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ON THE MUTUAL ADJUSTMENT OF PRESSURE AND 
VELOCITY DISTRIBUTIONS IN CERTAIN SIMPLE 

CURRENT SYSTEMS, II 
BY 

C.-G. ROSSEY 

M assachit,Setts I nstitute of Technology 
and Woods H ole Oceanographic I nstitution* 

In a previous report (Rossby, 1937) the author investigated certain 
changes in the mass distribut ion which accompany the slow lateral diff usion 
of momentum in a straight parall el current in an unlimited ocean of constant 
depth. The principal results of this investigation may be stated as fo ll ows: 

The main stream increases slowly in width (for large t imes (t) it is pro-
portional to (¼) while the maximum velocity in the axis of the current 
graduall y decreases (being proportional to t-¼ for large values oft ). If no 
fr ictional losses occur at the bottom the total absolute momentum of the 
current remains constant. The diffusion is accompanied by a sli ght banking 
to t he right of the down stream direction, in such a fashion that the diff er-
ence in height of the free surface between the right and the left edges of the 
current eventuall y increases by about eight per cent. Weak counter 
currents develop on both sides of t he main stream as a result of the banking. 

This analysis of the disintegration of a current system is supplemented in 
t he present article with a study of the mutual adjustment of mass and 
velocity distribut ions in a current system which is graduall y being built up 
by a prescribed wind system acting upon a portion of the ocean surface. 
The problem will be analyzed in several stages, to bring out more clearl y 
the mechanics of the adjustment process. Frictional forces resulting from 
lateral mixing will be neglected in the present study but wi ll be included in 
a third art icle to be published in a later issue of this journal. 

We shall consider at fi rst a homogeneous, incompressible ocean of constant 
depth D 0 , which is at rest initi all y. Through wind action a certain amount 
of momentum is communicated to an infinit e strip of the width 2a. The 
detail s of the mechanism of this transfer are not important in the present 
connection . It is suffi cient to say that the fluid column between y = + a 
and y = - a is endowed with a certain mean velocity u in the positi ve 
x-direction . The y-direction is horizontal, normal to the x-direction and 
points to t he left from the x-direction . The momentum relative to the 
surface of the earth per unit length of current is then given by the expression 
2pu0aD0 , p being the density of the water . 

* Contribution No. 185. 
(239) 
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This momentum (M) is associated with a Corioli s' force of the magnitude 
flll and directed 90° to t he right of the momentum. In this expression f 
represents the Coriolis' parameter. As no balancing pressure gradient 
exi ts, t he current will move to the right unt il enough of a pressure gradient 
ha been establi shed to check further defl ection. It is the purpo e of this 
fir st prelimin ary calculation to determine the charactcrist i ·s of t he final 
equili brium state. 

Frict ional forces resul ting from lateral mixing will be neglected outside 
the main stream. Within the stream they are assumed to maintain a 
laterall y constant axial velocity which, however, as a result of the di place-
ment of the current to the ri ght must decrease during the adju tment. 
Since, the lateral stresses merely bring about a redistribution, not a change, 
of the absolute momentum, the permissibilit y of the aboYe assumptions 
depends upon whether a signifi cant redistribution occurs v.rithin the interval 
required for the adjustment process here considered. This question will be 
considered later. 

The general character of the adjustment process is indicated by the cross 
section in Fig. 84, which is drawn to facilit ate the understanding of tbe 
analysis but does not correspond to any actual numerical solution. If one 
assumes that the velocity distribution across the main stream is con tant 
after completed adjustment, it fo ll ows that the fr ee surface in the fin al 
equili brium must have a constant slope within the current i tself. 

During the adjustment the individual fluid columns to the left of the 
main current shrink verticall y, stretch hori zontally. Let y 0 represent the 
initial po ition of a given fluid vertical to the left of the main tream, y its 
final positi on. The equation of motion fo r the x-directi on (current axi ) 
takes the form 

(1) 
du 
dt = fv, 

there being no pressure gradient in the x-direction and no fri ctional force. 
In tegration gives 

(2) U = f (y - Yo) = - f (Yo - y), 

indicating that each fluid column on completed adjustment w1\l moYe up-
stream at a speed proportional to i ts total displacement to the ri ght. 

If the fin al depth of a certain column i indicated b)· D, it initial depth by 
Do, the equation of continuity takes the form 

(3) 

or 

(4) D = D dyo 
o dy . 
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Aft er completed adjustment gradient motion prevails. Thus 

(5) 0 = - Ju - g dD . 
dy 

Combination of (2), (4) and (5) gives 

(6) 

where 

(7) 

.,,,. ..... 
/ I ,...._ 

// 1!1~ ------
------..... ..... 

E. 

2 a. 
Figure 84. chematic representation of the adjustment of mass distributi on in a homo-

geneous ocean. See text . 

A similar d iff erential equation may be obtained for D, 

d2D D - Do 
dyz )...2 

(8) 

and this equation is a special case of a more general equation 

(9) 
a2D + a2D = D - Do 
ax2 ayz ).._2 ' 

valid for arbitrary quasistatic transformations of an originall y motionless 
incompressible fluid sheet of the initi al depth Do.* This last equation ex-
presses the conservation of absolute vorti city. 

* The term quasistatic transformation is employed here in preference to the term 
adiabatic transformati on which is generall y used in Mechanics to designate processes 
of this type but which would be ambiguous in meteorology and also to some extent 
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The length A is a fundamental parameter in all quasistatic deformations. 
It is possibl e to defin e such a length also for stratified and compressible 
media, such as the atmosphere. In view of i ts great signifi cance it seems 
appropriate to introduce a special name for this quantity. I ts magnitude is 
that of the radius of the inertia circle corresponding to the velocity of long 
waves in a channel of the depth Do• It is proposed to name A the radius of 
deformation. 

Integration of (6) gives 
y y 

(10) y
0 

- y = A e + Be -i, 

A and B being arbitrary constants of integration. Since the displacement 
y0 - y must vanish at great distances to the left from the main current 
(large y-values), it follows that 

(11) 

and thus 

(12) 

A=O 

E being the total displacement to the right, of the left edge of the main 
stream. In this formula they-coordinate is counted from the final position 
of the left edge of the main stream. 

The depth of the free surface at the left edge of the current (D 1) i given 
by ( 4) and (12), 

(13) D1 = Do (1 - t). 
By a similar analysis it is possible to compute the rise of the free surface 

along the right edge of the current for an equal displacement E to the right. 
The result is 

(14) 

The slope of the free surface across the main stream is now giYen by 
1 
2
a (Dr - Dz). Thus, since gradient ·wind must prevail in the fin al equi-

li brium, it fo ll ows that the final mean velocity ur of the main stream must 
be given by 

(15) g 1 gD0 E A 
Ur = - - (Dr - Dz)= - = - fe. 

f 2a fAa a 

in oceanography (for a definition and discussion of adiabatic transformations see 
for instance, A. Sommerfeld, Atombau und Spektrallinien, 3. Aufiage, Vieweg, 
Braunschweig, 1922). 
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The displacement of the main stream cannot have changed its absolute 
momentum. This constancy is expressed by an equation derived previously 
(Rossby, 1937, p. 19) 

(16) f a+ , f +a 
Do (uo - fy) dy = D (u, - fy) dy, 

-a+, -a 

the y-coordinate on both sides of the equation being counted from the fin al 
center of the current.* Since ito, u1, and D0 are constants, it foll ows that 

(17) 2aDoito = u,f +a Ddy + 1fa+• D
0
ydy - f f +a Dydy. 

-a -a+, -a 

The fir st integral on the left side gives the volume, which remains constant 
and equal to 2aD 0 • Thus 

f a+, J+a 
2aDo (it 0 - u, ) = JD0 ydy - f Dydy. 

a+, -a 
(18) 

The appropriate expression for Dis obtained from (13) and (14). I t has the 
form 

(19) 
E y 

D - Do = - Do -- . 
1-a 

If this expression is substituted in (18) one finds, after some reductions, 

(20) V, f = Uo - f E ( 1 + tJ · 
• It is of course possible to treat the adjustment of the main stream by the same 

exact method which was used above in treating t he envi ronment . For the main 
stream, equation (2) changes into 

(2a) i t = 1to - f (Yo - y) 

and the differential equation (6) into 

(6a) d2y 0 1 ( u,o) 
dy2 = Yo - y - f . 

The solution of this differential equation is 

(10a) 
U o 2; -~ 

Yo - y = f + A e X + Be 

the two integrations constants A and B being needed to sat isfy t he requirement of 
continuity in displacement at the two boundaries. The over-all method used above 
is, however, amply sufficient for our present needs. 
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It is easy to verif y that the product E (1 + 
3
: ) represents the total dis-

placement to the right of the mass center of the current during t he adjust-
ment. If (15) and (20) arc combined it fo ll ows that 

(21) 

and, fr om (15) and (21), 

(22) 

U 0 l 
€ = -

f l + ),/ ci + o j:D-

),/o 
U J = Uo ------] + ),/a+ a/3), 

In middle latitudes (J = 10- 4sec.-1) the radius of deformation has a Yalue 
of 1400 km. for a basin of 2 km. depth. If the current has a width of 200 km. 
(ci = 100 km.) and an initi al Yelocity of 50 cm. p. s. it fo ll ows that a di -
placement of one third of one kil ometer would be suffi cient to e tablish the 
required balancing pressure gradient. The ini tial velocity would be reduced 
by seven percent as a result of the defl ection and the maximum counter 
current Yelocity on both sides of the main stream would be about 3.3 cm. 
p. s. 

By the time the main stream reaches its equilibrium position it ha 
acquired a finit e velocity to the right and must therefore continue its dis-
placement beyond the equilibrium point until an excessive pre ure 
gradient develops which forces it back. An inertia oscill ation around the 
equilibrium position results. It is well known that the period of uch an 
oscillation must be half the pendulum day. The main stream will therefore 
reach the equilibrium position already in a few hours. From the rapidity 
of this adjustment it follows that large unbalanced momenta neYer haw 
time to accumulate. It is probably more correct to assume that the mo-
mentum is added quasistatically , in such a fashion that each infinite imal 
amount of momentum leads to a practicall y instantaneous adjustment of 
the mass distribution. Since a normal ,vind stress of, say, 1 dyne per cm.2 

acting on top of a 2 km. deep water column produces a mean momentum per 
unit mass of less than 0.5 cm. p. s. per day it would appear that the assump-
tion of quasistatic adjustment must be very nearl y fulfill ed. Howe,·er, as 
long as the addition of momentum takes place at a variable and finite rate, 
a certain fraction of the energy communicated to the system 'l'lill pre umably 
always appear as an inertia oscillati on. The preceding result, that cl1ange 
in the stress distribution on the ocean surface necessaril y must lead to 
inertia oscill ations, was clearl y recognized by Ekman in his early studie of 
drift currents (Ekman, 1905). 

It is evident that while the fri ctional redistribution of momentum during 
the period of one inertia oscill ation may be quite negli gible, the total time 
required for the building up, through wind action of a gradient current of 
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the magnitude assumed above is so long that it certainly would be utterly 
impermissible to neglect the diffusion of momentum during this entire period. 

It is next desired to investigate the eff ect of stratifi cation on the process 
of mass adjustment. A simple case wi ll be analyzed to bring out the nature 
of the modification which has to be made in the preceding analysis. 

Fig. 85 is a schematic representation of the adjustment process in a two-
layer ocean, the upper layer having the density p, the lower the density 
p'. The undisturbed thicknesses of the two layers is D0 and Do'. It is now 
assumed that an infinit ely long strip of the upper fluid, enclosed between 
the limit s Yo = a and Yo = - a, is endowed with a velocity u0 • A defl ection 
of the current results and continues until a balancing pressure gradient has 
been establi shed across the main stream. 

The pressure gradients which develop in the upper layer during the 
adjustment must set the lower homogeneous layer in motion. However, if 
the latter is very deep it is possible to demonstrate that its displacements 
and final velociti es must be fairly small. It is possible to analyze exactl y 
the adjustment of the lower layer using the method which was appli ed above 
to the environment of the main stream in the single-l ayer case. This will 
be done later on. As a fir st approximation, however, it is suffi cient to as-
sume that the lower layer remains at rest; thus the deep water displace-
ments associated with deformations of the internal boundary lead to 
negligibl y small axial velociti es. This restriction will be removed later. 

If the bottom remains at rest it follows that 

(23) pD + p'D' = constant 

and consequently 

(24) !!:_ (D + D') = p' - P dD = - p' - P dD' . 
dy p' dy p dy 

It is evident from (23) and (24) that the slope of the internal boundary is 
always proportional and opposite to the slope of the free surface, which is 
given by the left side in (24). The preceding analysis, including equations 
(2), (3) and (4), remains unchanged. The gradient current equation (5) 
changes into 

(25) 

or, because of (24), 

(26) 

0 = - fii . - g !!:_ (D + D') 
cly 

p' - p clD 
0 = - fii, - g · -- -

' p' cly 
I 

Thus if one reduces the acceleration of gravity in the proportion p p 
' p 

and substitutes for g a value 1, defined by 
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Figure 85. Schematic representation of the adjustment of mass distribution in a double 
layer ocean. See text . 
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all the previously derived results remain vali d. The system is in every 
respect identical with a single-layer ocean of the depth D and subject to an 
acceleration of gravity of the value 1. The substitution (27) has one very 
important consequence. The radius of deformation, defined in (7), is now 
given by 

(28) 

Assuming an upper homogeneous layer with an original depth D 0 = 400 m, 
and assuming a density discontinuity of 0.2 percent, it fo llows that 

).. = 28 km. (J = 10-4sec.-1). 

The radius of deformation is thus reduced to 2_ of its original value. As-
50 

suming the same values for u and a as before, the defl ection of the current 
will now be about 2 km. ·compared with the previous value of 0.33 km. The 
reduction in the mean speed of the current due to this defl ection is greatly 
increased, the fin al axial velocity ii 1 having a value of about 5.3 cm. p. s. 
and the counter currents are correspondingly increased to about 20 cm. p. s. 
The radius of deformation measures that distance from either edge of the 
main stream in which the counter current velocity has fall en off to the 

fraction ! of its maximum value, and this distance is now reduced to 2._ of its 
e 50 

previous value. Thus the adjustment of the mass distribution will be accom-
panied by the development of strong and narrow counter currents, while 
the corresponding currents in the homogeneous case will be very broad and 
extremely weak. 

The preceding results suggest that the adjustment of the mass distribu-
tion in a stratified medium will be accompanied by a more intense develop-
ment of inertia oscill ations than the corresponding adjustment in a homo-
geneous medium. It is actuall y possible to compute the energy avail able 
for inertia oscillations by forming the difference between the total energy 
before and after adjustment. Such a calculation is easil y made and clearly 
indicates that a much larger fraction of the initial energy goes into the 
oscillating motion in the stratifi ed case than in the homogeneous. 

It is found that the initi al energy E 0 , given by the expression 

Eo = paDo·U/, 

and the fin al energy E1 are related through the formula 
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(29a) 

and thus the fr action of t he ini tial energy available for inertia oscill ations 
is given by 

(29b) 

1 + !:. 
E E 

3), 
oscilla l wn = 

1 

o l + + 
a 3), 

This last expression is not quite correct, a small error resulting from the 
assumption that the velocity of t he main stream is constant laterall y also 
in the fin al equilibrium state. This error is not signifi cant in the ingle-
layer case but may be of some consequence in a stratified medium. A com-
parison of the two cases discussed above indicates that in the single-layer 
ocean only 7% of the initi al energy goes into inertia oscill ations, whereas 
in the second case the major portion of the initi al energy (89%) must 
appear as an inertia oscill ation. 

Since most currents are built up through a fairl y gradual addition of 
momentum the numerical values obtained through the uggested applica-
tion of the energy integral are of small signifi cance. Nevertheless, because 
of the variabilit y of the surface stresses it appears probable that Yigorous 
inertia oscill ations must develop in stratified media and express them-
selves as a marked intensifi cation of t he large-scale horizontal t urbulence 
which must develop due to the dynamic instabili ty of the shearing zones 
between the current and i ts surrounding counter currents (Pekeris, 1938). 
Such intensifi cation would not occur in homogeneous media. This tenta-
t ive conclusion agrees well with Parr's suggested relationship bemeen lateral 
mixing and vertical stability (Parr, 1936). 

The total amount of momentum received from the wind per unit time i 
distributed over a much deeper column in the case of a single-l ayer homo-
geneous ocean than in the case of stratifi ed water . Thu the initial un-
balanced velocity components wi ll be stronger in stratified than in homo-
geneous water and this fact would further favor the development of lateral 
turbulence in stratified water. 

We shall next consider motions set up in the deeper of the brn layers a a 
result of displacements and mass adjustments in the upper layer. It is 
assumed that no tangential stresses are tran mitted throuo-h the boundary 
between the two strata. Originall y the 10\Yer layer is at re~ and characte;-
ized by a constant depth Do'. 
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During the adjustment process the internal boundary will be deformed. 
Since continuity of mass must be preserved it follows that 

(30) D'dy' = Do'dyo', 

yo' and y' being the initial and final positi ons of a given fluid verti cal. 
The equation of motion for the x-direction is given by 

(31) du' = fv' 
dt 

or, after integration, 

(32) u' = f(y' - yo') = - f(yo' - y'). 

It will now be assumed that wind action or other processes have led to 
the establi shment of a known horizontal pressure gradient in the upper 
layer . The problem is to determine the final velocity u' in the lower layer 
for prescribed values of the gradient current u in the upper layer. 

It is of course possible to assume that an initiall y unbalanced current 
component exists in a portion of the upper layer and to solve simultaneously 
the equations which describe the adjustment processes in the two layers. 
In this case the adjustment of the mass distribution is accomplished through 
a transversal circulation which, to an observer looking downstream, takes 
place in a clock-wise sense (see fig. 85). Such clock-wise circulations have 
been observed in the California current during periods of acceleration and 
estimates of their intensity have been made (Sverdrup, 1938). An exact 
solution of a problem of this type will be presented by Mr. H. Wexler and 
the author in a later issue of this journal. For the present we shall restrict 
ourselves to the case of a prescribed pressure distribution, or gradient 
current system, in the upper layer. If this new pressure distribution in the 
upper layer is applied quasistatically the solution presented below repre-
sents the final equilibrium state. If it is applied suddenly or built up at an 
irregular rate, inertia oscillations will appear, both above and below, super-
imposed upon the equilibrium state here computed. 

The depth of the upper layer is D. The height of the free surface is given 
by D + D' and thus 

(33) u = - E !}_ (D + D'). 
f dy' 

The gradient current equation for the lower layer takes the form 

(34) I g d ( D + 'D') ii=---p p 
P'.f cly' 

or 

(35) ( 
p' - p ) 

y = -p-,-g . 
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A combination of (30), (32) and (35) gives 

d2u' u' p i, 

dy'2 - ).'2 = - p' ).'2 , (36) 

the radius of the deformation ).' now being given by 

(37) ).' = ]· V ,Do' =] PgDo'. 

If the superimposed gradient current u vanishes for y' = ± oo the same 
must apply to u'. It then foll ows from (36) t hat u' becomes vanishingly 
small for very large values of).' (great depths of the lower layer). 

The deformation of the internal boundary is easil y computed from (30) 
and (32), combined into the form 

D' - Do' 1 du' 
Do' = - f dy'' (38) 

which is an expression for the conservation of absolute vorticity m the 
lower layer . 

If it is assumed that the upper layer was at rest before the wind stresses 
responsible for the gradient current u were appli ed, it follows that the 
distortion of the free surface, h = D + D' - Do - Do', must vanish for 
large positiv e and negative values of y. Thus it follows from (33) that u 
must satisfy the requirement 

(33b) J:"" udy' = 0 . 

If the superimposed current is symmetric with respect to y it further follows 
that one must have 

(33c) f
00 

i,dy' = Jo udy' = 0. Jo - oo 

One must furthermore assume that the deformation of the free surface took 
place in such a fashion that no mass was added or subtracted. It fo ll o"-s 
that one must require that 

(33d) 1: 00 

hdy' = 1: 00 

(D + D' - D0 - Do') dy' = 0. 

This last condition is satisfi ed if u is symmetric and satisfi es the conditi on 
(33c). 

Fig. 86 represents two velocity distribut ions, u and i,.', which satisfy 
equation (36). The velocity distribution in t he upper layer, supposedly 
established through wind action, is giw n by 
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(39) - - 1 - ---'---- __:_:_:.._ + _ __ 
13

- fi •' 11 _ [ 2B <1 + 12B) ri2 8B3-IJ4 ] 
u,,, l + 6B 1 + frl) ' ('A. 'ri = y' ) 

and the corresponding velocity distri but ion in the lower layer is then 

(40) u.' p 1 - =, - -. [l - 2B·1J2] e-fi•' . 
u"' P 1 + oB 

. u J 
In plottmg the curves for - and - it was assumed that = - . 

tlm tlm 9 

. , " 

. u,., 

___ ___,_:,, !· \.,. 
' ? :.___ ,,-' ,1- - --- ,[-:_: ___ ___;.,_:.,..,~ -,-,,-__ -_,-_-__ -___ __ · __ _____ ., -, 

Figure 86. Example of two velocity d istribut ions sati sfying eq uation (36). See text. 

The deformation of the internal boundary is represented in Fig. 87. It 
foll ows fr om (38) that the defl ections of t he in ternal boundary will be anti-
symmetric with respect to y'. In the part icular case here invest igated the 
equation for the internal boundary is 

(41) D' - Do' p ttm 2B [ l -fJ , 
.Uo' = p' · f'A.' · 1 + BB 3 - 2Bri

2 
·ri· e " 

It is apparent from the solution presented above that the internal bound-
ary adjusts itself so as to counteract, in the lower layer, the horizontal 
pressure gradients transmit ted downward from the upper layer, bii t i t is 
also cvidmt that this compensation is very incomplete. 

The preceding analysis raises several interesting quest ions. Most 
important of these is the followin g: Will the eff ect of deformations of the 
free surface be felt to some extent throughout the entire water column also 
in rase of a continuous vari ati on of density with depth or will the dynami-
cally created solenoids in t he in teri or completely cancel the eff ect of the 
surface pressure gradient ? It is evident t hat the usefulness of " dynamic" 
vp]oeity calculati ons of non-permanent current patterns to a very large 
extent depends upon the answer to this quest ion. 

We shall attempt to answer this question by a study of the following 
problem: 
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An ocean basin of uniform depth is at rest initi all y . The density de-
creases at a constant rate upward, from the value Pb at the bottom to the 
value Ph at the height h0 above the bottom. Above th is stable layer there 
is a homogeneous layer of t he density p,.. Through wind action, or in some 
other fashion, the free surface i:; deformed, and a corresponding system of 
gradient currents set up in the homogeneous water. How do the deep 
layers react to t he new pressure gradients transmitted from above? 

We shall assume that the deep water is made up of a very large number 
of layers of infinit esimal thickness, each one li mited above and below by a 
surface of constant density. Thus each particul ar layer is enclosed between 
two isopycnic surfaces, p = constant and p + op = constant. Within each 
layer the density may be considered constant and equal to the mean density 
of the layer (p + ½op). Each layer is horizontal before the deformation 
sets in but is warped during the adjustment process. In the fin al equili brium 

. ' -·~ •J -, 

Figure 87. Deformation of tile in ternal boundary. See text. 

state horizontal gradient fl ow prevail s and the motion is thu parall el to the 
contour lines for that parti cular layer . 

Now consider a chain of particles in one of these isopycnic layers. In 
the final stage its circulation may be computed from the circulation theorem 
which, in this particular case, takes the form 

(42) C = - f (A - Ao), 

Ao being the area enclosed by the projection of the chain on a lenl surface 
before the deformation, A the corresponding area after the deformation. 
C is positive for cyclonic circulation. 

In the fin al state horizontal gradient motion prevail s. Thu 

(43) C = f i,o.c + voy 

ox and oy being the components of the horizontal projections of the line 
elements of the chain. I t fo ll ows from Stokes' theorem that 

(44) C JJ(av an) = - - - o.roy a.r ay 



1937- 8] JOURNAL OF MARINE RESE A RCII 253 

' a a d . . . w,icrc - . - now represent eri vativcs with. respect to x and y along a constant 
ax ay 

density si,rf ace. 
The ri ght side of equation (42) can be written in the form 

(45) -j[J J oxoy -J J oxooYo], 

the subscript O referring to the initi al state. The equation of continuity 
gives 

(46) D = Do a (xo, Yo) 
a (x, y) 

Do and D representing the vertical thickness of an individual element before 
and after the deformation. Thus 

(47) f (A - Ao) = 1f f [1 - 0 (,i;o, Yo) ] oxoy = 1f f D0 
- D cl.1:oy 

a (x, y) Do 
and consequently, 

(48) r, = av _ ai, = f D - Do . 
ax ay Do 

r, is the vertical component of vorticity in the particular isopycnic sheet 

under study. In the equation (48) i_ and ~ represent deri vatives with respect 
ax oy 

to x ancl y along a surface of constant density. 
If z (x, y, p) represents the height of a given isopycnic surface after ad-

justment, z0 (p) its ini t ial height, it fo ll ows that 

(49) 

and thus 

(50) 

az 
D = - - o" ap ..., D 

_ OZos, 
o - - ap up 

OZ OZ0 - - -
r, = ov _ ou = f°P op 

ax oy OZo 

ap 

If one introduces a new measure for the density, defin ed by 

(51) 

it fol lows that 

(52) 

(53) 

Pb - P 
r = ---, 

Pb - Ph 

z0 = 0, z = 0, r = 0 for P = Pb 

Zo = h0 , Z = h, r = l for P = Ph· 
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The assumption is now introduced that the ini t ial verti cal density dis-
tribut ion is linear. Thus 

(54) Z0 = h0r. 

Subst it ution in (50) gives 

(55) 

az - ho 
l, _ a V _ au _ far 

- ax ay - - -ho- . 

If one fin all y introduces tbe symbol /1 for the verti cal departure of each 
isopycnic surface from its ini tial position, t he law for the conservation of 
vorticity reduces to the form 

av au f a/1 r, = - - - = .,- - , /1 = z - h0r. ax ay h0 ar 
(56) 

The hydrostatic equation must be t ransformed to include r in ·tead of z 
as the independent variable, since otherwise the law for the con erYation of 
vorti city cannot be eff ecti vely utili zed. The pressure at a height z abon 
the bottom is given by 

(57) 

H being the thickness of the superimposed homogeneous layer. 
tion by parts gives 

(58) ! Ph 

p = gp,. (h + H ) - gpz - g P zclp 

or 

(59) p = gph (h + H ) - gpz + 2Kgpbf
1 

zclr. 

Integra-

If n represents one of the hori zontal coordinates (x or y) and the ,-ariation 
of p along a constant density surface be computed one find 

(60) - = YPh - --- - gp - + 2Kgpb - clr. 
ap a (h + H ) az f 1 a::; 
an an an r an 

The hori zontal variation of any function p in t be n-direction and the Yaria-
t ion of p with n along a constant densit y surface are connected throucrh the 
formula ' "' 

(6l ) ap = (ap) + ap az 
an a11 z a- an 

If p represents the pressure the aboYc formula. reduces to 
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(62) 

Thus 

(63) 
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ap (ap) az 
an = an z - gp an 

(av) an z 
OPh - (h + H ) + 2Kgpb - dr . a 11az 

an r an 
It follows that gradient current velociti es may be computed from 

(64) a 11 az pfv = gp,.- (h + H) + 2Kgpb -dr 
ax r ax 

a 11 az - pfu = gph- (h + H ) + 2Kgpb -dr. ay r ay 
(65) 

255 

Disregarding compres ibility, the total percentual variation of density along 
a verti cal in the open sea is of the order of magnitude of 0.2 percent. Thus 
it is entirely permissibl e to simplif y the above equations by setting 

(66) Ph = Pb = 1. 
p p 

Since z0 is independent of x and y one fin all y obtains 

(67) fv a 11a~ - = -(h + H) + 2K -clr 
g ax r ax 

(68) - - = - (h + H) + 2K - dr Ju a 11 a~ 
g ay r ay 

and, for the vorti city, 

(69) ·- = ----:; + -; (h + H ) + 2K + 2 ~dr. g ( a2 a" ) f 1 ( a2 a2 ) 
g ax- ay- r ax ay 

The vertical variation of vortici ty is obtained from (69) through diff er-
entiation. The result is 

(70) !; = -
27 (a~:2 + a:2) ~-

Eliminating between (56) and (70) one obtains 

(71) a2
~ + 2Kgh. (a2

~ + a2
~ ) = 0_ 

ar2 f2 ax2 ay2 

There must be continuity in velocity and consequently also in vorti city 
at the boundary between the homogeneous and the stable water. It follows 
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that~ is prescribed for the upper boundary (r = 1). At the bottom 6. = 0. 
Thus there is one solution, and one only, which satisfi es the requirements of 
the original problem and the fundamental diff erential equation (71). 

In the case of a parall el current system the preceding equations take a very 
simple form. It fo ll ows fr om (68) that 

(72) 

and from (56) that 

(73) 

au= 2Kg at::.. 
or f oy 

au=_ 1_ at::.. 
oy h0 or 

If one introduces the radius of deformation ).., defin ed by 

(74) 

it fo ll ows that 

(75) 
au az 
or a Y) 

(76) 
au 
OYJ 

- :: (y = AYJ, U = ju).., Z = ~J . 
Thus U and Z are conjugate functions, satisfying the equation 

(77) (~ + ~ ) u = o, (
02 + ~ ) z = o. 

or2 oYJ2 or2 oYJ2 

The boundary conditions are: 

(78) 

(79) 

Z = 0 for r = 0. 

U prescribed for r = 1. 

The rate at which the current velocity decreases dow1nrnrd i ,,-ell illu c-
trated by the fo ll owing case: 

The superimposed velocity in the homogeneous layer is giwn by 

(80) 

This represents a system of parall el currents of alternatinrr direction the 
" wave-length ' ' L being given by " ' 

(81) L = 27':t-. k = '.ht-. 
k ' L 

The corresponding velocity distribut ion in the interior is rriYen bY " . 
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(82) ekr + e-kr 
it = Um · ---- COS lcYl 

ck + e -k .,, 

and the deformation of the individual density surfaces may be computed 
from 

(83) 
h ekr - l' - kr 

Ll = f ;, Um . ek + e-k sin lcri. 

The velocity at the bottom (itb) is given by 

(84) ub = cos Teri 
Um cosh le 

and the maximum bottom velocity by 

(85) itb max 1 
=--=---

Um cosh le 2d 
coshL 

Thus the eff ect of the superimposed velocity gradients will extend to 
greater depths or, which is the same, be more marked at the same depth for 
a longer "wave-length" L than for a shorter. 

The ratio (85) between the maximum bottom velocity and the maximum 

gradient current velocity has been computed for diff erent values of n = !:_. 
), 

Assuming ho = 1800 m., 2K = 2 10- 3, g = 103 cm. sec.-", .f = 10- 4 sec.- 1, 

one finds 
)... = 60 km. 

The resulting values are given in t he line marked JC = 0 in table I. 
ho 

It is evident from these values that the redistribution of mass within a 
single 1800 m. deep layer of uniform stabilit y is insuffi cient to reduce a 
superimposed horizontal surface pressure gradient to zero at the bottom 
It appears that for a current width of 240 km. (L = 480 km., n = 8) the 
maximum bottom velocity will still be 75% of the maximum gradient 
velocity of the surface layer. If the total density range and the depth of 
the stable layer are doubled the value of )... is doubled. The appropriate 
value of n is reduced to 4, but the maximum bottom velocity is still 40% of 
the maximum surface velocity. There is no reason to expect such high 
velocities near the bottom and thus the question concerning the equaliza-
tion of the horizontal pressure gradients at great depths remains open. 

In a further eff ort to settle this question we shall finall y investigate if the 
presence of another, deep homogeneous layer below the stable water plays 
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an important role in the cancell ation of surface pressure gradients through 
redistribution of mass. It wi ll be assumed that the deep water has a con-
stant density Pb and an undisturbed depth K o. Then, if !:,. o represents the 
deformation of the surface separating the lower homogeneous layer from 
the stable water above, it follows from the conservation of vorticity in the 
lower layer and from the requirement of continuity in the velocit y distri-
bution that 

(88) G:\= o 

f l::,. o 

IC 
or, 

(89) G-~\=0 ~-Zr=O· 
IC 

The solution corresponding to the boundary condit ion (80) and the 
revised boundary condition (89) is 

(90) 
1:±._ = h0 coshkr + lcK 0 si~h kr cos k-r; 
11-m h0 cosh k + kK.0 smh le 

and 
t:,. itm ho sinh 7cr + lcK o cosh kr . 1, - = - Sill • ·(J . 
ho f A h0 cosh le + lcK0 sinh k 

(91) 

For Ko = 0 these equations become identical with (82) and ( 3) and 
for /C-----t oo the solution reduces to 

(92) 

(93) 

u ~inh kr k - = --- cos T) 
i1.m sinh k 

!:,. itm cosh la . k - = - --- Slll "T) 
ho f A sin h le · 

The relation between the maximum velocity in the homogeneous bottom 
layer and the maximum velocity in the homogeneous surface la~·er i ' no"\\· ob-
tained by setting r = 0 in (90). The result is 

(94) 
'lib max l 

1 ( 
kl{ o ) cos 1 k 1 + - tanh k 
ho 

1 

l 21tA ( 21tA 
COSl -- l +--L . L 

l{ o I :! ,. )...) . 
- tan1 --
ho L 

For K o = 0 this formula reduces to t he one derived pre,iously (85) and 
for Ko-----t oo the ratio becomes zero, i. e. the bottom la?er will then be at 



1937-8] JOURNAL OF MARINE RESEARCH 259 

rest. For an initial depth of the lower homogeneous layer of 1800 m. and 
for the same value of n as before (n = 8, L = 480 km.) the maximum 
bottom velocity will still be 50% of the maximum gradient velocity in the 
upper layer. 

TABLE I 

J{.~ 
ho 0 5 1 2 4 8 16 

0 .0000 .0037 .0862 .399 . 755 928 

0.5 .0000 .0009 .0337 .232 .605 .855 

1 .0000 .0005 .0277 .162 .499 .809 

2 .0000 .0003 . 0119 .103 .372 . 774 

00 0 0 0 0 0 0 

The preceding analysis indicates that the eff ect on the deep water of 
pressure gradients transmitted fr om above wi ll be considerably reduced 
through redistribution of mass in the interior of the ocean, but with reason-
able values for the depth and for the total vertical density range there is 
always a considerable residual effect even in the homogeneous bottom layer. 
One must conclude that a changing pressure applied on a horizontal surface 
near the sea surface wi ll be felt also in the bottom water and thus must pro-
duce, at least temporaril y, sizeable stratospheric currents. 

It is obvious that this conclusion does not apply to cases of steady state 
motion in the ocean, since various fri ctional forces then have the opportunity 
to dissipate the kinetic energy of the strata ·pheric currents. However, the 
so-call ed permanent wind systems which actuate the superficial layers of 
the ocean are changing from day to day and fr om season to season. It is 
the author's definite opinion that these changing wind systems must pro-
duce deformations of the ocean surface and consequently horizontal pressure 
gradients which, in the li ght of the preceding analysis, necessarily must set 
also the deepest strata in motion. There is no justifi cation whatsoever for 
the point of view which pictures the ocean stratosphere as completely inert 
apart fr om the slow thermal circulation produced by the production of 
bottom water through cooling in the Antarctic. 
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SUMM ARY 

T he principal purpose of t li is investigati on is to study those changes in 
t he internal mass distribut ion which accompany the initial establi shment 
of oceanic current systems through wind stresses applied at the sea surface. 
Whenever surface water is set in mot ion through wind action, horizontal 
pressure gradients are establi shed in t he uppermost layers of the ocean . 
Surrounding and underl ying water masses which are not acted upon b~ the 
wind, wi ll be set in motion by these new pressures. If, as a fir st approxrma-
t ion, fri ctional forces are neglected outside the body of water which is 
directl y influenced by the wind, the displacements and final equili brium of 
the surrounding masses may be determined fr om the requirement that each 
individual element of water must retain its absolute vortici ty. T he final 
equilibrium thus determined is one of dynamic equili brium, i.e. characterized 
by steady motion. 

The total energy (potent ial and kinet ic) of t he fi nal equilibrium i nor-
mall y less than the initi al energy (kinet ic energy received fr om the wind). 
The diff erence goes into inert ia osci ll ations around the fin al equili brium 
state computed from the vorticity theorem ment ioned above. 

The specifi c results may be stated as foll ows : 

1. If , through wind action, an infini te strip of water in an ini tiall y motion-
less homogeneous ocean basin is set in motion in the direction of i own axis, 
the entire current fil ament wi ll be defl ected to the right of the clown t ream 
direct ion* as a result of the initiall y unbalanced Corioli s' force a ociated 
with its momentum. The sea surface will ri se along the right ed e, fall 
along the left edge, unti l a transversal pressure gradient (slope) i e tablished 
which exact ly balances the Corioli s' force. The rise (drop) of the ea 
surface in the environment of the current may be computed from the re-
quirement that each vert ical colu mn of water must conserYe it ab olute 
vorticity. 

2. The sum of the potential and kinet ic energy in thi equili brium tate 
is somewhat less than the initi al kinetic energy of the system (there is no 
potential energy in t he ini t ial state). The diff erence in energy goe into an 
inert ia oscill at ion with a period of twelve pendulum hours. A a result of 
this inertia oscill ation the defl ect ion of the current " i ll proceed beyond the 
equili brium positi on and then reverse direct ion . H o1'-eYer in a homoge-
neous ocean the fraction of energy stored in this inert ia oscill ati on i, smai 

3. If , through wind action, an infini te strip of water in the upper of two 
homogeneous layers is set in mot ion in t he direct ion of its 0 ,...-11 axis, a 
simil ar adjustment process occurs. While the fr ee surface ri ses alono- the 
ri ght edge, sinks along t he left edge of t he current , the internal bour:dar~· 

* On the northern hemisphere. 
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will be deformed in the opposite sense. If the lower layer is very deep it is 
permissible to assume that it wi ll be practicall y motionless also after com-
pleted adjustment. The ratio of the deformation of the free surface to that 
of the internal boundary then has the same value as the ratio of the diff er-
ence in density between the two layers to the density of the upper layer . 
In this case the total deflection of the current system is increased several 
times over the corresponding deflection in a homogeneous ocean. 

4. In such a double-layer ocean with a resting bottom layer the fraction 
of the initial energy which goes into inertia oscillati ons is many times larger 
than in a homogeneous ocean. 

5. The adju tment to equilibrium of the initiall y unbalanced current 
filament is in both cases accompanied by the development of counter 
currents in the environment. These counter currents are very weak and 
broad in the case of a homogeneous ocean but narrow and intense in the 
case of a double-layer ocean. 

6. The shear zones between the current and its environment are known 
to be dynamicall y unstable and should therefore have a tendency to break 
up into large-scale horizontal eddies (lateral turbulence). 

7. Since there is a much greater supply of energy avail able for vigorous 
inertia oscill ations in a double-l ayer ocean than in a homogeneous ocean, it 
is reasonable to assume that lateral turbulence must be more strongly 
developed in stratified than in homogeneous water; this conclusion strongly 
supports Parr's suggestion concerning the relation between lateral eddy 
viscosity and vertical stability. 

8. In a stratified ocean the momentum received from the wind wi ll be 
distributed over a shallow verti cal column, whereas it wi ll be spread over a 
much deeper column in homogeneous water. For this reason strong un-
balanced current components are more lik ely to occur in stratifi ed than in 
homogeneous water . This would tend to produce stronger inertia oscil-
lations, and hence presumably stronger lateral turbulence, in stratifi ed water 
than in homogeneous, again in agreement with the suggested relationship 
between lateral turbulence and vertical stabilit y. 

9. If the lower of the two layers in the ideali zed ocean referred to above 
has .a finite depth, the displacement of the upper unbalanced current towards 
its equilibrium position wi ll be accompanied by a transversal displacement 
of the lower layer in the opposite direction. This displacement below wi ll , 
as a result of the Corioli s' acceleration, lead to the development of a gradient 
current in the lower layer in the same direction as the initial current in the 
upper layer. Thus, although the internal boundary between the two layers 
is deformed in such a fashion as to counteract the pressure gradients asso-
ciated with the deformations of the free surface, it may be stated that it is 
normally impossible to superimpose a horizontal pressure gradient at the 
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ocean surface without having its eff ect temporarily transmitted all the way 
to the bottom layer. 

10. This result is further analyzed in the case of an ocean consisting of an 
upper, homogeneous layer and a lower stable layer with an initiall y linear 
density distribut ion. It is assumed that a prescribed horizontal pressure 
distribution (pert urbation pressure) is established in a geopotential surface 
wit hin the upper homogeneous layer. Assuming that each infinitesimal 
isopycnic layer in the stable water conserves its absolute vorti city, it is 
possible to determine t he final equilibrium state. It is found that sizeable 
gradient currents normall y must develop also next to the bottom. 

11. T he percentual rate at which a prescribed perturbation pressure at 
the surface is equali zed with increasing depth in an ocean basin of normal 
stabil ity depends upon the lateral dimensions of the superimposed perturba-
tion. A superimposed gradient current system in the upper homogeneous 
layer with a width of a few ki lometers will hardly be felt at the bottom of 
the stratifi ed layer (assumed to have a depth of 1800 m), but if the super-
imposed current has a width of between two and three hundred kilometers 
the horizontal pressure gradient at the bottom will still be about one half 
of the surface pressure gradient. 

12. If there is a deep layer of homogeneous water also below the stable 
layer the gradient currents next to the bottom will be further reduced, but 
it still appears that sizeable gradient currents must develop in the bottom 
water whenever the hori zontal pressure distribution in the homogeneous 
water near the surface changes over reasonably wide areas. 

13. The preceding conclusions regarding the motion of the bottom water 
do not apply to a perfectly steady state of motion in the ocean. H oweYer, 
since t he large atmospheric wind systems which drive the ocean circulation 
change from day to day and from season to season it is permissible to state 
with a reasonable degree of assurance, that it is entirely inappropriate to 
consider the homogeneous bottom water as inert beyond the slow thermal 
circulation maintained by antarctic cooling. 

14. I t is in part icular injustifi able to assume a priori that the n locity 
distribut ion within larger non-permanent current patterns (such as the 
larger of those eddies which form intermittently along the edges of the 
permanent current systems) may be computed on the basis that there is no 
motion in the deep water . 
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DISCUSSION 

LA TERAL MIX I NG AND VERTICAL STABILITY I N THE 
CARIBBEAN SEA REGION 

IN connection with studies of turbulence accompanying fluid motion in 
t he atmosphere and ocean a problem of some prominence concerns the 
relation between the magnitudes of lateral and vertical t urbulent compo-
nents ; an attempt has been made in two recent papers1 to show that lateral 
mixing along isopycnal surfaces in t he Caribbean Sea region is increa ed 
(wi t h an accompanying decrease in vertical t urbulence) when the vertical 
stabil i ty of the water column is increased. In support of this concept the 
qualitati ve relationship of hori zontal distribut ion of salinity (termed alini ty 
"streakiness") at three levels (sali nity maximum: 100- 150 meters depth; 
sali nity minimum: average depth 775 meters; 15° isotherm: 200-400 meters 
depth) in the Caribbean region to vertical stabil ity of the water column was 
considered, and it was concluded that the greater salinit y " treakine s" 
along the 15° isothermal sheet resul ted because its verti cal position in the 
water column was less stable than the posit ions either of the alinity maxima 
or sali nity minima, as a consequence of which lateral mixing would be 
relati vely less intense. No all owance appears to be giYen (in the papers 
referred to in footnote 1) for the possible eff ect of relatiYe change in alinity 
concentration produced by vert ical turbulence. 

Since this interpretation is contrary to that recently given for an inYe ti -
gation of t he same region2 it seems desirable, in order to aYoid po ible con-
fusion in the future, to summarize briefl y t he findings bearing on the 
problem of t he relationship between lateral tw-bulence and Yertical Yaria-
t ion of density. The basic data for both investigations (footnote 2 and 3) 
are the same (" At lantis" stati ons 1499 and 1510). I t is proposed to how 
by means of comparati ve stabili ty calculations in this area at the depth of 
the 15° isotherm and at the depth of the salini ty minimum concentration, 
that at the latter level the water instead of being n rt icall y more table 
actuall y possessed only a vert ical stabili ty of one fifth to one eYenth of 

l p ARR, A LBERT E IDE 

1936. On the probable relationship between verti cal stability and lateral mix-
ing processes. Jour. du Conseil. Vol. XI, No. 3, pp. 308-313. 

1937. A contribut ion to t he hydrography of the Caribbean and Cavman seas. 
Bull. Bingham Oceanographic Coll ection. Vol. , , Art. -!, 110 ·pp. 

' To be published in Papers in Physical Oceanography and l\leteorology under 
the t it le: Appli cation of t he distribution of mcygen to the physical oceanography of 
the Caribbean Sea region. Contri bution No. 112 from the " "oods H ole Oceano-
grapbfo Institut ion by H . R. Seiwell. 

(264) 
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that at the 15° isotherm. The second consideration involves the values of 
the second derivatives of the vertical salinity gradients at the levels con-
cerned, because if it is to be granted that an increased verti cal stabili ty 
damps the vertical turbulent component (assuming that other factors 
tending to create turbulence, such as current velocity, remain constant), 
it does not necessarily foll ow, unless the curvatures of the vertical gradients 
of transferable substances decrease proportionately, that the amount of 
vertical transfer due to turbulence would lik ewise decrease. Thus, that 
vertical transfer of sali nity does not appear to decrease inversely propor-
tional to vertical stability for the levels concerned is shown. 

At station 1499 the 15° isotherm was found at 260 meters depth; the 

density (crt) at this depth was 26.70. The mean density gradient(~~) 

taken over a distance of 100 meters above and below this depth is 5.9 X 
10-5 units of <rt per centimeter. The salin ity minimum (34.68 0/00) at this 
station occurred at 725 meters at which depth the density (crt) was 27.32. 

The mean density gradient.(~~ ) taken over a distance of 100 meters above 

and below this depth is 8.0 X 10-6 units of <rt per centimeter. Thus, the 

ratio of the density gradients, (Ll :t) / (Ll :i) , is 7.4, or the stabili ty 
Ll z 15° Ll z Sm,n 

at the depth of the 15° isotherm was more than seven times that at the depth 
of the salini ty minimum concentration. 

At station 1510 the 15° isotherm occurred at 290 meters depth; the 

. . Tl d . d. (Ll crt) density (crt) at this depth was 26.70. 1e mean ens1ty gra 1ent LlZ 

taken over a distance of 100 meters above and below this depth is 4.3 X 
10-5 units of <rt per centimeter. The salinit y minimum (34.74 0/00) at this 
station occurred at 750 meters at which depth the density was 27.36. The 

mean density gradient (~~ ) taken over a distance 100 meters above and 

below this depth is 8.5 X 10- 6 units of <rt per centimeter . Thus, the ratio of 

density gradients, (Ll :t) / (Ll crt) , is 5.1, or the stabili ty at depth of 
Ll Z 15° Ll Z s,.,. 

the 15° isotherm was more than five times that at the depth of the salinit y 
mm1mum. 

Thus, it appears that, as far as stations 1499 and 1510 are indicative of 
conditions in t he eastern Caribbean,3 the water column is verticall y more 

Lia, 
3 For this pmpose, estimation of stability by calculation of LiZ is suffici ently 

accurate for the depths concerned. However for accurate values the method of 
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stable (5 to 7 times) at t he dept h of t he 15° isotherm than at the depth of 
t he minimum salini t y concentration4 and not t he reverse as has been uti lized 
to i ll ust rate a relat ionship between lateral turbulence and vertical stabili ty 
(referred to in foot note 1). 

Consideration of the second derivati ves of the vertical salini ty gradients 
for the t hree levels concerned (determined from t he data for stations 1499 
and 1510) shows t hat for any given vertical t urbulent coeffi cien t the change 
in salinity concent ration per unit t ime will be greatest at the dept h of the 
salini ty maxima and least at the depth of the 15° isothermal sheet; in fact, 
at the former level a vert ical turbulent coeffi cient of approximately 1/50t h 
of that acting at t he latter level will produce the same time change in con-
cent ration. Thus : 

Salinity maximum: a
2

s = - 3.3 X 10- 11 g.g.-1 cm.-2 

av 
. a2s 

15° isotherm: - =7.0 X 10- 13 g.g.- 1 cm.- 2 

av 
Salinit y minimum: a

2

s = 10.0 X 10- 13 g.g.- 1 cm.-2 

av 
In the investigation of the Cari bbean Sea region (referred to in footnote 2) 
it was calculated that the time rate of change of salinit y by a lateral eddy 
diffusing coeffi cient of 106 C.G.S. units would, at mid depths, amount to 
only about four per cent of that observed. I t appears probable that lateral 
eddy components of a high order of magnitude do exist , but it ha not been 
possible, on the basis of existing information, to isolate the diffusion effects 
produced by the combined lateral and vertical eddy components and this, 
t ogether with information presented above, is taken as a basis for suggesting 
that no sat isfactory information is avail able fr om the Caribbean area to 
i ll ustrate that increased lateral diffu sion accompanies increased Yer tical 
stabilit y. 

H. R. S EIWELL, 

Hessel berg and Sverdrup (" Die Stabili tatsverhaltnisse des Seewassers bei vertikalen 
Verschiebungen," Bergens Museums Aarbok, 1914-15, Iv. 15) should be used. 

. C:,. cr, 
4 A calculat1on of the average values of - at depths of the 15° i otherm and at e:,.z 

depths of the sali nity minimum concentrati on , fo r the ent ire Caribbean region, gave 

as the average approximate stabili ty relati on hip : (t:,."') (t:,."') = 3.2. e:,.z 15° e:,.z min 
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I N reply to the foregoing, it wi ll be suffi cient to refer to the complete 
reconsideration and withdrawal of the use of the Eastern Caribbean Hydrog-
raphy as a possibl e illu stration of the relationship between verti cal stabili ty 
and lateral mixing, already previously publi shed in a recent report by the 
wTiter,1 which Seiwell completely omits from considerat ion and from men-
tion in his li st of references to the subject of his comments. 

A. E. P ARR 

1 A. E. Parr: Further Observations on the Hydrography of the Eastern Caribbean 
and Adj acent Atlantic Waters. Bul l. Bingham Oceanogr. Coll. Vol. VI, Art . 4, June 
1938. 


