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THE MOTION OF ATMOSPHERIC DISTURBANCES 

B. HAURWITZt 

In a recent paper Rossby has discussed the effect of the latitudinal varia-
tion of the Coriolis force on the propagation of oceanic and atmospheric 
disturbances (2). He showed that the velocity c of a disturbance in an 
incompressible atmosphere on a plane earth when only the effect of the 
latitudinal variation of the Coriolis force is considered is given with sufficient 
accuracy by the formula 

(1) 
~L2 

c= U--
41t2 

Here U denotes the undisturbed velocity of the air, that is the geostrophic 
wind, L the wave length of the disturbance. is the meridional variation 
of the Coriolis parameter, 

(2) 
a.r 2w cos cp 

~=- =---
ay a 

Here w is the angular velocity of the earth's rotation, a the earth's radius, 
cp the geographic latitude. The direction of the wave propagation is assumed 
to coincide with the W-E direction which serves as x-axis. Rossby as-
sumes further that the disturbance is independent of they-coordinate, that 
is of the direction normal to the direction of propagation. His investigation 
has been extended in three particulars. These extensions may prove helpful 
in future practical work. 
1) It will not be assumed that the disturbance is independent of the y-
coordinate, for that assumption implies infinite lateral extent of the dis-
turbance. Such is not the case in the earth's atmosphere. Since the 
dimensions of the disturbance may be rather large fractions of the earth's 
circumference as will be seen later (p. 41) it would appear desirable to take 
into account the spherical shape of the earth. This extension will be given 
in a later paper. The mathematical treatment of the spherical case leads 
to rather complicated formulae. It seems therefore worth while to extend 
the discussion as far as possible by elementary mathematical methods. 
2) The effect of friction will be considered. It will be assumed that the 
effect of friction on the vorticity is proportional to the vorticity itself. 

t Published by permission of theControllerof the:Meteorological Service of Canada. 

(35 ) 
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This assumption is admittedly rather crude, but it will at least show quali-
tatively how the motion is influenced by friction. 
3) Finally the action of a force on the vorticity will be considered. This 
force may, for instance, be due to the concentration of solenoids along the 
coast lines as pointed out by Rossby (2). He has already indicated how the 
action of such a force may be taken into account by imposing a boundary 
condition on the solution so that velocity and vorticity have prescribed· 
values in the region where the force is located. To obtain a clearer picture 
of the dynamical process, however, it is necessary to have the expression 
for the force appear in the dynamic equations. The force starts to act only 
at the moment when the air passes over the region where it is concentrated. 
Therefore the forced oscillation will not be completely developed at the 
moment when the region of the force is passed but somewhat later. 

Reference is here made only to.atmospheric disturbances but the applica-
tion to oceanic motions is obvious. 

A) Disturbance of finite lateral extent 

A simple expression for the pressure distribution of a disturbance of 
finite lateral extent is given by 

2'JC 2'JC 
(3) p = const. - A · y + B cos - y cos - x 

D L 

where D represents the width in they-direction of a High and a successive 
Low. The pressure field defined by (3) gives a succession of Highs and 
Lows in the y-direction as well as in the x-direction. The smaller the undis-
turbed meridional pressure gradient A is compared to the intensity of the 
superimposed disturbance B the greater is the number of closed isobars. 
When the ratio A/B increases fewer isobars are closed and the pressure 
field resembles more closely a succession of wedges and troughs. A small 
value of the ratio AIB corresponds to the actual atmospheric conditions 
near the earth's surface where closed Highs and Lows are observed. The 
intensity B of these disturbances decreases upwards while the undisturbed 
meridional pressure gradient A remains of the same magnitude. Conse-
quently most of the isobars at upper levels resemble cosine curves with few 
if any isobars closed. · 

If only one High or Low is to be considered, the right hand side of (3) 
may be represented by a different function which can be expressed by a 
Fourier double integral. 

When the waves are of finite lateral extent the velocity of propagation 
is found to be considerably different from that obtained when the waves are 
of infinite lateral extent. The motion considered may be purely horizontal, 
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without friction, and the atmosphere may he incompressible and homo-
geneous as in the case treated by Rossby. It follows from the equations 
of motion that the absolute vorticity which consists of the sum of the vor-
ticity of the motion relative to the earth and of the vorticity f due to the 
rotation of the earth must be constant, 

(4) + f = const. 

Obviously, only the vertical component of the vorticity 

av au 
~=---

ax ay 
has to be considered in this case of horizontal motion. The equation of 
continuity for horizontal incompressible motion states that 

au av 
(5) -+- = 0. ax ay 
Differentiation of (4) shows, since f depends only on the latitude, that 

d~ 
(6) - = - ~v 

dt 

where is defined by (2). Owing to the meridional pressure gradient a 
geostrophic zonal current of the velocity U must exist. On this zonal current 
a disturbance with the velocity components u' and v' is superimposed. 
u' and v' may be considered so small that terms of higher order in the 
perturbation velocities or their derivatives can be neglected. It follows 
then from (6) and (5) that 

(7) (a~ + ua:) ( :: - :;') = - ~v' 

au' av' 
(8) -+-=O 

ax ay 
The quantity depends on the latitude. However, as long as the earth is 
regarded as a plane this variability of may be neglected since the error 
involved although considerable is of the same order as the one caused by 
considering the earth as flat. 

The form of eq. (8) suggests that the streamfunction ijl may advantage-
ously be introduced 

(9) 
at 

u'= --
ay 

at 
v' =-

ax 
The equation ijl = const. represents the stream lines. 
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The equation of continuity is satisfied for any value of tjl. The vertical 
component of the curl is given by 

a2tJ> a2tJ> 
(10) ½ = -+-a:r2 ay2 

Using eq. (9) eq. (7) is transformed into 

(11) - + U- - + - = - ~-( a a) (a2 tJ> a2tJ>) a41 

at ax ax?- oy2 ax 
A solution may be assumed in the form 

21t 21t 
(12) tj> = C cos - y sin - (x - ct) 

D L 
where C is an arbitrary constant. D represents the width of the disturb-
ance, Lits wave length and c the velocity of the disturbance. Substituting 
(12) in (11) it follows that 

~L2 v2 
(13) C = U - - --

47t2 v2+ L2 

If the motion is not a function of the y-coordinate, D = 00 , and (13) 

becomes identical with (1). If D is finite, 1 ID is smaller than unity. 
1 + L2 2 

Thus the smaller the lateral extent of the disturbance, the smaller is the 
influence of the term which is due to the latitudinal variation of the Coriolis 
force. The value of this factor for different ratios LID is shown in Table I. 
When the lateral extent of the disturbance is equal to the wave length, for 

TABLE I 

REDUCTION OF THE VELOCITY DEFICIT U-c WHEN IT Is ASSUMED THAT THE DIS-

TURBANCE Js OF FINITE LATERAL EXTENT 

L /D 

1 

I+L2/D2 

1/5 

.96 

1/3 

.90 

1 

.50 

2 

.20 

3 

.10 

instance, the difference between the geostrophic velocity and the velocity 
of the perturbation is reduced to half the value which is found for an 
in£nite disturbance. 

The disturbance remains stationary, c = 0, when 

(14) u = __£_L2 1 
4,r2 1 + L2/D2 
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The length of the stationary wave L., for a certain wind velocity U is 
therefore given by 

(15) L. = 21t • / U 
o/ ~(1 - 4it2 U/D2) 

or 

(16) 

if the ratio L.!D is given, The length of the stationary wave increases as 
L,/D increases. If, for instance, L./D = 1, L, increases 41 % above the 
value when D = ro. If L,/D = ½ the increase is only 11%. The effect of 
the finite lateral extent of the disturbances is therefore to diminish the 
number of possible stationary disturbances around the circumference of 
the earth at a given latitude while increasing the size of the perturbation. 

Equation (15) shows that for perturbations of finite lateral extent a 
stationary wave length exists only if 

that is when the lateral extent of the perturbation is greater than the sta-
tionary wave length for a perturbation whose lateral extent is infinite. 

·when D = ro (15) and (16) reduce to the expression 

which was given by Rossby. When the value of from (2) and the angular 
velocity of the air motion relative to the earth, given by 

. u 
A=--

a cos <p, 

are introduced here it follows that 

( 17) L. = 1ca 

The only variable in this equation is i. The table published by Rossby (2) 
shows that the maximum angular velocity during February is approximately 
constant at least from 70° to 30° northern latitude, its value being 5.02 X 
10-5 sec-1• This would give a stationary wave length of 7550 km. To 
show this graphically lines of equal wind velocity have been plotted in 
Fig. 1 with the geographical latitude as abscissa and the stationary wave 
length of the disturbances of finite lateral extent as ordinate. The circles 
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indicate the position of the wind velocities give~ in Rossby's ~able. They 
lie fairly closely on a straight line correspondmg t~ a s~at1onary w~ve 
length of about 7500 km. According to (16) these cons1derat10ns concernmg 

r 
1-

l!) 6,000 t;:;;;~-~----,=------t--=:;71--t-7;IL----t-7~---1 
z 
w 
_J 

w 
> 

: 4,000 t:::::::i:::::::~;;~::::::::-=~.-,:.=--+---+---\-~-+---1 

2•0 0 0 0~0~--1""0"' 0 ___ 2""0""0 __ 3 ... 0...,0 ___ 4._0_0 __ 5 .. 0_0 ___ 6,1,,0_0 __ 7 .. 0_0_7 ... 5° 

LATITUDE 

Figure 1. Stationary wave lengths of disturbances of infinite lateral extent. The curves 
are lines of equa l wind velocity in m/sec. The circles indicate the zonal wind velocities at 
different latitudes on tlie northern hemisphere. 

the constancy of L, when)., is constant also hold when the disturbances are 
of finit e lateral extent, provided that the ratio L,/D is the same everywhei:e. 

Table II and Fig. 2 show the stationary wave lengths for different wind 
velocities and latitudes when the perturbation extends from the pole to the 
equator. This value assumed for the magnitude of the lateral extent of the 
perturbation may be rather an extreme one but for a smaller lateral extent 
the effect is still greater. For long waves the deviations from the infinite 
case treated by Rossby become quite large. At latitude 60°, for instance, 



1940] JOURNAL OF MARI NE RESEARCH 41 

the stationary wave length is almost 15000 km. as compared to 8300 km. in 
the infinite case.* 

12,000 

:i: 

t-
<!> 10 ,000 
z 
w 
_j 

8,000 

w 
> 
<I 

6,000 3 

4,000 

2,00 0 

4 8 12 16 20 
WIN O V E L O C I T Y 11./ sEc. 

Figure 2. Stationary wave lengths when the perturbation extends from the pole to tbe 
equator. 

TABLE II 

STATIONARY WA VE LENGTH WHEN THE PER'l'URBATION EXTENDS FROM POLE TO 

EQUATOR 

30° 
45° 
60° 

4 m/sec 

2940 km. 
3280 
4000 

8 m/sec 

4350 km. 
4820 
6160 

12 m/sec 

5600 km. 
6440 
8410 

16 m/sec 

6850 km. 
8000 

11100 

20 m/sec 

8120 km. 
9750 

14980 

* It should however, be understood that the approximation involved in the deriva-
tion of these equations is not very good in the case of such long waves. To get more 
accurate information it will be necessary to take into account the spherical form of 
the earth. 
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A more general solution of (11) than the one represented by (13) can be 
obtained by Cauchy's method. It can be made to satisfy the initial condi-
tion that at the time t = 0 the stream function is equal to a given function 

411 =O = F(x, y) 

The solution is then 
oo +oo 

0 
(18) 41 = :

2 
J J J J F(cr,~)cos). [ x-cr- ( U - ).2+p.2)t] 

0 - oo 
cos µ(y- ~)dcrd~d).dp . . 

Here )., µ, cr and are variables of integration. Equation (18) shows that 
each harmonic component moves with a different velocity 

0 u----
)...2 + µ2 

depending on the wave length 21t/A and the lateral extent 21t/µ of the har-
monic. The observations show the integrated effect of all the harmonics 
which is represented by (18). Sufficiently large harmonics move towards 
the west, sufficiently small ones towards the east, so that the disturbance 
may split into two parts moving in opposite directions as Rossby has 
already pointed out. It is, of course, not necessary that the motion of the 
harmonics should take place in opposite directions. Even if the different 
harmonics proceed in the same direction with different velocities the dis-
turbance may break up. ·whether or not this split will occur depends on 
the initial distribution F (x, y) of the disturbance. If this is a function 
such that only the harmonic components in the vicinity of a certain velocity 
have appreciable amplitudes while the amplitudes of the others are small, 
no separation will be observed on the map. In this case the disturbance 
will spread over a larger area and its intensity will weaken. 

B. The equations when friction and external forces are acting 

The perturbations which have been discussed so far are free perturbations 
which weaken gradually owing to the influence of friction. The effect of 
friction will be assumed directly proportional to the intensity of the vor-
ticity . Thus 

frictional force = - k'(, 

where le is the coefficient of friction. New perturbations may be generated 
by external forces, for instance by the action of solenoids distributed along 
the boundary of land and ocean. For the sake of simplicity it may be as-
sumed that the force depends on the x-coordinate only, that is on the 
longitude, and is independent of the latitude. These assumptions about the 
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friction and the external force will at least give an approximate idea as to 
the effect of these two factors. 

Furthermore it will be assumed now that an external force K(x) is 
acting which generates solenoids and which depends only on the x-coordi-
nate. The equation for the vorticity becomes 

(19) 
d½ 
- +le½+ ~v = K(x). 
dt 

As previously the total velocity may be the sum of the undisturbed (geo-
strophic) velocity U along the x-axis (directed from W to E) and of the per-
turbation velocity with the components u' and v'. Owing to the smallness 
of u' and v' (19) may be simplified so that 

(20) ( 
a a ) (av' au' ) · - + U- + k - - - + ~v' = K(x). at ax ax ay 

Since the equation of continuity (8) remains unchanged a stream function 
41 can be introduced again by (9). Equation (20) is then transformed into 

(21) (~ + u~ + k) (a241 + a241) + B = K(x). 
at ax ax2 ay? ax 

The solution will be assumed in the form 

(22) 41 = Ai(µx - vi) / >-Y + g(x). 

A is an arbitrary constant, representing the amplitude of the disturbance, 
the wave length L = 2-;r;/µ, and the width of the disturbance D = 2-;r;/A. 
The time factor Y has to be determined by substituting (22) in (21). The 
calculations are simpler when the solution is assumed in complex rather than 
in real form. To obtain a physical interpretation either th~ real or the 
imaginary part of the complex solution or a linear combination of both may 
be chosen since each part separately represents a solution of the differential 
equation (21). The function g(x) depends on the x-coordinate only. It 
represents the influence of the external force K(x) on the perturbation. 
Substituting (22) in (21) the following two relations are obtained 

(23) v=µ.(u--B-)-ilc 
1.1.2 + )_2 

and 

(24) 
d3g le d2g B dg K(;r;) 
-+--+--=-· 
dx3 Udx2 Udx U 

Equation (23) gives the relation between the time factor Y and the dimen-
sions of the disturbance which are denoted by µ and A. When the friction 
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is not taken into consideration k = 0 and (23) is identical with (13) since 
the wave velocity c = v/µ.. Substituting (23) in (22) and retaining only the 
real part of the solution* (jJ may be written 

21t [ ( ~L
2 

Dz ) ] 2rc (25) tli = A cos- x - U - - - - --- t c -kt cos -y + g(x) 
L 41t2 D2 + L2 D 

C. Friction 

When K(x) = 0 the function g(x) may be omitted and the first term of 
(25) represents the complete solution. This expression shows that the 
velocity of propagation of the free perturbation remains the same as in the 
simpler case (eq. 13) when the effect of friction was not considered. Fric-
tion causes the amplitude of the disturbance to decrease exponentially 
with time. 

The order of magnitude of the coefficient of friction k has been determined 
as 10-5 - 10-4 sec-1 from surface observations (1). This value is probably 
much too high if the whole atmosphere is considered instead of the surface 
layers only. Here the values 10-6 sec- 1 and 5 · 10-6 sec-1 have been chosen 
fork in order to obtain a first approximation to the rate of dissipation of the 
disturbances. The corresponding values of e-kt, i. e. the fraction by which 
the amplitude is diminished after a certain number of days, are given in 
Table III. With the smaller value of le the amplitude would be reduced to 
50% of its original value after 8 days, with the larger one in less than two 
days. 

TABLE III 

RATE OF DISSIPATION OF ATMOSPHERIC DISTURBANCES WITH TIME; 

k = 10~ sEc-1 AND k = 5 • 10~ sEc-1 

Time in days 
k = 10-, sec-1 

k = 5 X 10~ sec-1 

2 

.84 

.42 

4 
.71 
.18 

6 

.60 

.075 

8 

.50 

.031 

10 

.42 

.013 

For stationary waves the time factor v in (22) is zero. Neglecting for the 
present the influence of the external force K(x) the solution of (21) is given 
by 

k 

(26) tjJ = e-zux (A1 cos crx + A 2 sin crx) 

or 

* More accurately A = a + ib should be regarded as a complex constant giving a 
solution of the form (a + ib)J(µx- vt) = (a + ib) [cos (µx - vt) + i sin (µX - vt)]. 
The real part of this expression is a cos (µx - vt) - b sin (µ.-i; - vt) = 
A' cos (µx - vt - a) where A' and a are given by a and b. The difference between 
this expression and the one given in the text is, however, obviously not significant. 
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k 

41 = Ae -w x cos (crx - 1 ) . 

45 

Here A1 and A2 or A and I are arbitrary constants of integration. The wave 
length L. = 27t/cr is given by the following expression 

Therefore 

(28) 

cr= , / t _ .!i!___ 
Vu 1u2 

21t 
L.= ------ -

-v~JU - k2/4U2 

Equation (28) shows that the wave length of the stationary wave increases 
with increasing friction. For the zonal wind velocity the inequality 

/c2 
U>-

4~ 
(29) 

must hold. Otherwise cr becomes imaginary and 41 loses its wave character. 
Even with the high value k = 5 • 10-5 and with = 1.619 • 10-ll m-1 sec-1 

(at 45° lat.), for instance, the lower limit for U becomes very small, about 
0.4 m/sec so that the presence of friction in general will not affect the 
possibility of the formation of stationary waves. Similarly equation (28) 
shows that the effect of friction on the wave length is small. 

The values of the stationary wave length for different latitudes and wind 
velocities are given in Table IV where it is assumed that k = 10-6• These 
figures should be compared with those given by Rossby (2). It wi ll be seen 
that the difference in the wave lengths is negligible. 

TABLE IV 

8TAT10NARY WAVE LENGTHS IN KM. WHEN THE COEFFICIENT OF FRICTION /c = 10- 0 

u 4 8 12 16 20 m/sec. 
"' 
30° 2830 km. 4000 km. 4890 km. 5650 km. 6320 km. 
45° 3130 4420 5410 6250 6990 
60° 3720 5260 6440 7430 8320 

The main effect of friction is to produce a decrease in the amplitude of the 
stationary disturbance with increasing distance from the origin. Table V 
shows the decrease of the amplitude for the same latitudes and wind ve-
locities as in Table IV and at a distance from the origin which is equal to 
twice the stationary wave length. The decrease in the amplitude per wave 
length is greater for smaller than for larger wind velocities even though for 
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TABLE V 

[III, 1 

THE DECREASE OF THE AMPLITUDE OF THE PERTURBATION OVER A DISTANCE EQUAL 

TO TWI CE THE STATIONARY WAVE LENGTH. ORIGINAL AMPLITUDE = 1. k = IQ-6 

4 8 12 16 20 m/sec . 

30° .494 .607 .665 . 695 .729 
45° .457 .578 .636 669 .705 
60° .394 519 .584 .620 .660 

the latter the wave lengths increase. Consequently it may be expected that 
the larger stationary perturbation patterns repeat themselves while the 
smaller ones will have a tendency to appear but once or with only a few 
repetitions. They will not tend to spread around the whole circumference. 

According to (10) and (27) the vorticity is given by 

(30) 

where 

1.0 

.8 

.6 

w 
A 

0 
::, 

.2 
I-

.J 0 
a.. 

- .2 

<( 
- .4 

- .6 

-.8 

a21 A _ ;--- _ _!!._ x 
½ = - = - -v /c2cr2 + ~2 e 2u· cos (crx - 1 + o) 

ax2 u 
kcr 

tano = -. 

1½ 
WAVE LENGTHS 

Figure 3. The vorticity distribution in a damped stationary perturbation. Lat. 45°, 
U = 8 m/sec. k = 1.0 -, sec- • (full curve) and 5 · 10- • sec- • (broken curve) . 

_ The distribut_ion ~f ½ along the x-axis in a damped stationary disturbance 
1s represented m Fig. 3. The integration constants A and I have been 
chosen so that 
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and y = 0 

It has furthermore been assumed that <p = 45°, U = 8 m/sec, k = 10-6 sec-1 
in one case and k = 5 · 10-6 sec-1 in the other. When le = 10-6 sec-1 

the length of the stationary wave is 4420 km. When k = 5 • 10-6 sec-1 

it is 4530 km. so that the effect of le on the wave length is small. The 
effect of friction on the amplitude is small when k = 10- 6 sec-1• But when 
k = 5 · 10-5 sec-1 the damping already becomes very noticeable at a dis-
tance of half a wave length from the origin (broken curve). 

D. External Force 

The action of the external force K(x) is represented by the function 
g(x) in (25) which has to be determined from (24). This equation is 
similar to the equation for forced oscillations subjected to damping. The 
main difference is that (24) is a third order equation. But since 

, atji dg 
(31) 'V = - = -

ax dx 
the equation (24) may be written as a second order differential equation in 
v'. The appearance of the third derivative of g is explained physically by 
the fact that the external force K(x) acts on the changes of the vorticity, 
not on the velocity directly. Another difference is the appearance of the 
length coordinate as the independent variable instead of the time. This 
occurs because the external force depends on the x-coordinate. The case 
of an external force varying with time could, of course, be treated in a 
similar manner. 
The solution of (24) is given by 

(32) 

where 

(33a) 

-2~x[ ] v' = e crU I1(x) sin crx - l 2(x) cos crx 

X 

l1(x) = f K(x) e -/u x cos crx dx 

0 

X 

(336) l 2(x) = f K(x) e - 2~ x sin crx dx 

0 

The lower limits of the integrals l 1(x) and I 2(x) have been chosen so that 
v' = 0 when x = 0. The forced perturbation starts at the longitude 
defined by x = 0. 
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The solenoids which generate vorticity are frequently concentrated in a 
narrow strip near the coast and do not extend very far across the continent 
and the ocean. It may therefore be assumed that K(x) 0 only in the 
interval O < x < E and that K(x) = 0 everywhere else. It follows then 
from (33a) and (33b) that 

Ii(x) = I1(E) 
I 2(x) = I2(1a) 

Eq. (32) may be written in the form 

(34) 

where 

v' = -
1
-vu(i.) + I22(i.) e-2~x sin (crx - o) 

o-U 

Thus the distribution of the meridional velocity component outside the 
region where the external force is acting is given by a damped harmonic 
curve •whose wave length and damping coefficient are equal to the wave 
length and damping coefficient of the free stationary wave. 

To show this by a concrete example it will be assumed that the external 
force has a constant finite value K in a narrow strip of width E and that it 
vanishes outside this strip, that is 

(35) K(x) = K for O x :o 

K(x) = 0 for x < 0 and for x > E 

Other more elaborate functions might represent the distribution of the 
solenoids better. Such refinements would give more compli cated expres-
sions for v'. But they do not appear necessary at present since detailed 
observations of these disturbances are not yet available. 
With the expression (35) for the external force (32) becomes 

K[ 1 . ;- k 
(36a) V1 = 1- ---;v te- 2U xcOS (o-x - y)] 
(36b) k [ ke ] v'=(3---;/ U e- 2U x e2Ucos[cr(x- E)-y] - cos(crx-y) jfx~E 

k 
where tany =--. 

2o-U 

The perturbation velocity v' and the p.erturbation vorticity dv' are continu-
dx 

ous for x = E and vanish when x = 0. In the limiting case when the width 
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E of the strip in which the external force acts tends to zero it follows from 
(36b) that 

(37) 
El( k 

I -- X · v = - e 2u sm crx. 
crU 

Thus, as E tends to zero I( must tend to infinity in order that E • J( may re-
main finite and so give a finite value for v'. As long as Eis small the forced 
perturbation is represented by a damped sine wave. 

When E becomes comparable to the stationary wave length 21t/cr the 
meridional velocity component v' may be computed from (36a) and (36b). 
To give an example it has been assumed that U = 8 m/sec, E = 1000 km, 
ip = 45°, k = 5 • 10-5 sec-1 and J( = 10~. The velocity has been calculated 
for two cases: 

a) disregarding the influence of friction, 
b) taking the influence of friction into account. 

The results are represented in Fig. 4. When the effect of friction is neg-
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Figure 4. Effect of a concentration of solenoids on the intensity distribution of a stationary 
perturbation; (a) without friction (b) under the influence of friction. 

lected (36a) and (36b) may be changed by a simple trigonometric trans-
formation to 

(38a) v' = 2: sin2 ( & x) for O x z 

(38b) v' = 2: sin ( & : ) sin [ t ( x - ; ) ] for x 0 
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These equations show that when no friction is acting v' is proportional to 
the square of a sine function in the region where the external force acts and 
proportional to a sine function outside this region. ·when the frictional 
forces are effective the conditions are similar as a comparison of the curves 
(a) and (b) of Fig. 4 will show. In particular, the disturbance has the form 
of a damped harmonic curve outside the region where the external force is 
acting. 

Over these stationary forced disturbances free migrating disturbances may 
be superimposed. The appearance of the resultant disturbances may 
therefore become rather complicated. When fiv e-day mean charts are 
plotted (3), however, the effect of the non-stationary components is partl y 
smoothed out so that the pattern of the charts becomes simpler and re-
sembles more closely the one produced by the external solenoidal forces 

SUMMARY 

In this paper an investigation by Rossby concerning the effect of the 
latitudinal variation of the Coriolis force on the propagation of atmospheric 
disturbances is extended to allow for the finit e lateral extent of the dis-
turbances, for the influence of friction and for the action of an external 
force. When the lateral extent of the disturbance is finite, the difference 
between geostrophic wind and velocity of propagation of the disturbance 
becomes smaller than in Rossby's case. When the disturbance is stationary 
its wave length is larger than in the case of infinite extent. 

The main effect of friction is to damp the disturbance. The external 
force which is assumed to be a function of the longitude generates a sta-
tionary disturbance of the same wave length as the free disturbance would 
have if there were no external force. 
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