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A sea or an ocean, according to Defant (1929), is composed of 
water masses which are more or less homogeneous volumes of water 
characterized by defini te relationships of physico-chemical properties 
such as temperature and salini ty. No less interesting than the im-
portant problem of the ori gin of diff erent water masses is the study of 
t heir t ransformation by the processes of mixing. The so-call ed method 
of T-S diagrams of Hell and-Hansen (1918) have proved to be very 
useful in this respect . According to this method, temperature ( f> ) 
and salini ty (s) of sea water are expressed as rectangular coordinates 
in relation to t wo parameters : depth (z) and time (t) . Thus, s = 
f ( f> , z, t) . The li nes, which on the T-S diagram correspond t o a con-
stant value of the parameter t, will be referred to as T-S curves. 

Al t hough the method of T-S diagrams is widely used in oceano-
graphic practice, there is as yet no satisfactory t heoretical treatment 
of the subject. In this study an attempt is made to set up the founda-
ti ons of an analytical theory of T-S curves which gives a deeper in-
sight into the essentials of this interesting method . A series of 
theorems is establi shed which forms t he basis of a distinctive "geome-
try of T-S curves" and which can be appli ed practically . A study is 
made of the well known method of Jacobsen (1927) for determining t he 
coeffi cient of convectiv ity by means of T-S curves, and it is shown that 

1 Proofs not seen by author. 
( 1 ) 
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there is an error of principle in its geometrical part. The error can 
be avoided, however, by a deduction (from the basic formula of 
Jacobsen) which is developed and which is based on demonstrated 
geometrical properties of T-S curves. Finally, a new and simple 
geometrical method is developed for determining the coefficient of 
convectivity by means of T-S curves. 

I. GEOMETRICAL PROPERTIES OF T-S CURVES IN THE 
MIXING OF THREE WATER MASSES 

Let us consider the vertical mixing of three water masses in which 
the intermediate one is limited, and let us locate the plane z = O in 
the center of this intermediate water mass, whose boundaries are 
determined by values z = ± h. The other two water masses are 
unlimited, extending from z = h to z = OJ and from z = - h to 
z = - OJ. Since we consider here only processes of vertical heat 
conductivity and diffusion, which tend to equalize the temperature 
and salinity of water masses, we shall describe these processes by 
differential equations of the Fourier's type, 

a{} a2{} as a2s 
(1 ) at= Kai; at= Kai' 

assuming that the coefficient of turbulent mixing K in the region of 
all three water masses remains constant and is similar for the exchange 
of both salt and thermal properties. 

Let us also assume at the initial moment that the temperature and 
salinity of the water masses are equal to 

1) for OJ > z > h {} Eli, s = S1, 

(2) 2) for h > z > - h {} 02, s = S2, 
3) for - h > z > - co {} 03, s = 83. 

Evidently the initial condition is represented on the T-S diagram by 
three points with coordinates 01, S1; 0 2, S2; and 0 3, S3, forming a 
"triangle of mixing." This conception is fundamental for the whole 
subsequent theory of T-S curves. 

Apart from the initial conditions (2), the solution of equations (1 ) 
must be subordinated to conditions of continuity of heat and salt 
exchange at the interfaces of the ,,,vater masses, i . e., 

( 
a{} )1 ( a{} )II ( ai'l )II ( ai'l )m K- = K- · K - = K-
az z-h az Z=h ! az Z= - I, az Z= _ h 

(3) 
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and similarly for salinity. In the case of temperature the solutions 
of equations (1) will be: 

for the region co > z > h (water mass I) 

for the region h > z > -- h (water mass II) 

(4') {}=½[01+0a--(01--02)<I>(-- z -- h )+(02 --83)<1>( z+ h )] 
2-vKt 2-vKt ' 

for the region -- h > z > -- co (water mass III ) 

(4") {}=½[01+0a--(01--02)<I>(-- z--h )--(02--03)<1>(-- z+ h )]· 
. 2-vKt 2-vKt 

In these formulas ( 4), <I> ( ) stands for Gauss' integral of errors 
(function of probabilities) 

X 

<I> (x) = : J e-~'dr;. 
0 

The formulas for salinity are analogous (4). An analysis of the formu-
las of this type ( 4) will make it possible to establi sh a series of important 
deductions referring to the geometrical properties of T-S curves. 

First of all it should be noted that <I> (co) = 1. Therefore at t = O 
the temperature and salinity at the limits of the intermediate water 
mass II are equal respectively to half the sums of the temperatures 
and of the salinities adjoining the given limit: 

01 + 0~ S1 + S2 
{},_h = ; S,-h = 

(5) 2 2 

02 + 0a S2 + Sa 
{},=-h = 

2 
; 8,--h = 

2 

Th8 latter values evidently correspond to the initial values of tempera-
ture and salinity established at the interface between two limit ed or 
unlimited water masses. However, as seen from formulas (4), with an 
increase of time (t) the intermediate layer degenerates, and tempera-
tures and salinities of the three water masses tend to reach new 
stationary values, 

01 + 0a S1 + Sa 
limit ({}) 1--h, =----- ;limit (s) 1--h o = -----

2 2 
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corre::-; punding to the final stage of mixing. 
Let 11s no\\" follow the transformation in the system 8 = f ( i't) of the 

"nucleus" of the intermediate watu mass II, defining this term as 
the central region corresponding to a value of parameter z = 0. 
On the basis of the second formula (4), assuming z = 0, we obt,[lin the 
following expression for the temperature of the "nucleus," 

(6) 1
~ = _e_r _+_e_3 + <I> ( h_) (e

2 
_ _ 0_3 +_8_1 ) 

2 2vKt 2 ' 

and we 1Jbtain an analogous formula for salini ty: 

(7) S1 + Sa ( h ) ( Sa + S1 ) 
s = 2 + <I> 2v'Kt 82 - 2 . 

Excluding the functi on <I> ( ) from (G) and (7), we obtain an equation 
that cha r::.cterizcs the transformation of the "nucleus" of wnt~r mass 
II in the svstem s = f ( i't ) , 

- . 81 + Sa 

(8) s - - - -
2 

S2 - ----

01 Ga (i't -
82 - - - --

2 

2 
ea). 

This formula (8) is nothing more than an equation for a ::; traight line 
passing through two points: point lI (Fig. 1) TI'ith coordinates 82, S2 

d . p . h d. 81 + 0, 81 + Sa I F. l h an pornt ,nt coor U1ates----, --- . n •1g. 1 t.w sc eme 
2 2 

of transformation of the water masses is indicated by arrows. The 
straight line lI P , 11·hich is "the principal median" of t he triangle 
of mixing I II III, divides its plane into a positive and a negative 
region. The results obtained arc summarized by the following 
theorem : 

l. The geometrical posilion of points with a value of paramctN z = 0, 
characterizing the transformation of the "nucleus" of the intermedia/,e 
water mass with the course of time, represents the principal median of the 
triangle of mixing drawn f rom that apex of the tr i angle whir h correspor.ds 
to the intermediate water mass. 

N 011· let us determine the slope of the tangent to the T-S curYe. 
Since t he temperature is a function of two variables, s and z, at eYery 
point of the T-S curve, the slope of the tangent at any point of the 
T-S curve may be computed according to formula 

(9) :: = :: I :: . 
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Constructing --and - comparably to expre;-;~iow, of type (-± ), after 
oz az 

some simple transformations we obtain, a<'('.Ording to (9), 

d{) h _ Eli - E-)2 + (02 - 0 a) e -Kl -- ----~---~~, 
ds , , -

.S1 - S2 + (S2 - 83) e Kt 

( 10) 

from which it follows that, at the initial moment of mixing, when t is 
hz 

very small and - very high, the slope of the T-S curve for the region 
Kt 

z > () is determined by expression 

(11) 
di'l 

ds 

01 - 82 
= Constant 

81 - S2 

and for the rngion z < 0 by expression 

di'l 02 - 0a 
= Constant. 

S2 - Sa 
(12) 

ds 

Thus, at the initial moment of mixing the T-S curve is characterized 
by straight lines, which on the T-S diagram consecutively connect 
the water masses I-II, II-III , as shown by the broken line in Fig. 2. 



6 

T 

I 
I 

n 

Journal of M an·ne Research 

I 
I 

I 
/ .)( 

I 

I 

I 

Figure 2. 

p 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
I 
\ 

[VI, 1 

s 

It is also obvious from formulas (4) and (10) that, at t = Constant, 
the branches of the T-S curve asymptotically approach these same 
straight lines 1- 11, 11-111 as z increases, i. e., with increasing distance 
from the central region of the intermediate water mass. This approach 
is the more rapid the greater the width (2h) of the intermediate water 
mass, or the lower the value oft (for given values of hand z). 

And finally, it follows from formula (10) that the slope of the tangent 
at points of the T-S curve corresponding to the " nucleus" of the 
intermediate water mass (i. e., at points with a value of parameter 
z = O) is determined by the expression 

(13) (d~) 01 - 0a 
- =-- --= Constant. 
ds 

O 
S1 - Sa 

This signifies that tangents drawn through the points mentioned are 
parallel to the side of the triangle of mixing which is opposite to the 
intermediate water mass (Fig. 2). This side will be named the base 
of the triangle of mixing. Since the slope of the T-S curve, when 
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crossing the point z = 0, changes direction with respect to the base of 
the triangle of mixing, this point in a certain sense may be called the 
maximum point of T-S curves. 

Our deduction can be summed up in the following theorems: 
2. At the initial moment of mixing, the T-S curve consists of two 

straight lines which consecutively connect the given water masses on the 
T-S diagram. 

3. At points of the T-S curves sufficiently distant f rom the limits of the 
intermedi ate water mass, the tangents to T-S curves practically coincide 
with the straight lines, which consecutively connect the three water masses 
considered. 

4. Points of T-S curves corresponding to the "nucleus" of the inter-
mediate water mass are extreme points of T-S curves in respect to the base 
of the triangle of mixing. The tangents at these points are parall el to 
the base of the triangle of mixing. 

Now let us determine the slope of the straight line which, on the 
T-S curve, connects two points with values of parameter z that are 
equal but opposite in sign. Evidently these points of the T-S curve 
are located on different sides of the principal median of the triangle of 
muang. If the value of the parameter z at the points considered is 
equal, z = a and z = - a, the slope of the straight line connecting 
these points will be determined by the formula 

{}a - {}_a 
tga = - ---

Sa - S-a 
By substituting alternatively values z = a and z = - a in formulas 
(4) and by simple transformations we obtain 

E>i - E>a 
[ ( a - h) + ( a+ h)] ita - {}_a = 

2 2-,./Kt 2-,./Kt 

Si - Sa [ (~) ~(-~±~)l Sa - S--a 
2 2-v'Kt + 2-v'Kt ' 

hence 
E>i - E>a 

tga 
Si - Sa 

Thus we may regard as demonstrated the theorem: 
5. Straight lines, which on a T -S curve connect two points having 

identical values of parameter z but with opposite signs, are parallel to the 
base of the triangle of mixing. 

Combining this theorem with theorem 4 we obtain a new deduction: 
6. A tangent, drawn at the point of intersecti on of the principal median 

of the triangle of mixing with the T -S curve, locates on the other T-S 
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Cllrv e, pri or in lime, two poi·nls having equal valul's of the para,nl'/.er z 
but with opvosile signs. 

From formula (4) issues another no less remarkable property 
possessed by points of a T-S curve with a parameter value of z = ± h, 
i.e., points located on the boundaries of the intermediate water mass. 
To demonstrate this let us consider two points Q and D with an identi-
cal value of parameter z = h but with diff erent values of parameter 
t = t' and t = t" belonging to tn·o successive T-8 curYes (Fig . 3). 

T I 

s 
Figure ::i . 

The equation of a straight line passing through points Q (h, l' ) and 
D (h, t" ) is written as foll ows : 

{l (h, t' ) - 11 (h, t") 
{l - {l (h, t') = s (h, t') - s (h, t") [s - s (h, t' )]. 

Substituting values for {l and s from formulas of type (4) \\·e obtain : 

01 + 0 3 02 - 0 3 ,l"-. (--h-) _ 02 - 03 (14) i') - --- 'r' 

2 2 v'Kt' - S2 - S
3 

[ 
81 + 83 

s- -
2 

82 - 83 ( h )] 
- - 2-- <P -v'-K-t' . 
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It follow s from equation (1--!) that the straight line considered 1,; 

parallel to side II - III of the tri angle of mixing, i;;ince the slope m of 
this straight. lin e iR equal to: 

8 2 - 0 3 ,n = ----
82 - s3 

In an analogous way we di scover that the straight line pa:--sing through 
points L ( - h, t' ) and R (- h, t" ) (Fig. 3) is parallel to side I-II of the 
triangle of mixing. On the basis of equation (14) it is easy to sho\1--
that the straight line which passes through points Q and D passes also 
through point P located in the middle of the base of the triangle of 
mixing. But if so, the straight line considered also passes through 
point M lying in the middle of side I-II of the triangle of mixing. 

In exactly the same way can we demonstrate that the straight line 
passing through points L and R also passes through points P and N 
(Fig. 3). But, as already established in formulas (5), points M 

( 
E>i + 02 S1 + S2 ) ( 02 + 03 S2 + Sa ) . ---- ,---- an<l N ----, - - -- characterize the 

2 2 2 2 
properties of water on the boundaries of the intermediate layer at the 
initial moment of mixing, these properties varying continuously with 
time. 

Now we come to the conclusion that this process is illustrated on the 
T-S curve by two straight lines MP and NP which are medians of the 
triangles IPII and IIPIII; to distinguish them from the principal 
median they will be referred to as "secondary" medians of the triangle 
of mixing. 

It is obvious that any point within the parallelogram IINMP , 
shown by hatched lines in Fig. 3, will characterize the water of the 
intermediate layer. 

Thus this parallelogram may be regarded as a distinctive geometrical 
interpretation of the transformation of the intermediate water layer, 
and it should be kept in mind that on the boundaries of this layer the 
passage from point II to points M and N occurs instantaneously, 
whereas further transformation along the secondary medians proceeds 
continuously with time t. The secondary medians of the triangle of 
mixing cut off arcs on the successive T-S curves; every point of these 
arcs corresponds to the water of the intermediate layer in the system 
s = f (fl) . These results may be summed up in the form of the 
following theorem: 

7. All points in the systems = f (fl) corresponding to the water on the 
boundaries of the intermediate layer lie on the secondary medians of the 
triangle of mixing. The secondary medians cut off, on the T-S curves, 
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arcs which correspond to the water of the intermediate layer in the system 
s=f({}). 

The theorems here demonstrated are of interest, not only in 
respect to an abstract "geometry of T-S curves," but because they 
are also of practical value. Thus, on the basis of theorem 3 we are 
often able to reconstruct init ial thermohaline indices of the inter-
mediate water mass. For this purpose, according to the above theo-

34.00.2 :4 .6 .a 35.0 .2 .4 .6 .80/~ 2· 4° 6° a· 10°12° 14°16·1e
0

2O2224° o r-.__.__._~:::::::;!:::::::=== ....... ~r~..._.___._~.....,_...__.~=======---, 

500 

1000 

1500 

2000 

2500 

300 0 

3500 

4000 

4500 

s T 

5000-L-----'----------......... -------------1 
Figure 4. 

rem, tangents must be drawn at points of the T-S curve of the type 
considered sufficient ly distant fr om the region of its rounding or in 
other words, prolongations of the rectilinear branches of the' cu;ve. 
The intersection of such straight li nes will determine the coordinates 
of the point corresponding to the temperature and salinity of the 
intermediate water mass. 

Theorem 7 is of no less practical value. Up to now in oceanographic 
investigations the question has remained open as to the vertical 
dimensions of water masses which could be detected in the sea by the 
method of T-S curves. The conclusions of marine scientists regarding 
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the vertical limits of some layer or other were rather vague and con-
ventional. This is accounted for by the continuous character of the 
vertical distribution of different properties of sea water, owing to a 
levelling effect exercised by processes of mixing. 

For example, Fig. 4 shows the curves of vertical temperature and 
salinity distribution in the central Pacific Ocean, plotted by Wiist 
(1929) on the basis of data from the "Challenger" expedition, station 
ch. 256. We see immediately the difficulties that arise from the 
attempt to determine, by means of these data alone, the vertical 
limits of the layer of fresh subarctic water, whose presence is clearly 
shown by the peculiar curvature of the vertical salinity distribution 
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curYc. These diffi cul t ies c:1n be easil y aYoidcd with the help of 
theorem 7. For this purpose, it i ,; neressary fir st of :1 11 to restore by 
t he T-S curve the primary thennohaline inclice, of t he ,,·ater masseH, 
or, in other words, t o construct. a tri angle of mi xing. T hen we must 
determine the dept h of the points of in tersect ion of seeondary median,; 
of the tri angle of mixing ,,·ith the giYen T-S eurn. T hese depths, 
according to theorem 7, correspond Lo the upper and lower limi ts of 
the intermediate layer of subarctic water. 

Fig. 5 shows the T-S curve constructed by Wii st (1929 ) ; this cor-
responds to the vert ical temperature and salini t y distribu t ion in Fig. 
-1 . In Fig. 5 are a lso given a.II t he necessary construct ions. 

We see that secondary medians intersect t he T-S curve at points 
\\·ith depth values of 549 and 1-19 m. The latter was obtained by linear 
interpolation of dep ths along the T-S curve. The dept hs mentioned 
are the sought-for limit s of the int.Prmediate suba rctic layer. Ob-
vi ously, the result of t he construction used will be exact as far as the 
propositions demonstrated above are correct under actual conditions 
in the sea. It must be remembered t hat , stri ctl y speaking, the 
theorems mentioned are corrpct only in t he absence of an upper (sea 
surface) and a lower (sea bottom) limit. Pract icall y , this signifi es 
that the width of the intermediate layer should be much less t han t he 
total depth of the sea, and the "nucleus" of t he intermediate water 
layer about an equal distance between surface and bottom, where, for 
one reason or another, temperature and salini ty distribution do not 
depend on time. 

At any rate, an adequate criteri on of the reli abili ty of determina-
t ions of the thickness of the intermediate layer is furni shed by t he 
degree of accuracy with which the dem onst rated theorems on the 
geometrical properti es of T-S curves can be applied to practi cal 
circumstances. Thus, on the basis of t hese theorems, it should be 
expected that the point of intersection of t he principal median with 
the empirical T-S curve shown on Fig. 5 will be situated at an equal 
distance (with respect to depth z) fr om t he poin ts of int.ersection of 
the secondary medians with the same T-S curve. The point of inter-
section of the principal median wi th the T-S curve on Fig. 5 (point M ) 
corresponds t o a depth of 307 m . T he latter does not quite corre-
spond to the center of the intermediate layer, whose depth is 349 m. 
and whose position (with respect to parameter z) is indicated in the 
figure by a straight line dra.wn across the curve. However there is 
no great discrepancy between the depth of point M (307 m .) and the 
center of the intermediate layer (349 m.), the relatiYe value of the 
error in this case not exceeding 12 per cent. Thus t he demonstrated 
propositions used in the determinati on of t.he thi ckness of the inter-
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mediate water mass in the Pacific are proved to give fairly accurate 
estimates. 

However, it must be observed that the conception of water masses 
being discrete bodies of water, which, prior to mixing possess individual 
properties (a conception that is both fundamental to the whole theory 
of T-S curves and very useful in oceanography) is a rather conventional 
one. Indeed, we can obtain a precise reproduction of this conception 
by placing in a vessel several layers of a liquid, one above the other, 
and observing the gradual levelling of their properties, interpreting 
this process by means of T-S curves. Obviously a similar tempera-
ture and salinity distribution could be obtained in the case of a vessel 
primarily containing non-stratified water with identical properties at 
every point within the vessel. 

This could be accomplished by changing the properties of the water 
by means of external influences, i. e., subjecting the water on the sur-
face to warming, cooling, or to a change in salinity brought about by 
rainfall or evaporation at the surface. As a result of the external 
influences mentioned, together with mixing processes, we might ob-
tain in our vessel a vertical temperature and salinity distribution 
identical with that reached in the former case (intermixing of several 
layers, individual at the initial moment), although in the latter case 
such layers (water masses) at the initial moment were nonexistent. 

Since in the author's opinion there are, strictly speaking, no water 
masses in nature, excepting perhaps the fresh water on land and salt 
water of the world oceans (merely two), it must be kept in mind that 
in dissecting oceanic water into different water masses we deal with 
layers which in reality are nonexistent in the sea. Nevertheless, this 
abstract conception of water masses, forming the basis of the theory of 
T-S curves, and analogous to the conception of aerial masses, plays a 
useful part like many other abstract conceptions of precise natural 
science. 

II. DETERMINATION OF THE COEFFICIENT OF MIXING 
BY MEANS OF T-S CURVES (ON THE CORRECTNESS 

OF JACOBSEN'S METHOD) 

T-S curves serve not only to determine the structure of water 
masses in the sea, but, as shown by Jacobsen (1927), they enable 
computation of the coefficient of turbulent mixing in the sea. The 
essentials of the method are as follows: one of two curves is selected; 
one (later in respect to time), with a tangent drawn at the point of its 
maximum curvature, locates on the other T-S curve (that prior in 
time) two points with known values of parameters [z' and z"J z = z' 
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and z = z". Then, by computing the difference of parameters we can 
calculate the coefficient K according to Jacobsen by the formula 

(z' - z") 2 

K =-----
8At 

(15) 

where At is the lapse of time separating the first T-S curve from the 
second. 

Owing to its extreme simplicity, the ingenious method of Jacobsen 
has been widely applied in oceanography; this, however, cannot pre-
vent us from expressing some doubts as to its correctness which arise 
as the result of a closer scrutiny of its theoretical foundations. 

Indeed, beside the difficulties occasionally experienced in practice 
in determining the point of maximum curvature of a T-S curve and 
drawing a tangent, it must be kept in mind that the curvature of a T-S 
curve varies considerably in relation to the scale of temperature and salinity 
on the T-S diagram. 

Obviously the position of the point of maximum curvature of a T-S 
curve on such a deformed diagram does not correspond to its position in 
natural (not distorted) coordinates. Nevertheless, this important 
fact is completely overlooked both in the theory of the method itself 
and in its practical applications. Moreover, even a detailed study 
of the fundamentals of the theory of Jacobsen's method fails to answer 
the question of whether drawing a tangent just at the point of ma:x.'i-
mum curvature is essential to the method itself, or whether the tangent 
could be as well drawn at any other point of the T-S curve. 

It must be noted that the method of Jacobsen is applicable to the 
usual type of T-S curves in the case of the mixing of three water masses. 
Moreover, as seen from the theory of the method as stated by Jacob-
sen, the water medium is assumed to be unlimited (in his computa-
tions z is integrated within the limi ts z = - co to z = co ). 

Thus the initial statements of Jacobsen's theory of procedure fully 
comply with the conditions of the problem considered in the foregoing 
chapter. Hence, we are able to use fully the demonstrated theorems 
on the geometrical properties of T-S curves for a more exact and very 
simple basis for a theory of Jacobsen's method. 

For this purpose let us consider the two T-S curves illustrated in 
Fig. 6. The first is assumed to correspond to the moment of time to 
and the second to to + At. Let us then draw a tangent at point A 
having parameters z = 0, to + At and which consequently belongs to 
the second T-S curve; this tangent intersects the branches of the first 
cu~ve at ?oints B and_ C._ Accor~ing to theorem of the first chapter, 
pomt A hes on the prmc1pal median IIE of the tnangle of mixing and 
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forms at the same time the maximum point of the second T-S curve 
in relation to the base of the triangle of mixing: 

On the other hand, according to theorems 5 and 6 of the same 
chapter, the tangent mentioned above must be parallel to the base of 
the triangle of mixing and points B and C must have equal values, 
but opposite in signs, of parameter z in relation to point D (z = 0, t0 ) . 

We emphasize that the last circumstance is essential to the following 
computations which finally lead to the formula of Jacobsen. Accord-
ing to the above let the parameters of points B and C, which belong 

to the first T-S curve, be characterized by values B ( - Li
2
z , t

0
) , 

C ( Ll; , t
0

) , where Liz is the difference of parameters z between the 

points B and C. 
Let us assume, together with Jacobsen (1927) and Okada (1938), 

that temperature and salinity at points A, B, C can be presented pre-
cisely enough for practical purposes in the form of the sum of the first 
terms of Taylor's series, 

i'tc = {} + (~) + (Liz)
2 

( a
2

{}) 
0 2 az O 8 az2 

0 

Sc = s + (!!_) + (Liz)2 (!2_) 
0 

2 az O 8 az2 
0 

(16) {}B = {}
0 

_ Liz (~) + (Liz)
2 

( a
2

:) 

2 az O 8 az 0 

SB = s _ Liz (!!_) + (Liz)
2 (!2_) 

0 2 az O 8 az2 
0 

ai't as 
{}A = {} + - Lit· SA = S + - Llt , 

0 at ' 0 at 

while the equation of tangent BC may be inscribed in the form of 

(17) {}A - {}B = (~) (SA - SB) 
ds 

0 

where (~) is the slope of the tangent to the T-S curve at point 
ds 

0 

z = 0. 
By substituting in formula (17) corresponding values from formula 

(16) and rearranging the terms we obtain 
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(J 8 ) [ _an _ (~ ) (~ )] !1t = _ Ll z [(~ ) _ ( ~ ) (!_!___)] 
at ds 

O 
ill 2 az 

O 
ds O az 0 

+ ( /1z)2 [(~~) _ (!!__) (~2~ ) ] . 
8 az2 

0 
ds 

O 
az- 0 

Let us now decipher the expressions in brackets [ ] fr om formula 
(18). On the basis of formula (9), the fir st bracket to t he right of 
(18) is reduced to 0. Diff erentiating (9) by z as a complex function, 
we obtain 

(19) 

Com;equently the remaining item on the right of (18) can be inscribed 
as: 

(20) ( /1zf [(~ ) _ (_:!!__) (!2_) ] = ( i1z)
2 

( ~ ) ( ~ )
2
· 

8 az2 
0 ds 

O 
az2 

0 8 ds2 
0 az 

Combining equation (1) with formulas (9) and (19), it is easy to 
demonstrate that 

_ _:!!_ as = K d'tl ( ~ ) '. 
at ds at ds2 az 

Substituting the right hand side of this last equation for the brackets 
on the left of formula (18) and omitting index 0, we obtain 

K (~)2 6.t = (~) (~)2 
ds2 az 8 ds2 az 

or, finall y 

(21) 
( .:iz)2 

K =--
8!1t . 

As we see, the last formula is identical with Jacobsen's. 
An essential feature of our reasoning in deducing Jacobsen's formula 

is that we dra\\· the tangent BC (Fig. 6), not at the point of maximum 
curvature, but at the point of intersection of the p'.·incipal m edian of the 
tri angle of mixing w1·th the second T-S curve. Generall y speakino- this 
point does not coincide with the point of maximum curvat~~e as 
illu strated by Fig. 7, which shows two T-S curves constructed accord-
ing to formula (4) on the propositi on that: 0 1 = 2° S1 = 34 00°; . 

' . oo, 

02 = 1°, S2 = 33.10°/00; 03 = 5°, S3 = 33.20°/00· K = 10 cm
2 

• 

' cl K ' 
2h = 120 rn. for two values oft = 30 days and t = 50 days. As seen 
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from Fig. 7, the maximum curvature of the curve fort = 50 days lies in 
the vicinity of the point with parameter z = 40 m. 

It is easily seen that Jacobsen's construction could be identical 
with ours only in one particular case; i.e., when the triangle of mixing 
would be isosceles in relation to sides I-II and II-III (Fig. 6) and when, 
consequently, its principal median coincides with the axis of symmetry 
of the T-S curve (bisects the angle I, II, III). Since in this case the 
point of maximum curvature is actually located on the principal 
median (bisector) of the triangle of mixing, both constructions will 
have a completely identical significance. Jacobsen considered just 
this particular case, though he expected to obtain a method of de-
termining the coefficient of mixing appli cable to any case. Thus it i,; 
no wonder that the calculations of Jacobsen gave a result homotypical 
with formula (21). There is also no difficulty in discovering the cause 
of the error made by Jacobsen. The explanation is that the theory of 
Jacobsen completely ignores the important element of the triangle of 
mixing. 

Cont.rary to our principle, Jacobsen sets no limits to the branches of 
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the T-S curve, which have to break up at points corresponding to the 
extreme water masses. Evidently this important fact essentially 
affects the disposition of intermediate points on the T-S curve, which 
correspond to one or another value of parameter z. In excluding from 
the field of vision the totality of the water masses, Jacobsen naturally 
had at his disposition only that means of orientation which can be 
furnished by the axis of symmetry of a T-S curve with unlimited 
branches. 

In order to elucidate fully the question of the validity of Jacobsen's 
method, let us consider whether it is possible to transform any 
triangle of mixing into an isosceles triangle. If such a transformation 
is possible by changing the scales along the rectangular axes T-S, then 
evidently the construction of Jacobsen can always be adjusted to the 
method indicated, so that both methods will give equally correct 
results independently of the scales selected. 

Let us designate the coordinates of apices I, II, III of a given mixing 
triangle by x1, y1; X2, y2; X3, y3, respectively. Then, to obtain an answer 
to the above question we have to investigate the following indeter-
minate equation, whose both parts represent the lengths of sides 1-11 
and 11-111 of the triangle of mixing: 

(22) a2 (x1 - X2)2 + ~2 (y1 - Y2)2 = r:J.
2 (x3 - X2)2 + ~t (ya - Y2)2, 

where a and are coeffici ents of proportionality of scales on the axes 
x and y (s and {} ) respectively. 

The last equation may easily be reduced to 

a2 A+ ~2 B = 0 
where 

A = (xi - x2)2 - (xa - X2)2; B = (y1 - Y2)2 - (ya - Y2)2• 

Consequently a is related to by 

(23) (I, = ~R-
Formula (23) indicates that transformation into an isosceles triangle 

is possible only in the case where the values A and B have opposite 
signs. On the contrary, in the case of similar signs such a transfor-
mation cannot be accomplished. That is why, generally speaking, 
the construction of Jacobsen is erroneous in its principle, whereas our 
mode of constructing a tangent, owing to the invariability of our 
constructions in relation to the scales of the T-S curve, is the only 
method valid in all cases of transformable and nontransforinable 
(nonisosceles) triangles of mixing. 



20 

r· 

5 

Journal of JI![ arine Research 

.,a 

4 

.oo 

3 

.00 

2 

.,o 

t! 

' 1\ 
' \ 

,, ,, ,, 
,· 
•\ ,. ,, 
I , ,. 
, . 
I t° 60 
I ' I: 
I ' 

\ 

1,81·40 ; :w. I 
I:.'.- \ 
I ', I 
I 

]I 

:n.oo .10 .zo .3o 40 .so .60 
»-~.o~o~,a::-,~a----:,o::-7-•a:-":.s~o~ .• ~a----:.10::-.a~o---;'.;•0~~00S~ m 

Figure 8. 

.70 

[VI, 1 

• 2,166 

so 90 .H ~O S0loo M 

Fig. 8 gives an example of the transformation of the t ri angle of 
mixing (illustrated in Fig. 7) into an isosceles triangle. It may 
easily be seen from formula (23) that in this case such a transformation 
is possible and can be accomplished by changing only one scale on the 
x axis (i.e., s) (~ = 1), increasing the scale of salinity 2,166 times, as 
compared with the previous one (o: = 2,166). 

Fig. 8 shows also what essential changes are brnught about in the 
curvature of a T-S curve by changes of scales; thus, the point of maxi-
mum curvature (z = 40) of the dotted T-S curve, corresponding to 
the "original," with the change of scale is converted almost into the 
point of minimum curvature (with the same parameter z = 40 on the 
transformed curve). As is to be expected, the T-S curve changed by 
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the transformation of this triangle into an isosceles one bN·ume:; a sym-
metrical cmve in relation to the principal median (biRPctor) of the 
triangle of mixing. Naturally, a tangent drawn at the point of maxi-
mum curvature of such a symmetrical T-S curve will be parall el to the 
base of the triangle of mixing, so that in this case the corn,trnct.ion of 
Jacobsen will fully coincide with the construction requirPd hy the 
deduction of formula (21) and the theorems of Chapter I. 

In contrast to this example, in Fig. 9 is shown a triangle of mixing 
with T-S curves constructed for t = 30 days and l = 50 days, which 
cannot be transformed into an isosceles triangle, as is easily proved 
by formula (22). 

Finally, we suggest a new and simple graphical method for deter-
mining the coefficient of mixing with the help of T-S curves. 

Indeed, as follows from formula (10), the slope of the tangent at the 
point corresponding to the limit of the intermediate layer (assuming 
z = - h) is determined for the period of time t1 by the expression 

h' 

01 - Eh+ (02 - 0a) eKli 
tga1 = h' 

S1 - S2 + (S2 - Sa) eKt, 

and for the period of time l2 by the expression, 

h' 

01 - 02 + (02 - 0a) eKt, 
/.ga2 = h' • 

Si - S2 + (S2 - 8a) eKt, 

It follows from these formulas that 

(24) 

where A and B are 

(25) 

"' h' 

eK,, =A ; eKt, = J3 
' 

01 - 02 - (S1 - 82) tga1 

(S2 - Sa) tga1 - 02 + 0a 

01 - 02 - (S1 - S2) lga2 

(82 - Sa) tga2 - 02 + 0a 

Taking the logarithm of (24) we obtain 

h2 h2 
l1 = ---. = 

KlnA ' KlnB 
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Forming the difference ti. - t1 = !::,,.t, we obtain 

hence 

(26) 

h? (lnB - lnA) !::,,.t=-
K lnB ··lnA 

K = .!!__ (lnB - lnA). 
!::,,.t lnB · lnA 

23 

This is the precise formula for computing the coefficient of mixing, 
instead of the approximate formula (21). The determination of 
parameter h on the basis of theorem 7 is quite simple. It must be 
kept in mind that h equals only one-half the thickness of the inter-
mediate layer: 

z" - z' 
h=---

2 

where z" - z' is the difference of depths located on the T-S curve by 
the secondary medians of the triangle of mixing. Consequently, 
formula (26) can be inscribed more conveniently in the following form: 

(z" - z')2 M 
K=----. 

41:::,,.t 
(26') 

It is interesting that formula (26') somewhat resembles the approxi-
mate formula (21), though the significance of values z" - z' in both 
formulas is quite diff erent. To calculate the multiplier M, we must 
draw tangents at the points of intersection of one of the secondary 
medians of the triangle of mixing with two T-S curves in the manner 
indicated in Fig. 9, and determine the angles formed by tangents with 
axis s. Evidently this method, like that of Jacobsen, is valid only in 
the case of mixing of three water masses. 

The theory of T-S curves described above has an interesting hydro-
dynamic interpretation. Indeed, if we consider a two-dimensional 
horizontal fl.ow of a viscous incompressible liquid in the absence of 
external forces, the equations of such motion, as known, will have the 
following aspect: 

au a2u av a2v 
- =v--· 
at az2 

1 
-=v--
at az2 

formally analogous to equations (1). 
In this system of equations, u and v are components of the hori-

zontal vector of velocity along the rectangular axes of coordinates x 
and y, respectively. It is easy to understand that in this case of motion 
of a liquid the hodograph of velocities presents an analogy to the T-S 
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curYe, whil e the apices of the tri angle of mixing are t he ends of the 
three Yectors, corresponding to the initi al distri but ion of velocities 
in the layers of moving liquid . 

Thus, in the case considered, the hodographs of velocit ies possess all 
the geometrical propert ies of T-S curves and with the help of formulas 
(21) and (26) it is possible to determine the value of the kinematic 
coeffi cient of viscosity . 

A generalization of t he theory of T-S curves applicable to any 
finit e number of intermediate layers in the sea is now being prepared . 
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