when c.g.s. units are used. According 
to this formula a wind of 30 knots should produce a stress of about 7 
dynes per square centimeter.3 

With such a stress equations (13) and (14) give the result that 
waves about 430 meters in length should be generated in 24 hours. 
The period of such waves would be about 16.6 seconds.4 Since waves 
of this magnitude are seldom if ever observed in the generating areas, 
even with stronger winds than we have assumed, it seems that some of 
the premises made above are not proper. 

The effect of the tangential wind stress on the motions of water in 
the oceans was treated by Ekman (1905), and the results of his studies 
are well known to oceanographers. In the present discussion the 
question arises whether the mass transport associated with wave 
motion is in some manner an integral part of the drift currents in the 
theory of Ekman, or whether it is superimposed on the drift currents. 
As a third possibility, it may perhaps be that, since the wave transport 
is not dependent on the presence of internal viscosity, but is, on the 

'Formula (15) is appli cable when the sea surface is hydrodynamically " rough." 
This condition is present with wind velocities above about 10 knots. The derivation 
of this equation indicates that 't is the total rate of momentum transfer to the sea 
surface regardless of the details of the mechanism by means of which this transfer is 
effected in the immediate v:icinity of the water surface. 

• According to the small-amplitude theory, there exists an equation relating the 
wave period T to the wave length L. The wave length may be eliminated from 

this equation by means of (13). We thus have T = / 2
;L , which becomes 

T --~41rb
2
M _ 

g2p 
If 't and b are constant, it foll ows, with the aid of (14), that the 

period T is proportional to the cube root of the time. Under these circumstances we 
may also obtain by differentiati on that 

1 dT 1 1 dL 2 
- - = - and - - = -
T dt 3t ' L dt 3t ' 

showing that the percentage rate of increase of the period or wave length is inversely 
proportional to the time. Similar equati ons may be written for the wave speed c. 
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o_ther hand, subject to the effects of Coriolis forces, a composite solu-
t10n to the problem can exist which takes into account these properties 
of the wave-transport components of the total motion. Whatever 
the answer to this question may be, it seems reasonable to suppose 
that not all of the momentum which is imparted to the sea by the wind 
stress goes into wave momentum, but that most of it is utilized in the 
generation and maintenance of drift currents. It is thus not surprising 
that the calculation of the magnitude of waves generated by a given 
wind on the assumption that all the momentum transferred becomes 
wave momentum should give too intense wave action. In order to use 
equation (13) for the purpose of securing an estimate of the waves 
which are actually generated, it would thus be necessary to have 
available a criterion to determine what fraction of the momentum 
goes into the wave motion. 

Carrying these speculations a step further, it may be that during 
the growth of wave motion the fraction of the momentum which is 
used in creating waves changes as time progresses. Since the develop-
ment of drift currents is dependent upon the presence of eddy viscosity 
in the water, and since this turbulent viscosity is relatively small 
during the early stages of the process, it is not unreasonable to suppose 
that at the beginning a relatively large part of the momentum received 
is utilized in a rapid development of wave motion. On the other hand, 
during the later stages of the process the continued presence of break-
ing waves probably brings about a large increase in the turbulent 
viscosity which in turn renders possible the existence of well developed 
drift currents whose maintenance requires a large part of the momen-
tum received, so that but little remains for a further increase in the 
wave action. In the end some sort of steady state would thus be 
indicated, in which practically all of the momentum goes into the 
maintenance of drift currents and no further growth of the waves takes 
place, unless the wind conditions should change. That some such 
steady state does finally develop with a constant wind is supported 
by the fact that there is normally no progressive change in the wave 
regime in the large oceanic regions in the trade-wind belts. 

The writer wishes to express his gratitude to Dr. C.-G. Rossby for 
many fruitful discussions of the matters touched upon in this paper, 
and to Dr. J . Charney and Mr . D . Fultz for reading the manuscript. 

[Note-As this paper is going to press the writer has had opportunity to read a very 
interesting article by Sverdrup and Munk (1946) dealing with the subject of wave 
generation through wind action. These authors present curves depicting the in-
crease of wave height and wave speed with time for an unlimited fetch under the 
influence of a constant wind (fig. 3 in their paper). These curves are derived on 
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the basis of energy transfer calculations and have been used in the forecasting of 
wave formation for practical purposes. 

If we accept these results obtained by Sverdrup and Munk as representing the 
actual process of wave generation, casual inspection of the curves shows that in the 
earlier stages the wave height increases as the two-thirds power of the time and the 
wave speed increases as the one-third power of time. This is in agreement with 
the equations contained in the present paper, provided that the parameter b is 
constant. Numerical computation shows, moreover, that with b = 24 (steepness 
about eight per cent), approximately ten per cent of the momentum received by the water 
becomes wave momentum during these early stages. During the later stages both curves 
tend to level ,off showing that probably a smaller and smaller percentage of the 
momentum received is utilized in wave growth.] 

SUMMARY 

In this paper an integral relationship between the kinetic energy and 
horizontal momentum of surface waves is derived by simple methods. 
A relation of similar form was first derived by T. Levi-Civita who used 
a different approach. The equation obtained by the writer states that 
the kinetic energy per wave length and per unit distance along the 
crests of the waves is equal to one half the wave speed multiplied by 
the momentum of the same water mass in the direction of wave propa-
gation. 

An attempt is made to utilize this equation for the study of the 
growth of waves due to wind action. The possible utility of the equa-
tion in this problem lies in the fact that, whereas it is difficult to 
estimate the energy imparted to the sea surface by a given wind, 
estimates of the momentum transfer are more easily made. For the 
case of an initially u~disturbed ocean of large dimensions, subjected 
to a constant and uniform wind, a formula is obtained which states 
that the wave length should increase as the two-thirds power of the 
time. Numerical computations show that the wave lengths thus 
obtained are too large. It is suggested that the discrepancy may be 
due to the fact that a certain fraction of the momentum absorbed by 
the water is utilized in the generation and maintenance of drift currents. 
Further study may show that it is possible to introduce corrections 
for such effects. 
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