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On the mutual adjustment of pressure and velocity
distributions in certain simple current systems, II

by C.-G. Rossby1

In a previous report (Rossby 1937) the author investigated certain changes in the mass
distribution which accompany the slow lateral diffusion of momentum in a straight parallel
current in an unlimited ocean of constant depth. The principal results of this investigation
may be stated as follows:

The main stream increases slowly in width (for large times (t) it is proportional to (t 1/4)
while the maximum velocity in the axis of the current gradually decreases (being propor-
tional to t−1/4 for large values of t). If no frictional losses occur at the bottom the total
absolute momentum of the current remains constant. The diffusion is accompanied by a
slight banking to the right of the down stream direction, in such a fashion that the difference
in height of the free surface between the right and the left edges of the current eventually
increases by about eight per cent. Weak counter currents develop on both sides of the main
stream as a result of the banking.

This analysis of the disintegration of a current system is supplemented in the present
article with a study of the mutual adjustment of mass and velocity distributions in a current
system which is gradually being built up by a prescribed wind system acting upon a portion
of the ocean surface. The problem will be analyzed in several stages, to bring out more
clearly the mechanics of the adjustment process. Frictional forces resulting from lateral
mixing will be neglected in the present study but will be included in a third article to be
published in a later issue of this journal.

We shall consider at first a homogeneous, incompressible ocean of constant depth Do,
which is at rest initially. Through wind action a certain amount of momentum is commu-
nicated to an infinite strip of the width 2a. The details of the mechanism of this transfer
are not important in the present connection. It is sufficient to say that the fluid column
between y = +a and y = −a is endowed with a certain mean velocity u in the positive
x-direction. The y-direction is horizontal, normal to the x-direction and points to the left

1. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Contribution No. 185.
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Figure 84. Schematic representation of the adjustment of mass distribution in a homogeneous ocean.
See text.

from the x-direction. The momentum relative to the surface of the earth per unit length of
current is then given by the expression 2ρu0aD0, ρ being the density of the water.

This momentum (M) is associated with a Coriolis’ force of the magnitude fM and directed
90◦ to the right of the momentum. In this expression f represents the Coriolis’ parameter.
As no balancing pressure gradient exists, the current will move to the right until enough of
a pressure gradient has been established to check further deflection. It is the purpose of this
first preliminary calculation to determine the characteristics of the final equilibrium state.

Frictional forces resulting from lateral mixing will be neglected outside the main stream.
Within the stream they are assumed to maintain a laterally constant axial velocity which,
however, as a result of the displacement of the current to the right must decrease during the
adjustment. Since, the lateral stresses merely bring about a redistribution, not a change, of
the absolute momentum, the permissibility of the above assumptions depends upon whether
a significant redistribution occurs within the interval required for the adjustment process
here considered. This question will be considered later.

The general character of the adjustment process is indicated by the cross section in Figure
84, which is drawn to facilitate the understanding of the analysis but does not correspond to
any actual numerical solution. If one assumes that the velocity distribution across the main
stream is constant after completed adjustment, it follows that the free surface in the final
equilibrium must have a constant slope within the current itself.

During the adjustment the individual fluid columns to the left of the main current shrink
vertically, stretch horizontally. Let y0 represent the initial position of a given fluid vertical
to the left of the main stream, y its final position. The equation of motion for the x-direction
(current axis) takes the form

(1)

there being no pressure gradient in the x-direction and no frictional force. Integration gives

u = f (y − yo) = −f (yo − y), (2)
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indicating that each fluid column on completed adjustment will move upstream at a speed
proportional to its total displacement to the right.

If the final depth of a certain column is indicated by D, its initial depth by D0, the equation
of continuity takes the form

Ddy = Dodyo (3)

or

(4)

After completed adjustment gradient motion prevails. Thus

(5)

Combination of (2), (4) and (5) gives

(6)

where

(7)

A similar differential equation may be obtained for D,

(8)

and this equation is a special case of a more general equation

(9)

valid for arbitrary quasistatic transformations of an originally motionless incompressible
fluid sheet of the initial depth D0.2 This last equation expresses the conservation of absolute
vorticity.

The length λ is a fundamental parameter in all quasistatic deformations. It is possible
to define such a length also for stratified and compressible media, such as the atmosphere.
In view of its great significance it seems appropriate to introduce a special name for this

2. The term quasistatic transformation is employed here in preference to the term adiabatic transformation
which is generally used in Mechanics to designate processes of this type but which would be ambiguous in
meteorology and also to some extent in oceanography (for a definition and discussion of adiabatic transformations
see for instance, A. Sommerfeld, Atombau und Spektrallinien, 3. Auflage, Vieweg, Braunschweig, 1922).
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quantity. Its magnitude is that of the radius of the inertia circle corresponding to the velocity
of long waves in a channel of the depthD0. It is proposed to nameλ the radius of deformation.

Integration of (6) gives

(10)

A and B being arbitrary constants of integration. Since the displacement y0 −y must vanish
at great distances to the left from the main current (large y-values), it follows that

A = 0 (11)

and thus

(12)

ε being the total displacement to the right, of the left edge of the main stream. In this formula
the y-coordinate is counted from the final position of the left edge of the main stream.

The depth of the free surface at the left edge of the current (Dl) is given by (4) and (12),

(13)

By a similar analysis it is possible to compute the rise of the free surface along the right
edge of the current for an equal displacement ε to the right. The result is

(14)

The slope of the free surface across the main stream is now given by 1
2a

(Dr − Dl). Thus,
since gradient wind must prevail in the final equilibrium, it follows that the final mean
velocity uf , of the main stream must be given by

(15)

The displacement of the main stream cannot have changed its absolute momentum. This
constancy is expressed by an equation derived previously (Rossby 1937, p. 19)

(16)



2020] Rossby: On the mutual adjustment of pressure and velocity distributions 21

the y-coordinate on both sides of the equation being counted from the final center of the
current.3 Since u0, uf , and D0 are constants, it follows that

(17)

The first integral on the left side gives the volume, which remains constant and equal to
2aD0. Thus

(18)

The appropriate expression for D is obtained from (13) and (14). It has the form

(19)

If this expression is substituted in (18) one finds, after some reductions,

(20)

It is easy to verify that the product ε
(
1 + a

3λ

)
represents the total displacement to the right

of the mass center of the current during the adjustment. If (15) and (20) are combined it
follows that

(21)

and, from (15) and (21),

(22)

3. It is of course possible to treat the adjustment of the main stream by the same exact method which was used
above in treating the environment. For the main stream, equation (2) changes into

u = uo − f (yo − y) (2a)

and the differential equation (6) into

(6a)

The solution of this differential equation is

(10a)

the two integrations constants A and B being needed to satisfy the requirement of continuity in displacement at
the two boundaries. The over-all method used above is, however, amply sufficient for our present needs.
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In middle latitudes (f = 10−4 sec.−1) the radius of deformation has a value of 1400 km.
for a basin of 2 km. depth. If the current has a width of 200 km. (a = 100 km.) and an initial
velocity of 50 cm. p. s. it follows that a displacement of one third of one kilometer would be
sufficient to establish the required balancing pressure gradient. The initial velocity would
be reduced by seven percent as a result of the deflection and the maximum counter current
velocity on both sides of the main stream would be about 3.3 cm. p. s.

By the time the main stream reaches its equilibrium position it has acquired a finite veloc-
ity to the right and must therefore continue its displacement beyond the equilibrium point
until an excessive pressure gradient develops which forces it back. An inertia oscillation
around the equilibrium position results. It is well known that the period of such an oscilla-
tion must be half the pendulum day. The main stream will therefore reach the equilibrium
position already in a few hours. From the rapidity of this adjustment it follows that large
unbalanced momenta never have time to accumulate. It is probably more correct to assume
that the momentum is added quasistatically, in such a fashion that each infinitesimal amount
of momentum leads to a practically instantaneous adjustment of the mass distribution. Since
a normal wind stress of, say, 1 dyne per cm.2 acting on top of a 2 km. deep water column
produces a mean momentum per unit mass of less than 0.5 cm. p.s. per day it would appear
that the assumption of quasistatic adjustment must be very nearly fulfilled. However, as
long as the addition of momentum takes place at a variable and finite rate, a certain fraction
of the energy communicated to the system will presumably always appear as an inertia
oscillation. The preceding result, that changes in the stress distribution on the ocean surface
necessarily must lead to inertia oscillations, was clearly recognized by Ekman in his early
studies of drift currents (Ekman 1905).

It is evident that while the frictional redistribution of momentum during the period of
one inertia oscillation may be quite negligible, the total time required for the building up,
through wind action, of a gradient current of the magnitude assumed above is so long that it
certainly would be utterly impermissible to neglect the diffusion of momentum during this
entire period.

It is next desired to investigate the effect of stratification on the process of mass adjust-
ment. A simple case will be analyzed to bring out the nature of the modification which has
to be made in the preceding analysis.

Figure 85 is a schematic representation of the adjustment process in a two-layer ocean,
the upper layer having the density ρ, the lower the density ρ′. The undisturbed thicknesses
of the two layers is D0 and D′

0. It is now assumed that an infinitely long strip of the upper
fluid, enclosed between the limits y0 = a and y0 = −a, is endowed with a velocity u0. A
deflection of the current results and continues until a balancing pressure gradient has been
established across the main stream.

The pressure gradients which develop in the upper layer during the adjustment must set
the lower homogeneous layer in motion. However, if the latter is very deep it is possible to
demonstrate that its displacements and final velocities must be fairly small. It is possible to
analyze exactly the adjustment of the lower layer using the method which was applied above
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Figure 85. Schematic representation of the adjustment of mass distribution in a double layer ocean.
See text.

to the environment of the main stream in the single-layer case. This will be done later on. As
a first approximation, however, it is sufficient to assume that the lower layer remains at rest;
thus the deep water displacements associated with deformations of the internal boundary
lead to negligibly small axial velocities. This restriction will be removed later.

If the bottom remains at rest it follows that

ρD + ρ′D′ = constant (23)

and consequently

(24)
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It is evident from (23) and (24) that the slope of the internal boundary is always proportional
and opposite to the slope of the free surface, which is given by the left side in (24). The
preceding analysis, including equations (2), (3) and (4), remains unchanged. The gradient
current equation (5) changes into

(25)

or, because of (24),

(26)

Thus, if one reduces the acceleration of gravity in the proportion ρ′ − ρ
ρ′ and substitutes

for g a value γ, defined by

(27)

all the previously derived results remain valid. The system is in every respect identical with
a single-layer ocean of the depth D and subject to an acceleration of gravity of the value
γ. The substitution (27) has one very important consequence. The radius of deformation,
defined in (7), is now given by

(28)

Assuming an upper homogeneous layer with an original depth D0 = 400 m, and assuming
a density discontinuity of 0.2 percent, it follows that

λ = 28km. (f = 10−4sec.−1).

The radius of deformation is thus reduced to 1
50 of its original value. Assuming the same

values for u and a as before, the deflection of the current will now be about 2 km. compared
with the previous value of 0.33 km. The reduction in the mean speed of the current due
to this deflection is greatly increased, the final axial velocity uf having a value of about
5.3 cm. p. s. and the counter currents are correspondingly increased to about 20 cm. p. s.
The radius of deformation measures that distance from either edge of the main stream in
which the counter current velocity has fallen off to the fraction 1

e
of its maximum value,

and this distance is now reduced to 1
50 of its previous value. Thus the adjustment of the

mass distribution will be accompanied by the development of strong and narrow counter
currents, while the corresponding currents in the homogeneous case will be very broad and
extremely weak.

The preceding results suggest that the adjustment of the mass distribution in a stratified
medium will be accompanied by a more intense development of inertia oscillations than the
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corresponding adjustment in a homogeneous medium. It is actually possible to compute the
energy available for inertia oscillations by forming the difference between the total energy
before and after adjustment. Such a calculation is easily made and clearly indicates that a
much larger fraction of the initial energy goes into the oscillating motion in the stratified
case than in the homogeneous.

It is found that the initial energy E0, given by the expression

E0 = ρaD0 · u2
0,

and the final energy Ef are related through the formula

(29a)

and thus the fraction of the initial energy available for inertia oscillations is given by

(29b)

This last expression is not quite correct, a small error resulting from the assumption that
the velocity of the main stream is constant laterally also in the final equilibrium state. This
error is not significant in the single layer case but may be of some consequence in a stratified
medium. A comparison of the two cases discussed above indicates that in the single-layer
ocean only 7% of the initial energy goes into inertia oscillations, whereas in the second case
the major portion of the initial energy (89%) must appear as an inertia oscillation.

Since most currents are built up through a fairly gradual addition of momentum the
numerical values obtained through the suggested application of the energy integral are
of small significance. Nevertheless, because of the variability of the surface stresses it
appears probable that vigorous inertia oscillations must develop in stratified media and
express themselves as a marked intensification of the large-scale horizontal turbulence
which must develop due to the dynamic instability of the shearing zones between the
current and its surrounding counter currents (Pekeris 1938). Such intensification would not
occur in homogeneous media. This tentative conclusion agrees well with Parr’s suggested
relationship between lateral mixing and vertical stability (Parr 1936).

The total amount of momentum received from the wind per unit time is distributed over
a much deeper column in the case of a single-layer homogeneous ocean than in the case
of stratified water. Thus the initial unbalanced velocity components will be stronger in
stratified than in homogeneous water and this fact would further favor the development of
lateral turbulence in stratified water.
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We shall next consider motions set up in the deeper of the two layers as a result of
displacements and mass adjustments in the upper layer. It is assumed that no tangential
stresses are transmitted through the boundary between the two strata. Originally the lower
layer is at rest and characterized by a constant depth D′

0.
During the adjustment process the internal boundary will be deformed. Since continuity

of mass must be preserved it follows that

D′dy ′ = D′
ody ′

o, (30)

y ′
0 and y ′ being the initial and final positions of a given fluid vertical.

The equation of motion for the x-direction is given by

(31)

or, after integration,

u′ = f (y ′ − y ′
0) = −f (y ′

0 − y ′). (32)

It will now be assumed that wind action or other processes have led to the establishment
of a known horizontal pressure gradient in the upper layer. The problem is to determine
the final velocity u′ in the lower layer for prescribed values of the gradient current u in the
upper layer.

It is of course possible to assume that an initially unbalanced current component exists
in a portion of the upper layer and to solve simultaneously the equations which describe the
adjustment processes in the two layers. In this case the adjustment of the mass distribution is
accomplished through a transversal circulation which, to an observer looking down stream,
takes place in a clock-wise sense (see Fig. 85). Such clock-wise circulations have been
observed in the California current during periods of acceleration and estimates of their
intensity have been made (Sverdrup 1938). An exact solution of a problem of this type will
be presented by Mr. H. Wexler and the author in a later issue of this journal. For the present
we shall restrict ourselves to the case of a prescribed pressure distribution, or gradient
current system, in the upper layer. If this new pressure distribution in the upper layer is
applied quasistatically the solution presented below represents the final equilibrium state.
If it is applied suddenly or built up at an irregular rate, inertia oscillations will appear, both
above and below, superimposed upon the equilibrium state here computed.

The depth of the upper layer is D. The height of the free surface is given by D + D′ and
thus

(33)

The gradient current equation for the lower layer takes the form

(34)
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or

(35)

A combination of (30), (32) and (35) gives

(36)

the radius of the deformation λ′ now being given by

(37)

If the superimposed gradient current u vanishes for y ′ = ±∞ the same must apply to
u′. It then follows from (36) that u′ becomes vanishingly small for very large values of λ′
(great depths of the lower layer).

The deformation of the internal boundary is easily computed from (30) and (32), com-
bined into the form

(38)

which is an expression for the conservation of absolute vorticity in the lower layer.
If it is assumed that the upper layer was at rest before the wind stresses responsible

for the gradient current u were applied, it follows that the distortion of the free surface,
h = D + D′ − D0 − D′

0, must vanish for large positive and negative values of y. Thus it
follows from (33) that u must satisfy the requirement

(33b)

If the superimposed current is symmetric with respect to y it further follows that one must
have

(33c)

One must furthermore assume that the deformation of the free surface took place in such a
fashion that no mass was added or subtracted. It follows that one must require that

(33d)

This last condition is satisfied if u is symmetric and satisfies the condition (33c).
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Figure 86. Example of two velocity distributions satisfying equation (36). See text.

Figure 87. Deformation of the internal boundary. See text.

Figure 86 represents two velocity distributions, u and u′, which satisfy equation (36).
The velocity distribution in the upper layer, supposedly established through wind action, is
given by

(39)

and the corresponding velocity distribution in the lower layer is then

(40)

In plotting the curves for u′
um

and u
um

it was assumed that β = 1
9 .

The deformation of the internal boundary is represented in Figure 87. It follows from
(38) that the deflections of the internal boundary will be antisymmetric with respect to y ′.
In the particular case here investigated the equation for the internal boundary is

(41)
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It is apparent from the solution presented above that the internal boundary adjusts itself so
as to counteract, in the lower layer, the horizontal pressure gradients transmitted downward
from the upper layer, but it is also evident that this compensation is very incomplete.

The preceding analysis raises several interesting questions. Most important of these is
the following: Will the effect of deformations of the free surface be felt to some extent
throughout the entire water column also in case of a continuous variation of density with
depth or will the dynamically created solenoids in the interior completely cancel the effect
of the surface pressure gradient? It is evident that the usefulness of "dynamic" velocity
calculations of non-permanent current patterns to a very large extent depends upon the
answer to this question.

We shall attempt to answer this question by a study of the following problem:
An ocean basin of uniform depth is at rest initially. The density decreases at a constant

rate upward, from the value ρb at the bottom to the value ρh at the height h0 above the
bottom. Above this stable layer there is a homogeneous layer of the density ρh Through
wind action, or in some other fashion, the free surface is deformed, and a corresponding
system of gradient currents set up in the homogeneous water. How do the deep layers react
to the new pressure gradients transmitted from above?

We shall assume that the deep water is made up of a very large number of layers of
infinitesimal thickness, each one limited above and below by a surface of constant density.
Thus each particular layer is enclosed between two isopycnic surfaces, ρ = constant and
ρ + δρ = constant. Within each layer the density may be considered constant and equal to the
mean density of the layer (ρ+ 1/2δρ). Each layer is horizontal before the deformation sets in
but is warped during the adjustment process. In the final equilibrium state horizontal gradient
flow prevails and the motion is thus parallel to the contour lines for that particular layer.

Now consider a chain of particles in one of these isopycnic layers. In the final stage its
circulation may be computed from the circulation theorem which, in this particular case,
takes the form

C = −f (A − Ao), (42)

A0 being the area enclosed by the projection of the chain on a level surface before the
deformation, A the corresponding area after the deformation. C is positive for cyclonic
circulation.

In the final state horizontal gradient motion prevails. Thus

(43)

δx and δy being the components of the horizontal projections of the line elements of the
chain. It follows from Stokes’ theorem that

(44)
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where ∂
∂x

· ∂
∂y

now represent derivatives with respect to x and y along a constant density
surface.

The right side of equation (42) can be written in the form

−f [
∫ ∫

δxδy −
∫ ∫

δxoδyo], (45)

the subscript 0 referring to the initial state. The equation of continuity gives

(46)

D0 and D representing the vertical thickness of an individual element before and after the
deformation. Thus

(47)

and consequently,

(48)

ζ is the vertical component of vorticity in the particular isopycnic sheet under study. In the
equation (48) ∂

∂x
and ∂

∂y
represent derivatives with to x and y along a surface of constant

density.
If z(x, y, ρ) represents the height of a given isopycnic surface after adjustment, zo(ρ) its

initial height, it follows that

(49)

and thus

(50)

If one introduces a new measure for the density, defined by

(51)

it follows that

zo = 0, z = 0, r = 0 for ρ = ρb (52)

zo = ho, z = h, r = 1 for ρ = ρh. (53)
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The assumption is now introduced that the initial vertical density distribution is linear.
Thus

zo = hor. (54)

Substitution in (50) gives

(55)

If one finally introduces the symbol Δ for the vertical departure of each isopycnic surface
from its initial position, the law for the conservation of vorticity reduces to the form

(56)

The hydrostatic equation must be transformed to include r instead of z as the independent
variable, since otherwise the law for the conservation of vorticity cannot be effectively
utilized. The pressure at a height z above the bottom is given by

(57)

H being the thickness of the superimposed homogeneous layer. Integration by parts gives

(58)

or

(59)

If n represents one of the horizontal coordinates (x or y) and the variation of p along a
constant density surface be computed one finds

(60)

The horizontal variation of any function p in the n-direction and the variation of p with n

along a constant density surface are connected through the formula

(61)
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If p represents the pressure the above formula reduces to

(62)

Thus

(63)

It follows that gradient current velocities may be computed from

(64)

(65)

Disregarding compressibility, the total percentual variation of density along a vertical in
the open sea is of the order of magnitude of 0.2 percent. Thus it is entirely permissible to
simplify the above equations by setting

(66)

Since z0 is independent of x and y one finally obtains

(67)

(68)

and, for the vorticity,

(69)

The vertical variation of vorticity is obtained from (69) through differentiation. The result
is

(70)

Eliminating ζ between (56) and (70) one obtains

(71)
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There must be continuity in velocity and consequently also in vorticity at the bound-
ary between the homogeneous and the stable water. It follows that ζ is prescribed for the
upper boundary (r = 1). At the bottom Δ = 0. Thus there is one solution, and one only,
which satisfies the requirements of the original problem and the fundamental differential
equation (71).

In the case of a parallel current system the preceding equations take a very simple form.
It follows from (68) that

(72)

and from (56) that

(73)

If one introduces the radius of deformation λ, defined by

(74)

it follows that

(75)

(76)

Thus U and Z are conjugate functions, satisfying the equations

(77)

The boundary conditions are:

Z = 0 for r = 0. (78)

U prescribed for r = 1. (79)

The rate at which the current velocity decreases downward is well illustrated by the
following case:

The superimposed velocity in the homogeneous layer is given by

uhom = um cos kη (80)

This represents a system of parallel currents of alternating direction, the “wave-length” L

being given by

(81)



34 Journal of Marine Research [78, 1

The corresponding velocity distribution in the interior is given by

(82)

and the deformation of the individual density surfaces may be computed from

(83)

The velocity at the bottom (ub) is given by

(84)

and the maximum bottom velocity by

(85)

Thus the effect of the superimposed velocity gradients will extend to greater depths or,
which is the same, be more marked at the same depth for a longer “wave-length” L than
for a shorter.

The ratio (85) between the maximum bottom velocity and the maximum gradient current
velocity has been computed for different values of n = L

λ
. Assuming h0 = 1800 m.,

2κ: = 2 · 10−3, g = 103 cm. sec.−2, f = 10−4 sec.−1, one finds

λ = 60 km.

The resulting values are given in the line marked K0
h0

= 0 in Table I.
It is evident from these values that the redistribution of mass within a single 1800 m.

deep layer of uniform stability is insufficient to reduce a superimposed horizontal surface
pressure gradient to zero at the bottom. It appears that for a current width of 240 km.
(L = 480 km., n = 8) the maximum bottom velocity will still be 75% of the maximum
gradient velocity of the surface layer. If the total density range and the depth of the stable
layer are doubled the value of λ is doubled. The appropriate value of n is reduced to 4, but
the maximum bottom velocity is still 40% of the maximum surface velocity. There is no
reason to expect such high velocities near the bottom and thus the question concerning the
equalization of the horizontal pressure gradients at great depths remains open.

In a further effort to settle this question we shall finally investigate if the presence of
another, deep homogeneous layer below the stable water plays an important role in the
cancellation of surface pressure gradients through redistribution of mass. It will be assumed
that the deep water has a constant density ρb and an undisturbed depth K0. Then, if Δ0
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Table 1.

�����
K0
h0

n
0.5 1 2 4 8 16

0 .0000 .0037 .0862 .399 .755 .928
0.5 .0000 .0009 .0337 .232 .605 .855
1 .0000 .0005 .0277 .162 .499 .809
2 .0000 .0003 .0119 .103 .372 .774
∞ 0 0 0 0 0 0

represents the deformation of the surface separating the lower homogeneous layer from the
stable water above, it follows from the conservation of vorticity in the lower layer and from
the requirement of continuity in the velocity distribution that

(88)

or,

(89)

The solution corresponding to the boundary condition (80) and the revised boundary
condition (89) is

(90)

and

(91)

For K0 = 0 these equations become identical with (82) and (83) and for K0 → ∞ the
solution reduces to

(92)

(93)

The relation between the maximum velocity in the homogeneous bottom layer and the
maximum velocity in the homogeneous surface layer is now obtained by setting r = 0 in
(90). The result is
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(94)

For Ko = 0 this formula reduces to the one derived previously (85) and for K0 → ∞ the
ratio becomes zero, i.e. the bottom layer will then be at rest. For an initial depth of the lower
homogeneous layer of 1800 m. and for the same value of n as before (n = 8, L = 480 km.)
the maximum bottom velocity will still be 50% of the maximum gradient velocity in the
upper layer.

The preceding analysis indicates that the effect on the deep water of pressure gradients
transmitted from above will be considerably reduced through redistribution of mass in the
interior of the ocean, but with reasonable values for the depth and for the total vertical density
range there is always a considerable residual effect even in the homogeneous bottom layer.
One must conclude that a changing pressure applied on a horizontal surface near the sea
surface will be felt also in the bottom water and thus must produce, at least temporarily,
sizeable stratospheric currents.

It is obvious that this conclusion does not apply to cases of steady state motion in the ocean,
since various frictional forces then have the opportunity to dissipate the kinetic energy of the
stratospheric currents. However, the so-called permanent wind systems which actuate the
superficial layers of the ocean are changing from day to day and from season to season. It is
the author’s definite opinion that these changing wind systems must produce deformations
of the ocean surface and consequently horizontal pressure gradients which, in the light
of the preceding analysis, necessarily must set also the deepest strata in motion. There is
no justification whatsoever for the point of view which pictures the ocean stratosphere as
completely inert apart from the slow thermal circulation produced by the production of
bottom water through cooling in the Antarctic.

Summary

The principal purpose of this investigation is to study those changes in the internal mass
distribution which accompany the initial establishment of oceanic current systems through
wind stresses applied at the sea surface. Whenever surface water is set in motion through
wind action, horizontal pressure gradients are established in the uppermost layers of the
ocean. Surrounding and underlying water masses which are not acted upon by the wind,
will be set in motion by these new pressures. If, as a first approximation, frictional forces
are neglected outside the body of water which is directly influenced by the wind, the dis-
placements and final equilibrium of the surrounding masses may be determined from the
requirement that each individual element of water must retain its absolute vorticity. The final
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equilibrium thus determined is one of dynamic equilibrium, i.e. characterized by steady
motion.

The total energy (potential and kinetic) of the final equilibrium is normally less than the
initial energy (kinetic energy received from the wind). The difference goes into inertia oscil-
lations around the final equilibrium state computed from the vorticity theorem mentioned
above.

The specific results maybe stated as follows:

1. If, through wind action, an infinite strip of water in an initially motionless homoge-
neous ocean basin is set in motion in the direction of its own axis, the entire current
filament will be deflected to the right of the downstream direction4 as a result of the
initially unbalanced Coriolis’ force associated with its momentum. The sea surface
will rise along the right edge, fall along the left edge, until a transversal pressure
gradient (slope) is established which exactly balances the Coriolis’ force. The rise
(drop) of the sea surface in the environment of the current may be computed from the
requirement that each vertical column of water must conserve its absolute vorticity.

2. The sum of the potential and kinetic energy in this equilibrium state is somewhat less
than the initial kinetic energy of the system (there is no potential energy in the initial
state). The difference in energy goes into an inertia oscillation with a period of twelve
pendulum hours. As a result of this inertia oscillation the deflection of the current
will proceed beyond the equilibrium position and then reverse direction. However,
in a homogeneous ocean the fraction of energy stored in this inertia oscillation is
small.

3. If, through wind action, an infinite strip of water in the upper of two homogeneous
layers is set in motion in the direction of its own axis, a similar adjustment process
occurs. While the free surface rises along the right edge, sinks along the left edge of
the current, the internal boundary will be deformed in the opposite sense. If the lower
layer is very deep it is permissible to assume that it will be practically motionless
also after completed adjustment. The ratio of the deformation of the free surface to
that of the internal boundary then has the same value as the ratio of the difference in
density between the two layers to the density of the upper layer. In this case the total
deflection of the current system is increased several times over the corresponding
deflection in a homogeneous ocean.

4. In such a double-layer ocean with a resting bottom layer the fraction of the initial
energy which goes into inertia oscillations is many times larger than in a homoge-
neous ocean.

5. The adjustment to equilibrium of the initially unbalanced current filament is in both
cases accompanied by the development of counter currents in the environment. These

4. On the northern hemisphere.
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counter currents are very weak and broad in the case of a homogeneous ocean but
narrow and intense in the case of a double-layer ocean.

6. The shear zones between the current and its environment are known to be dynamically
unstable and should therefore have a tendency to break up into large-scale horizontal
eddies (lateral turbulence).

7. Since there is a much greater supply of energy available for vigorous inertia oscil-
lations in a double-layer ocean than in a homogeneous ocean, it is reasonable to
assume that lateral turbulence must be more strongly developed in stratified than in
homogeneous water; this conclusion strongly supports Parr ’s suggestion concerning
the relation between lateral eddy viscosity and vertical stability.

8. In a stratified ocean the momentum received from the wind will be distributed over
a shallow vertical column, whereas it will be spread over a much deeper column
in homogeneous water. For this reason strong unbalanced current components are
more likely to occur in stratified than in homogeneous water. This would tend to
produce stronger inertia oscillations, and hence presumably stronger lateral turbu-
lence, in stratified water than in homogeneous, again in agreement with the suggested
relationship between lateral turbulence and vertical stability.

9. If the lower of the two layers in the idealized ocean referred to above has a finite
depth, the displacement of the upper unbalanced current towards its equilibrium
position will be accompanied by a transversal displacement of the lower layer in
the opposite direction. This displacement below will, as a result of the Coriolis’
acceleration, lead to the development of a gradient current in the lower layer in the
same direction as the initial current in the upper layer. Thus, although the internal
boundary between the two layers is deformed in such a fashion as to counteract the
pressure gradients associated with the deformations of the free surface, it may be
stated that it is normally impossible to superimpose a horizontal pressure gradient
at the ocean surface without having its effect temporarily transmitted all the way to
the bottom layer.

10. This result is further analyzed in the case of an ocean consisting of an upper, homo-
geneous layer and a lower stable layer with an initially linear density distribution.
It is assumed that a prescribed horizontal pressure distribution (perturbation pres-
sure) is established in a geopotential surface within the upper homogeneous layer.
Assuming that each infinitesimal isopycnic layer in the stable water conserves its
absolute vorticity, it is possible to determine the final equilibrium state. It is found
that sizeable gradient currents normally must develop also next to the bottom.

11. The percentual rate at which a prescribed perturbation pressure at the surface is
equalized with increasing depth in an ocean basin of normal stability depends upon
the lateral dimensions of the superimposed perturbation. A superimposed gradient
current system in the upper homogeneous layer with a width of a few kilometers
will hardly be felt at the bottom of the stratified layer (assumed to have a depth of
1 8 00 m), but if the superimposed current has a width of between two and three
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hundred kilometers the horizontal pressure gradient at the bottom will still be about
one half of the surface pressure gradient.

12. If there is a deep layer of homogeneous water also below the stable layer the gradient
currents next to the bottom will be further reduced, but it still appears that sizeable
gradient currents must develop in the bottom water whenever the horizontal pressure
distribution in the homogeneous water near the surface changes over reasonably wide
areas.

13. The preceding conclusions regarding the motion of the bottom water do not apply to
a perfectly steady state of motion in the ocean. However, since the large atmospheric
wind systems which drive the ocean circulation change from day to day and from
season to season it is permissible to state with a reasonable degree of assurance,
that it is entirely inappropriate to consider the homogeneous bottom water as inert
beyond the slow thermal circulation maintained by antarctic cooling.

14. It is in particular injustifiable to assume à priori that the velocity distribution within
larger non-permanent current patterns (such as the larger of those eddies which form
intermittently along the edges of the permanent current systems) may be computed
on the basis is that there is no motion in the deep water.
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