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Urea uptake and urease activity in the Chesapeake Bay

by Caroline M. Solomon1,2

ABSTRACT
The importance of urea in supplying the nitrogen (N) required by planktonic communities has

long been recognized, notably by James J. McCarthy in studies as early as the 1970s. Utilization
of urea involves a two-step enzymatic process in phytoplankton, with urea first entering the cell via
transport (i.e., urea uptake), followed by the conversion of urea into ammonium by the enzyme urease.
This article describes a series of field observations and experiments conducted in the Chesapeake
Bay, USA, from 2001 through 2018, aimed at understanding the relationship between urea uptake
and urease activity and the role of environmental factors on that relationship. Principal component
analysis revealed a few patterns. Urea uptake, for example, was consistently positively related to
combined variables that included urea concentrations. Similarly, urease activity was consistently
positively related to combined variables that included temperature. Contrary to findings in culture
studies, however, relationships with environmental factors within different phytoplankton taxa in
the field were not clear. This suggests that factors other than those examined may be involved in
the regulation of urea uptake and urease activity. New insights into the role of the urea cycle in
phytoplankton nitrogen dynamics suggest that the regulation of urease may not be directly impacted
by environmental factors, but indirectly regulated by different metabolic pathways responding to
nutrient availability, light, and temperature conditions.

Keywords: Urea, urea uptake, urease, environmental factors

1. Introduction

James J. McCarthy was a pioneer in recognizing the importance of urea utilization in
meeting the nitrogen (N) demand of phytoplankton and bacteria (McCarthy 1972a, 1972b;
McCarthy, Taylor, and Taft 1977). The work of many in more recent times (Glibert et al.
2006; Solomon, Alexander, and Glibert 2007; Solomon and Glibert 2008; Solomon et al.
2010; Belisle et al. 2016; Morando and Capone 2018) owes a debt to McCarthy’s early
insights in the contribution of urea to the total nitrogen (N) pool and how N-uptake rates
reflect the relative availability of each N form (NO−

3 , NH+
4 , and urea).

Traditionally, rates of urea uptake have served as a means to measure urea utilization rates.
The urea utilization pathway (sensu acquisition; Berges and Mulholland 2008) in microbes
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involves first the transport of urea into the cell via various urea transporters, such as URT
and DUR3 (i.e., urea uptake), and then the accumulation of urea in the cell before being
converted to NH+

4 and CO2, most commonly by the enzyme urease (reviewed in Solomon
et al. 2010). The NH+

4 produced is then assimilated via the glutamine synthetase/glutamate
(GS/GOGAT) pathway (Capone 2000; Mulholland and Lomas 2008). Rates of urea uptake
are often reported to comprise close to or more than 50% of total N uptake in coastal regions
around the world (reviewed in Kudela and Cochlan 2000; Mulholland and Lomas 2008),
suggesting the importance of urea in N dynamics in phytoplankton.

McCarthy was among the first to observe that urea uptake may be regulated by the pres-
ence of NO−

3 or NH+
4 (Horrigan and McCarthy 1982). Urea uptake rates of phytoplankton

grown in culture under N-starved and/or urea-replete conditions decrease after the addition
of NH+

4 and/or NO−
3 to cultures (Rees and Syrett 1979; Lund 1987; Lomas 2004; Jauzein

et al. 2008a, 2008b; Lee et al. 2018) or are lower when grown on NH+
4 or NO3 as the sole N

source (Lomas 2004). Inhibition of urea uptake by NH+
4 can occur within hours and can be

up to 84% in diatoms such as Phaeodactylum tricornutum and Skeletonema costatum (Lund
1987; Molloy and Syrett 1988). In natural phytoplankton communities, urea uptake rates
can be inversely related to ambient NH+

4 concentrations (Tamminen and Irmisch 1996).
Urea uptake rates also vary among different phytoplankton taxa. McCarthy examined

35 species of phytoplankton for their capacity to utilize urea as part of his dissertation work
(McCarthy 1971). He later measured urea uptake in seven clones of neritic diatoms that
had different abilities to utilize urea (McCarthy 1972a). Although diatoms can utilize urea,
higher urea uptake rates have since been observed during blooms of both dinoflagellates
and cyanobacteria than of other phytoplankton taxa (Kudela and Cochlan 2000; Collos et al.
2004; Glibert et al. 2004, 2006; Belisle et al. 2016).

The ability to examine relationships between urea utilization and environmental factors
within different phytoplankton taxa has been fostered by continual improvements in various
methods. McCarthy (1970) was an early leader who developed the protocol to measure urea
concentrations that involved using urease. This method was complicated by temperature
sensitivity of the enzyme. A more direct determination of urea in field samples, including
saltwater samples, was first tested by Price and Harrison (1987) and further developed by
Revilla, Alexander, and Glibert (2005) resulting in removal of the temperature effects. This
protocol was later optimized by Chen et al. (2015) to measure trace levels of urea in the
ocean.

Although McCarthy (1970) used urease to measure urea concentrations, he did not mea-
sure urease activity in vivo. Peers, Milligan, and Harrison (2000) developed a protocol to
measure urease activity that worked well in laboratory cultures at constant temperatures but
that was not able to detect the smaller changes in NH+

4 that typify field samples. Solomon,
Alexander, and Glibert (2007) modified the method to remove high background levels of
NH+

4 and recommended filtering a minimum amount of chlorophyll a (Chl a) on GF/F fil-
ters to reduce inhibitors of urease that may be present in cells. There is now promise in the
DNA stable isotope probing method that can trace the utilization of urea into microbial cells
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(Wawrik, Callaghan, and Bronk 2009; Connelly et al. 2014; Morando and Capone 2018).
At present this method does not capture all taxonomic groups such as dinoflagellates, which
may be major consumers of urea, because of the complexity of their genomes (Solomon
et al. 2010; Jing et al. 2017; Morando and Capone 2018).

A few recent studies have used measurements of urease activity as a proxy for urea
utilization rates (Peers, Milligan, and Harrison 2000; Fan et al. 2003; Lomas 2004) following
earlier work by others (Leftley and Syrett 1973; Bekheet and Syrett 1977). Urease activity
rates have been measured in a few phytoplankton species (Oliveria and Anita 1986; Collier,
Brahamsha, and Palenik 1999; Dyhrman and Anderson 2003; Fan et al. 2003; Lomas 2004;
Solomon and Glibert 2008) and in few natural communities (Dyhrman and Anderson 2003;
Glibert et al. 2004; Heil et al. 2007; Belisle et al. 2016; Table 1). Little is understood about
how rates of urease activity and urea utilization compare and which rate is a more accurate
reflection of urea use by phytoplankton and bacteria.

There appear to be only two field studies that have simultaneously measured both urea
uptake and urease activity (Glibert et al. 2004; Heil et al. 2007). Often urea uptake rates
are measured in conjunction with NO−

3 and NH+
4 uptake rates but are not connected with

enzymatic activity (McCarthy 1972a, 1972b; McCarthy, Taylor, and Taft 1977; Kristiansen
1983; Kokkinakis and Wheeler 1987; Twomey, Piehler, and Pearl 2005). Rates of ure-
ase activity are most frequently reported as specific activity (fmol-N cell−1 h−1, μmol-N
Chl a−1 h−1), not as bulk measurement units (μmol-N L−1 h−1) in which urea uptake rates
are often reported (Table 1). Unless Chl a concentrations or cell numbers are available, the
differing units adds complexity to the comparison of the two rates.

Before more was understood about the role of the urea cycle (e.g., Allen et al. 2011;
Bender, Parker, and Armbrust 2012), it was suggested that there might be some similarities
in factors that regulate urea uptake and urease activity. Like urea uptake, urease activity can
be inversely correlated with inorganic N and positively correlated with organic N (Solomon
2006; Glibert et al. 2004; Heil et al. 2007). Similarly, urease activity rates were also shown
to be higher when NO−

3 and NH+
4 concentrations were low during a bloom of the dinoflag-

ellate Alexandrium sp., compared with conditions prior to the bloom in the western Gulf of
Maine (Dyhrman and Anderson 2003). Higher rates of urease activity were also observed
in a bloom of the cyanobacterium Synechococcus elongatus in Barnes Key in Florida Bay
compared with nearby areas that had higher Dissolved Inorganic Nitrogen (DIN) concen-
trations (Glibert et al. 2004). On the West Florida Shelf, Heil et al. (2007) found the highest
urease activity at the mouth of the Peace and Shark Rivers where urea and Dissolved Organic
Nitrogen (DON) levels were higher than offshore sites (Table 1).

Urease activity also appears to be related to the taxonomic composition of the phytoplank-
ton community. For example, higher urease activity rates have been observed during blooms
of both dinoflagellates and cyanobacteria compared with other phytoplankton (Glibert et al.
2004, 2006; Belisle et al. 2016). Urease activity rates in a dinoflagellate culture (Proro-
centrum minimum) were observed to be higher on a per cell basis than in a diatom and
a pelagophyte culture (Fan et al. 2003). In a bloom of P . minimum in the Corsica River,
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Maryland, urease activity rates were fourfold higher than outside the bloom (Salerno 2005).
On the West Florida Shelf, regions with high urease activity were dominated by dinoflag-
ellates, including Karenia brevis, and cyanobacteria as opposed to southern regions on the
shelf with lower urease activity and a higher percentage of diatoms in the phytoplankton
community (Heil et al. 2007). Because of similar behaviors between urea uptake and urease
activity, it would be expected that both are regulated by the same environmental factors in
the same phytoplankton species.

If urea uptake and urease activity are tightly coupled, rates would be expected to follow
gradients of NO−

3 and NH+
4 that exist in coastal ecosystems (Antia, Harrison, and Oliveria

1991; Kirchman 2000). Gradients in Chesapeake Bay and its tributaries provide an ideal
location to test this relationship. If particular phytoplankton species are major users of
urea, urea uptake and urease activity would be expected to also vary with phytoplankton
community composition. To test these hypotheses, temperature, N availability (NO3, NH+

4 ,
and urea concentrations), phytoplankton composition, urea uptake, and urease activity in
these coastal ecosystems were measured and compared.

2. Materials and methods

a. Sites

Freshwater flow into the Chesapeake Bay establishes a gradient in N availability (Fisher
et al. 1992; Glibert et al. 1995; Bronk et al. 1998) and plankton community structure (Adolf
et al. 2006). The upper reaches of the estuary are dominated by oxidized forms of N (NO−

3
and NO−

2 ; Fisher et al. 1992; Kemp et al. 2005), and diatoms are abundant throughout the
year (Adolf et al. 2006). Reduced forms such as NH+

4 , urea, and DON become progressively
more important from the upper to the lower parts of the estuary (Glibert et al. 1995; Bronk
et al. 1998) where summer dinoflagellate and cyanobacterial blooms often occur (Adolf
et al. 2006).

Samples were collected from three stations along the main stem of the Chesapeake Bay
in the spring, summer, and fall from 2001 to 2004, with the exception of one station (Mid
Bay), which was only sampled in summer of 2003 (Fig. 1a). The first station was in the
upper reaches of the bay (Upper Bay; 39.34◦ N, 76.18◦ W), the second site was in the
middle of the bay (Mid Bay; 38.56◦ N, 76.44◦ W), and the third site was near the mouth of
the bay (Lower Bay; 37.26◦ N, 76.15◦ W).

Samples were also collected from two tributaries of Chesapeake Bay, the Choptank
and Anacostia Rivers. The Choptank River has been impacted by anthropogenic activity,
especially by N inputs from agriculture (Fig. 1c; Fisher et al. 1988, 2006; Staver et al. 1996).
The predominately agricultural region of the Choptank River watershed produces corn,
soybeans, wheat, fruit, and vegetables (Goel, McConnell, and Torrents 2005; Fisher et al.
2006). Total N concentrations in the river are strongly correlated with freshwater discharge
through groundwater (Staver et al. 1996) and peak twice a year in late fall or winter and
late spring (Fisher et al. 1988; Whitall et al. 2010). Groundwater supplies mostly NO−

3 ,
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Figure 1. Sampling sites throughout the Chesapeake Bay. (a) Locations of sampling sites in the
Chesapeake Bay: Upper Bay, Mid Bay, and Lower Bay and the general locations of the Anacostia
and Choptank Rivers. (b) Three sampling sites on the Anacostia River: Upper Anacostia, Middle
Anacostia, and Lower Anacostia. (c) Two sampling sites on the Choptank River: Upper Choptank
and Lower Choptank.

which has been increasing annually since 1980, possibly because of lags in leaching from
agricultural lands enriched with N-based fertilizers (Fisher et al. 1988; Hively et al. 2011).
On average, NH+

4 represents a much smaller portion of the total N pool than NO−
3 (4%;

Fisher et al., 1988, 2006). Samples were collected from two sites in the Choptank River
in April, July, or August and October from 2001 to 2004. Additional sampling was done
during February (2002 and 2003), June (2002–2004), September (2002), and December
(2001 and 2003). The first site was located downstream of the confluence of the Tuckahoe
and Choptank Rivers (Upper Choptank), and the second site was located near the mouth
of the river where it enters the Chesapeake Bay (Lower Choptank). Water was collected
from the near surface and the near bottom using a diaphragm pump to minimize damage to
plankton. Water was stored in acid-washed (with 10% HCl and repeated deionized water
washes) Nalgene carboys for transport to the lab (<1 h) for processing.

The tidal freshwater Anacostia River flows through Washington, D.C., to the Potomac
River, one of the major tributaries of the Chesapeake Bay (Fig. 1b). The urban Anacostia
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River is a sewage-influenced ecosystem with varying anthropogenic land uses (Solomon,
Jackson, and Glibert 2019). With a relatively small watershed (456 km2), the width of the
Anacostia River varies from 60 to 500 m, with a minimum depth of 1.2 m near Bladensburg
Water Park to a maximum depth of 5.6 m near the confluence of the Potomac River (Behm,
Buckley, and Schultz 2003). The volume of the Anacostia River at mean tide is approxi-
mately 1 × 1010 L (Behm, Buckley, and Schultz 2003). The Anacostia River is slow moving,
with an average water residence time of 23–28 days, but increases to 2–3 months during
extreme low-flow conditions (Metropolitan Washington Council of Governments 2009).
Samples were collected from the surface via a bucket at low tide at three sites along the
Anacostia River, starting at Bladensburg Water Park (Bladensburg, MD) and ending near
where the Anacostia meets the Potomac River biweekly from March to November during
2013–2018 in coordination with the Anacostia Riverkeeper.

b. Environmental factors

Salinity, dissolved oxygen, and temperature data were collected by a YSI Pro 2030
probe in the Anacostia River, a YSI 85 probe for the Choptank River, and by a Seabird
911 CTD (conductivity-temperature-depth) on a General Oceanic 1015 rosette aboard the
R/V Cape Henlopen in the Chesapesake Bay. Yearly stream flow data into the Anacostia,
Choptank, and Chesapeake Bay were obtained from the U.S. Geological Survey (USGS;
https://waterdata.usgs.gov) and were converted from ft.3 s−1 to m3 s−1. Data for the
Anacostia River were obtained from USGS 01650500 near Colesville, MD; for Choptank
River, from USGS 01491000 at Greensboro, MD; and for Chesapeake Bay, from compu-
tations of stream flow measurements from the Susquehanna, Potomac, and James Rivers
(https://www.usgs.gov/centers/cba).

For nutrient analyses, sample water from each site was filtered through precombusted
GF/F filters (450◦C for 1 h) into acid-washed bottles and then frozen for later determination
of nutrients in the laboratory. For samples from the Choptank River and Chesapeake Bay,
concentrations of NO−

3 , NO−
2 , NH+

4 , and PO3−
4 (DIP, Dissolved Inorganic Phosphate) were

determined with a Technicon Autoanalyzer II (Lane et al. 2000). For samples from the
Anacostia, concentrations of NO−

3 were analyzed according to the vanadium (II) reduction
method (Miranda, Espey, and Wink 2001; Doane and Horwáth 2003), and NH+

4 by the
method of Parsons, Maita, and Lalli (1984). Urea concentrations were measured by the
urease method described by Parsons, Maita, and Lalli (1984) until April 2004. Samples
taken afterward (the rest of 2004 for Choptank and Chesapeake Bay samples in addition
to the Anacostia samples) were measured by the diacetylmonoxime method, which had
a smaller salt interference than the urease method (Mulvenna and Savidge 1992; Revilla,
Alexander, and Glibert 2005).

Phytoplankton composition and biomass were determined via Chl a and pigment anal-
yses. Sample water was filtered through precombusted GF/F filters (450◦C for 1 h),
and the filters were immediately frozen (−20◦C). Once back in the laboratory, samples
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were immediately transferred to an −80◦C freezer until analysis. Chl a samples were
analyzed according to Parsons, Maita, and Lalli (1984), using a 10-AU Turner Designs
flourometer. Pigment analyses was conducted according to van Heukelem et al. (1994)
and van Heukelem and Thomas (2001) using a Hewlett Packard high-performance liq-
uid chromatograph (Model 110) system. Phytoplankton community composition was
characterized by using pigment ratios; the ratio of fucoxanthin:Chl a was used as
an indicator of diatoms, and zeaxanthin:Chl a, Chl b:Chl a, and alloxanthin:Chl a

were used as measures of cyanobacteria, chlorophytes, and cryptophytes, respectively
(Jeffrey and Wright 1994; Jeffrey and Vesk 1997; Glibert et al. 2004). For the Chesa-
peake Bay stations, phytoplankton community composition analysis was supplemented by
microscopy of water samples preserved in Lugol’s solution, 4% glutaraldehyde, or 2%
formalin.

c. Biochemical processes

Samples for whole water measurement of both urea uptake and urease activity samples
were collected from all sites. The station water was filtered through precombusted GF/F
filters (450◦C for 1 h). Urea uptake rates were determined using 15N tracer techniques
(Glibert and Capone 1993). For the Anacostia samples, incubations were conducted in
100 mL acid-washed polycarbonate bottles with 0.5 μM 15N-urea (resulting in an atom %
enrichment of 6% to 100%) and incubated on a windowsill for 30 min. For the Choptank and
Chesapeake Bay samples, incubations were conducted in 1 L acid-washed polycarbonate
bottles with 0.5 μM 15N-urea (resulting in atom % enrichment of 13.1% to 100%) under
60% natural irradiance using neutral-density screening for 30 min. After the incubations,
samples were filtered onto precombusted GF/F filters and immediately frozen. Samples were
dried at 50◦C, packed into tin boats, and analyzed on either a SerCon mass spectrometer or
a Carlo Erba 1110 Elemental Analyzer coupled to a Thermo Delta V IRMS (isotope ratio
mass spectrometry).

For urease activity, particulate matter was collected immediately onto filters in a similar
fashion as for the urea uptake samples, and the filters were frozen in liquid N2 until analysis.
Samples from the Chesapeake Bay and the Choptank River were analyzed for urease activity
within 1 week of sampling using the method of Peers, Milligan, and Harrison (2000) as
modified by Fan et al. (2003). Beginning in August 2003, urease activity samples were
analyzed using an optimized assay for field samples (Solomon, Alexander, and Glibert
2007) that involved grinding the filter samples in buffers to extract urease. Samples were then
exposed to saturating levels of urea (e.g., Vmax assays) at in situ temperatures. Rates of urease
activity were calculated from beginning and final concentrations of NH+

4 . Conversions of
data prior to August 2003 were made using an equation developed from samples collected
from a range of sites and seasons analyzed by both methods (Solomon, Alexander, and
Glibert 2007). Samples from the Anacostia River were analyzed within a year using the
method of Solomon, Alexander, and Glibert (2007).
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d. Statistical analysis

Both environmental (temperature and nutrient concentrations) and phytoplankton taxa
data were first tested for normality using histograms in R. If the data were skewed, then
the data were transformed before performing principal component analysis (PCA) in R
(Clarke et al. 2014). Multivariable community measures were created via PCA that included
temperature and nutrient data (or phytoplankton taxa) and then were analyzed for statistical
correlations with urea uptake and/or urease activity. Multivariable community measures
were created separately for temperature and nutrient data from phytoplankton taxa because
there were more environmental data available.

3. Results

a. Environmental patterns

Across all sites and times samples, a large gradient in stream flow, temperatures, and
salinities was encountered (Table 2). The highest stream flow for the Anacostia River was
observed in 2014 (1.04 ± 0.86 m3 s−1), whereas other years remained on average between
0.44 and 0.67 m3 s−1. Stream flow in the Choptank River and Chesapeake Bay was below
average during 2001 and 2002, considered dry years (<5 m3 s−1 and <1,700 m3 s−1,
respectively), below the range of normal stream flow (4 m3 s−1, the long-term average from
1949 to 2018 for the Choptank, USGS 2019; 1,800–2,500 m3 s−1, the long-term average
for the Chesapeake Bay from 1935 to 2018; https://www.usgs.gov/centers/cba). Average
stream flow into Chesapeake Bay in 2003 and 2004, considered wet years, exceeded 3,000
m3 s−1 and reduced salinity levels by approximately 5 throughout Chesapeake Bay. The
timing of the spring freshet differed each year, which influenced nutrient concentrations
during sampling in April. In 2001, 2003, and 2004, the freshet occurred prior to or during
the spring sampling period. However, in 2002, the spring freshet occurred after the spring
sampling.

All sites exhibited an annual pattern in both temperature and salinity (Table 2). The
coldest temperatures observed were recorded in spring (8.45◦C to 15.0◦C), and the warmest
temperatures in summer (24.9◦C to 27.3◦C). Salinity was not measured in the Anacostia
as this river consists of mostly fresh water (on average 0.26; Anacostia Watershed Toxics
Alliance and Anacostia Watershed Restoration Commission 2015), whereas there was a
difference of 8–11 in salinity between the two Choptank River stations. Salinity increased
from <9 at the mostly upper station to >16.7 in the lower station of the Chesapeake Bay.
Salinity was lower in 2003 and 2004 in the Chesapeake Bay than in 2001 and 2002 (Table 2).

Concentrations of N forms followed a gradient from the upper to lower portions at all
sites (Choptank River and Chesapeake Bay: Table 3; Anacostia River: Solomon, Jackson,
and Glibert 2019). Of the three N substrates, NO−

3 concentrations were the highest during
the spring, and often increased again during the fall months. NO−

3 concentrations were, on
average, >30 μM in the Anacostia River but were often higher during the spring as opposed
to summer and declined at downstream stations under both low and high flow conditions
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(Solomon, Jackson, and Glibert 2019). Concentrations of NO−
3 were higher during the wet

years (2003–2004) than the dry years (2001–2001) in both the Choptank River and the
Chesapeake Bay. The Upper Choptank had higher NO−

3 concentrations than the Lower
Choptank River, as much as 30-fold greater during the wet years. The same was true for the
Chesapeake Bay, with Upper Bay concentrations 4-fold higher than the Lower Bay during
the dry years as opposed to 15-fold higher during the wet years. Concentrations of NH+

4
and urea also had seasonal trends with higher concentrations during the spring, declining
in summer, and then increasing again in fall at all stations. The percentage contribution
of NH+

4 to total available N increased downstream (Table 3). In the Anacostia, NH+
4 :NO−

3
ratios increased from upstream to downstream, were highest during the summer months,
and were significantly greater during high than low flow conditions (Solomon, Jackson, and
Glibert 2019), while in the Choptank River the contribution of NH+

4 and urea to the total
N pool was often >80% during the summer and fall, except in 2003 (Solomon 2006). A
gradient in contribution of the sum of NH+

4 and urea relative to the total inorganic N pool in
the Chesapeake Bay ranged from <15% in the Upper Bay, 39% in the Mid Bay, and 62%
in the Lower Bay (data not shown).

Phytoplankton biomass (Chl a) followed different trends at various sites (Table 4). Con-
centrations of Chl a in the Anacostia River were highly variable both with year and station,
averaging 8.73–31.5 μg L−1 on an annual basis. Higher Chl a values, >75 μg L−1, were
observed in the summer to early fall and under conditions of low flow as compared with
high flow (Solomon, Jackson, and Glibert 2019). Concentrations of Chl a in the Choptank
River increased from spring to summer and then decreased again in the fall.

During the dry years (2001–2002) at the Upper Bay station, Chl a biomass peaked in
the summer. In contrast, during 2003 and 2004, the highest Chl a biomass was found in
spring. Concentrations of Chl a at the Mid Bay station were highest in spring during the
dry years, but in summer in the wet years. Chl a biomass did not exceed 6.98 μg Chl a L−1

during 2001–2002 at the Lower Bay station but was generally greater (between 5.00 and
18.1 μg Chl a L−1) during 2003–2004 (data not shown).

The composition of the phytoplankton community (based on pigment:Chl a ratios) exhib-
ited some consistent trends among the Anacostia and Choptank Rivers and the Chesapeake
Bay (Table 4). The spring assemblages had proportionately more diatoms (based on fucoxan-
thin:Chl a ratios), but overall Chl a levels were lowest at this time. The relative contribution
of diatoms in the Anacostia River and some locations in Chesapeake Bay declined through
the summer and increased in late summer or fall (Solomon, Jackson, and Glibert 2019),
whereas in the Choptank River the relative contributions of diatoms continued to decline
or remained constant throughout the year (Table 4). The relative contribution of cyanobac-
teria (based on zeaxanthin:Chl a ratios) in the Anacostia River increased both with station
downstream and with season, and it was substantially higher in late summer and early fall in
the middle of the river relative to the upper and lower sites (Solomon, Jackson, and Glibert
2019). The contribution of cyanobacteria in the Choptank River was almost nonexistent,
with zeaxanthin:Chl a ratios <0.07, whereas in the Chesapeake Bay it increased from the
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Figure 2. The relationship between urea uptake and urease activity rates in the Choptank River (two
sites), Chesapeake Bay (three sites), and the Anacostia River (three sites).

Upper Bay to Lower Bay and peaked during the summer only during the dry years. The
relative contribution of chlorophytes (based on Chl b:Chl a ratios) in the Anacostia River
was higher in the summer and early fall relative to spring (Solomon, Jackson, and Glibert
2019) but remained mostly <0.06 in the Choptank River and the Chesapeake Bay, with
increased contributions in the Lower Choptank in the spring during wet years and Upper
Bay in summer during the dry years. Cryptophyte abundance (based on alloxanthin:Chl
a ratios) in the Anacostia River increased steadily with season upriver, and the increases
late in the year were most pronounced in midriver with variable abundances downstream
(Solomon, Jackson, and Glibert 2019). These trends are in contrast with the Choptank River
and Chesapeake Bay with small relative contributions of cryptophytes at all sites through
seasons and years.

b. Seasonal and spatial patterns in and between urea uptake and urease activity rates

Urea uptake rates were not significantly correlated with urease activity rates at any of
the sites studied when all data were considered (r2 = −0.11, n = 226; Anacostia River:
r2 = −0.05, n = 161; Choptank River and Chesapeake Bay: n = 65, r2 = −0.28; Fig. 2).
Only in the Chesapeake Bay were urea uptake and urease activity positively related bay-
wide (n = 31, r2 = 0.47, P < 0.05). The relationship was strongest in Upper Bay (n = 11,
r2 = 0.68, P <0.05) and Lower Bay (n = 11, r2 = 0.59, P < 0.05).
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Figure 3. Seasonal and spatial patterns in urea uptake (a) and urease activity (b) at all sites in
Chesapeake Bay during all years of the study: Choptank River and Chesapeake Bay (2001–2004)
and Anacostia River (2013–2018).

Urea uptake and urease activity in surface waters exhibited seasonal differences in all
systems. Urease activity had more of a peak in the summer months than urea uptake at all
sites (Fig. 3a and b). Both urea uptake and urease activity rates in the Middle and Lower
Anacostia River were generally higher than the other sites, despite the large variability in
rates.
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c. Relationships between temperature, nitrogen availability, phytoplankton community
composition, and urea uptake and urease activity

The PCA analysis created several combined principal components based on tempera-
ture and nutrient availability. When data from the Anacostia and Choptank Rivers and
the Chesapeake Bay were analyzed together, PC1 was defined by a negative relationship
with temperature, PC2 by a positive relationship with NH+

4 , PC3 by a negative relation-
ship with NO−

3 , and lastly PC4 with a positive relationship with urea (Fig. 4a; Table 5).
Urea uptake had a significant negative relationship with PC2 (P < 0.001) and a positive
relationship with PC4 (P < 0.001), suggesting that urea uptake decreased with increasing
NO−

3 concentrations and increased with increasing urea concentrations (Table 6). Urease
activity had a negative relationship with PC1 (P < 0.01) and a positive relationship with
PC2 (P < 0.05), suggesting that urease activity increased with temperature and NO−

3 con-
centrations (Table 6).

When examining these relationships on a local level, the combined variables for the Ana-
costia River changed slightly, with Anacostia River PC2 (APC2) being defined mostly by a
positive relationship with NH+

4 and Anacostia River PC3 (APC3) being defined mostly by
a negative relationship with NO−

3 (Fig. 4b, Table 5). Urea uptake had a significant relation-
ship with all combined variables (P < 0.001), whereas urease activity only had a significant
relationship with Anacostia River PC1 (APC1; Fig. 4b, Table 6). This suggests that urea
uptake in the Anacostia River was negatively related to temperature and positively related
to NO−

3 , NH+
4 , and urea concentrations, whereas urease activity was positively related to

temperature. In the Choptank River and the Chesapeake Bay, the combined variables were
defined by the same factors except with some inverse relationships in Chesapeake PC2
(CPC2; negative relationship with NO−

3 ) and Chesapeake PC4 (CPC4; negative relation-
ship with urea; Fig. 4c). Both urea uptake and urease activity were negatively correlated
with Chesapeake PC1 (CPC1; P < 0.01) suggesting that those rates were positively related
to temperature (Table 5).

The PCA analysis also created several combined PCAs based on phytoplankton commu-
nity composition using pigment ratios (Fig. 5, Table 7). When data from the Anacostia and
Choptank Rivers and the Chesapeake Bay were analyzed together, pigment PC1 (PPC1) was
defined by a negative relationship with diatoms and positive relationship with chlorophytes;
pigment PC2 (PPC2), by a negative relationship with chlorophytes; pigment PC3 (PPC3), by
a positive relationship with cryptophytes; and pigment PC4 (PPC4), by a positive relation-
ship with cyanobacteria (Fig. 5a, Table 7). Urea uptake had a significant positive relationship
with PPC1 (P < 0.05) and PPC4 (P < 0.01), suggesting that urea uptake decreased with
more diatoms present and increased with more chlorophytes and cyanobacteria present
(Table 8). However, urease activity did not demonstrate any significant relationship with
any of the pigment combined variables (Table 8).

As for temperature and nutrient availability on the local level, the combined variables
for phytoplankton community in the Anacostia River differed by Anacostia pigment PC2
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Figure 4. Principal component analysis showing the first two principal components for nutrient and
environmental factors for all sites (a), Anacostia River (b), and Choptank River and Chesapeake
Bay (c). The third and fourth principal components are not shown because of low proportion of
variance.

(APPC2) being defined mostly by a negative relationship with cryptophytes and Anacostia
pigment PC3 (APPC3) being defined mostly by negative relationships with diatoms and
cryptophytes and a positive one with cyanobacteria (Fig. 5b, Table 7). Urea uptake and urease
activity had no significant relationships with all the pigment combined variables (Table 8).
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Table 5. Proportion of variance and loadings for multivariable (principal component analysis) analysis
for temperature and N concentrations. PC indicates combined variables when analyzing data from
all locations, APC indicates combined variables from Anacostia River, and CPC indicates combined
variables from Choptank River and Chesapeake Bay.

Site Variables PC1 PC2 PC3 PC4

All (PC) Proportion of variance 0.868 0.095 0.031 0.005
Temperature −0.989 0.124 0.080 0.014
NO−

3 0.145 0.912 0.383 −0.007
NH+

4 −0.028 0.377 −0.890 −0.255
Urea 0.008 0.104 −0.233 0.967

Anacostia (APC) Proportion of variance 0.930 0.036 0.027 0.007
Temperature −0.993 −0.102 −0.059 0.025
NO−

3 0.106 −0.599 −0.791 −0.069
NH+

4 −0.053 0.775 −0.570 −0.269
Urea 0.018 0.177 −0.216 0.960

Choptank & Proportion of variance 0.853 0.138 0.007 0.001
Chesapeake Temperature −0.965 −0.263 0.001 0.010
Bay (CPC) NO−

3 0.260 −0.950 0.174 0.017
NH+

4 0.045 −0.166 −0.982 0.079
Urea −0.001 −0.032 −0.075 −0.997

Table 6. Correlations between combined variables (temperature and N concentrations) and urea
uptake and urease activity. PC indicates combined variables when analyzing data from all locations,
APC indicates combined variables from Anacostia River, and CPC indicates combined variables
from Choptank River and Chesapeake Bay. Asterisk (*) denotes significance at P < 0.05.

Site Variables PC1 PC2 PC3 PC4

All (PC) Urea uptake −0.118 −0.238 −0.020 0.294
P value 0.06 <0.001∗ 0.91 <0.001∗
Urease activity −0.220 0.134 0.069 0.074
P value <0.001∗ 0.03∗ 0.61 0.34

Anacostia Urea uptake 0.188 0.282 −0.341 0.691
(APC) P value <0.001∗ <0.001∗ <0.001∗ <0.001∗

Urease activity −0.240 −0.188 −0.002 0.075
P value <0.01∗ 0.06 0.85 0.41

Choptank & Urea uptake −0.330 0.075 −0.143 −0.208
Chesapeake P value <0.01∗ 0.59 0.35 0.08
Bay (CPC) Urease activity −0.340 −0.007 0.185 −0.075

P value <0.01∗ 0.90 0.14 0.42
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Figure 5. Principal component analysis showing the first two principal components for pigment:Chl a
for all sites (a), Anacostia River (b), and Choptank River and Chesapeake Bay (c). The third and
fourth principal components are not shown because of low proportion of variance.
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Table 7. Proportion of variance and loadings for multivariable (principal component analysis) analysis
for pigment:Chl a ratios. PPC indicates pigment combined variables when analyzing data from all
locations, APPC indicates pigment combined variables from Anacostia River, and CPPC indicates
pigment combined variables from Choptank River and Chesapeake Bay.

Site Variables PC1 PC2 PC3 PC4

All (PPC) Proportion of variance 0.546 0.219 0.150 0.086
Diatoms −0.680 −0.459 0.493 0.290
Cyanobacteria 0.071 0.169 −0.296 0.937
Chlorophytes 0.635 −0.756 0.101 0.120
Cryptophytes 0.360 0.435 0.812 0.151

Anacostia Proportion of variance 0.539 0.285 0.142 0.033
(APPC) Diatoms −0.616 0.184 −0.638 0.424

Cyanobacteria 0.008 −0.199 0.496 0.845
Chlorophytes 0.681 0.605 −0.282 0.301
Cryptophytes 0.397 −0.748 −0.517 0.123

Choptank & Proportion of variance 0.559 0.213 0.137 0.091
Chesapeake Diatoms −0.896 0.338 −0.085 0.275
Bay (CPPC) Cyanobacteria 0.130 0.358 0.888 0.257

Chlorophytes 0.365 0.839 −0.402 0.033
Cryptophytes 0.217 −0.230 −0.207 0.926

Table 8. Correlations between pigment combined variables (pigment:Chl a) and urea uptake and
urease activity. PPC indicates pigment combined variables when analyzing data from all locations,
APPC indicates pigment combined variables from Anacostia River, and CPPC indicates pigment
combined variables from Choptank River and Chesapeake Bay. Asterisk (*) denotes significance
at P < 0.05.

Site Variables PC1 PC2 PC3 PC4

All (PPC) Urea uptake 0.217 0.045 0.093 0.229
P value 0.05∗ 0.54 0.36 <0.001∗
Urease activity 0.120 −0.516 −0.052 −0.022
P value 0.25 0.81 0.71 0.82

Anacostia Urea uptake 0.039 −0.184 −0.041 0.044
(APPC) P value 0.64 0.15 0.60 0.68

Urease activity 0.059 0.092 0.124 −0.129
P value 0.48 0.54 0.31 0.36

Choptank & Urea uptake 0.175 0.069 0.391 −0.132
Chesapeake P value 0.13 0.78 <0.01∗ 0.23
Bay (CPPC) Urease activity 0.086 −0.089 0.030 0.028

P value 0.82 0.26 0.88 0.68
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In the Choptank and the Chesapeake Bay, the pigment combined variables were defined dif-
ferently in that chlorophytes contributed positively to Chesapeake pigment PC1 (CPPC1),
chlorophytes contributed positively to Chesapeake pigment PC2 (CPPC2), cyanobacteria
contributed positively to Chesapeake pigment PC3 (CPPC3), and cryptophytes contributed
positively to Chesapeake pigment PC4 (CPPC4; Fig. 5c). Urea uptake was significantly pos-
itively related to CPPC3, whereas there were no significant relationships of urease activity
with any of the pigment combined variables (Table 8). This suggests that urea uptake was
positively related to the presence of cyanobacteria.

4. Discussion

a. Seasonal changes in rates of urea uptake and urease activity

McCarthy was the first to measure urea concentrations and urea uptake rates in the
Chesapeake Bay (McCarthy, Taylor, and Taft 1977). Lomas et al. (2002) built on this
foundation using data collected between 1972 and 1998. Their reported urea uptake rates
were on average higher during the summer months in surface samples, which is consistent
with observations reported here from 2001 to 2004 in the Chesapeake Bay. Both urea uptake
and urease activity rates showed seasonal patterns with rates generally higher during the
summer at all sites, including the Chesapeake Bay (Fig. 3). Urea uptake and urease activity
were often positively correlated to combined variables that included warmer temperatures.
The results held whether analyzed overall or within the different locales.

Higher rates of urea uptake in the warmer months have previously been measured in tem-
perate estuaries (Kristiansen 1983; Glibert et al. 1991; Bronk et al. 1998; Lomas et al. 2002;
Moschonas et al. 2017). The importance of temperature in urea metabolism is suggested by
positive relationships between urea uptake and temperature observed in diatom-dominated
assemblages. This contrasts to negative relationships between NO−

3 uptake and tempera-
ture for similar diatom-dominated assemblages (Lomas and Glibert 1999). Where diatoms
dominate, high urea uptake rates during spring blooms have also been measured in colder
regions (Sanderson et al. 2008; Simpson et al. 2013; Moschonas et al. 2017). Although
the Anacostia River does not experience spring blooms like other temperate tidal rivers
(Solomon, Jackson, and Glibert 2019), urea uptake rates were often higher during earlier
parts of the year in the downstream reaches of the river and were not positively related to
temperature (APC1) and weakly correlated with diatom abundance (APPC3).

Urea uptake may be regulated by temperature within different phytoplankton groups
within phytoplankton communities, especially cyanobacteria that thrive during the warmer
months (Paerl and Huisman 2008). Regulation of cyanobacterial urea transporters, such as
AmtR and NtcA, by temperature and urea availability may differ from eukaryotic phyto-
plankton transporters (Solomon et al. 2010). Cyanobacteria were consistently related to urea
uptake rates when analyzed over all locations in the Chesapeake Bay, the Lower Anacostia,
and Lower Bay (Tables 3, 7, and 8). Similar field studies have found that cyanobacteria are
either associated with higher urea uptake and urease activity rates or have been identified
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as consumers of urea (Florida Bay and Western Florida Shelf: Glibert et al. 2004; Heil et al.
2007; Wawrik, Callaghan, and Bronk 2009; Lake Erie: Belisle et al. 2016). Utilization of
urea is regulated differently in cyanobacteria than other eukaryotic phytoplankton because
some species do not contain the genes coding for urease and a complete urea cycle (Collier,
Brahamsha, and Palenik 1999; Solomon et al. 2010).

This study found that urease activity was highest during the summer months in the
Anacostia and Choptank Rivers and the Chesapeake Bay, and this was supported by sig-
nificant relationships with combined variables associated with warmer temperatures when
all data were examined together and on a local level. Urease activity was found to be
higher when growth temperatures were similar to temperatures observed during the sum-
mer months (20◦C–30◦C) for three phytoplankton species, Aureococcus anophagefferens,
Thalassiosira weissflogii, and Prorocentrum minimum (Fan et al. 2003). In field studies,
Siuda and Chróst (2006) found a positive relationship between temperature and urease in
lakes in the Mazurian Lake District in Poland, but in Lake Erie, there was no significant
increase in urease activity with temperature despite one with ambient urea concentrations
(Belisle et al. 2016).

b. Regulation of urea uptake and urease activity by NO−
3 and NH+

4 availability

The results from the Anacostia and Choptank Rivers and the Chesapeake Bay support a
growing body of evidence that urea uptake is suppressed or inhibited by NH+

4 . NH+
4 exhib-

ited significant negative correlations with combined variables when examining data from all
sites. Urea uptake rates of phytoplankton grown under N-replete conditions have been shown
to decrease after the addition of NH+

4 and/or NO−
3 in culture (McCarthy 1972a; Horrigan

and McCarthy 1981, 1982; Lund 1987; Lomas 2004) or in field incubations (Tamminen
and Irmisch 1996). Urea uptake rates are often low in the field when NH+

4 concentrations
are higher, further supporting this relationship. For example, in a study in the Neuse River
estuary, North Carolina, NH+

4 concentrations exceeding 40 μM-N were associated with low
urea uptake rates in the upper portion of the estuary (Twomey, Piehler, and Pearl 2005),
and Kristiansen (1983) found that urea uptake was inhibited by NH+

4 concentrations higher
than 1–2 μM-N in Oslofjord, Norway.

In contrast to urea uptake, the information available about regulation of urease activity
by NO−

3 , NH+
4 , or urea suggests a more complex relationship. Urease activity in this study

did not have any significant relationships with combined variables consisting of different
N forms with the exception of NO−

3 . Diatoms grown on NO−
3 in culture have lower urease

activity than when grown on NH+
4 or urea (Peers, Milligan, and Harrison 2000; Lomas

2004). Diatoms, mostly large centric species, have been found to be the main utilizers of
urea within the mixed layer of the Southern California Blight when NO−

3 and NH+
4 concen-

trations were <0.25 μM (Morando and Capone 2018). Likewise, as shown herein, rates of
urease activity were generally lower during spring when NO−

3 concentrations were high and
diatoms dominated the phytoplankton community than during the summer. Urease activity
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rates are consistently the highest during the summer months, despite difficulties in identi-
fying the main consumers of urea among different phytoplankton communities (Solomon
2006; Belisle et al. 2016). Cyanobacteria, which dominated the summer community during
the dry years in the Chesapeake Bay and downstream in the Anacostia River, have been
shown to have lower urease activity when grown on NH+

4 than NO−
3 or urea in culture

(Collier, Brahamsha, and Palenik 1999; Fan et al. 2003; Solomon and Glibert 2008). In
the West Florida Shelf, a coastal marine system characterized by lower inorganic N (NO−

3
and NH+

4 ) concentrations than organic urea and dissolved primary amines, Synechococcus,
which is also prevalent in the Anacostia, has been shown to use urea (Glibert et al. 2004;
Wawrik, Callaghan, and Bronk 2009). Diatoms and cryptophytes, which were prevalent
during the summer months in the wet years in both Upper Bay and Mid Bay and the Upper
Anacostia River during the spring months, do not have lower urease activity when grown
on NH+

4 in culture (Peers, Milligan, and Harrison 2000; Lomas 2004). Thus, the higher
summer NH+

4 concentrations during the wet years in Chesapeake Bay or years with high
flow in the Anacostia River may not repress urease activity in diatoms and cryptophytes.

The understanding of regulation of urease activity that is emerging from culture studies
has not yet translated into a better understanding of field populations as it is often impossible
to differentiate which phytoplankton group is responsible for higher urease activity rates
(Solomon 2006; Belisle et al. 2016). Temperature, more than any other environmental factor
or phytoplankton taxa, is correlated with urease activity in the Anacostia and Choptank
Rivers and Chesapeake Bay. Urease activity may be regulated more by other factors such
as nickel availability or light; however, these were not addressed in this analysis. Urease
contains a nickel metallocenter (Oliveira and Anita 1986; Mobley and Hausinger 1989;
Mobley, Island, and Hausinger 1995), and diatoms have been shown to have higher growth
and urease activity when grown on urea and Ni+ in culture (Rees and Bekheet 1982; Price
and Morel 1991; Egleston and Morel 2008).

Urease activity is thought to be conservative and is often expressed on a basal level
(Solomon et al. 2010; Allen et al. 2011). Intracellular urea is produced consistently as a
metabolite via the ornithine-urea cycle under exponential growth in diatoms (Allen et al.
2011). These two factors may complicate any response to different environmental condi-
tions. With the discovery of a complete urea cycle in diatoms (Armbrust et al. 2004; Bowler
et al. 2008), new questions have emerged regarding the role of urea, and subsequently urease,
in phytoplankton cells. McCarthy (1972a) did note that some diatoms that did not grow on
urea exhibited some short-term uptake of urea and suggested that utilization processes for
urea in these diatoms was lacking. We now understand that it is not missing, but that urease,
considered part of the urea utilization pathway, may be regulated more by light than external
N sources (Bender, Parker, and Armbrust 2012). In addition to being transported into the
cell via various cell transporters, urea is being generated as a metabolic by-product of the
ornithine-urea cycle that is closely coupled with the TCA (tricarboxylic acid) cycle (carbon
fixation) and GS/GOGAT pathway (N assimilation; Allen et al. 2011; Bender, Parker, and
Armbrust 2012), potentially explaining the regulation of urease by light conditions. This



162 The Sea: The Current and Future Ocean [77, Supplement

may be true for other phytoplankton that have been found to also have a complete urea
cycle (Solomon et al. 2010). Further studies on the regulation of urease need to take into
consideration the influence of the various metabolic pathways in the phytoplankton cell
rather than just exogenous N sources alone.

c. Urease activity as a proxy for urea utilization

Urea uptake and urease activity rates followed different patterns over similar seasonal and
nutrient gradients suggesting that the urea transporters (e.g., URT, DUR3, and SLC14A) and
urease (e.g., ureABC; Baker, Gobler, and Collier 2009; Solomon et al. 2010) are regulated
by different environmental and cellular factors. This observation is supported by the lack of
a statistically significant relationship between urea uptake and urease activity rates (Fig. 2).
Urea uptake rates seem to be more closely related to the availability and contribution of
ambient urea to the total N pool, whereas urease activity may be more sensitive to internal
pools of urea generated by the ornithine-urea cycle, nickel availability, and light. Although
urease has one gene with several accessory genes, there are at least three known urea
transporters that are present and regulated differently in various phytoplankton species
(Solomon et al. 2010) that contribute to a phytoplankton community.

5. Conclusion

McCarthy began the examination of the role of urea in the metabolic demand of
phytoplankton in Chesapeake Bay (McCarthy 1972b) and La Jolla Bay (McCarthy and
Kamykowski 1972) as a natural laboratory. McCarthy, Taylor, and Taft (1977) measured
urea concentrations and urea uptake in the Chesapeake Bay and found that often phyto-
plankton preferred to use NH+

4 and urea over NO−
3 and that uptake rates were consistently

related to N availability. Since McCarthy’s original studies, methods for measuring urea
concentrations and urease activity in the field have been refined. Because of these improve-
ments, there is now a better understanding of how a range of phytoplankton and bacteria
can use urea to meet their N metabolic demand, in both N-limiting and nonlimiting waters
(Anita, Harrison, and Oliveria 1991; Kirchman 2000; Collos and Harrison 2014; Glibert
et al. 2016). The ability of those organisms to utilize urea depends on the regulation of
urea uptake and urease activity in natural waters. Despite the complexity of covarying envi-
ronmental factors in the field, urea uptake rates are consistently related to ambient urea
concentrations, temperature, and specific phytoplankton taxa relationships, as they were
in previous culture studies. Recent discoveries related to the presence of the urea cycle
in diatoms and other eukaryotic phytoplankton suggest that urease is regulated differently
from urea uptake because of close coupling with carbamoyl phosphate synthease, the urea
cycle, the TCA cycle, and the GS/GOGAT pathway (Allen et al. 2011, Bender, Parker,
and Armbrust 2012). In light of those findings, examining the regulation of urease is just
beginning, as is our understanding of the role of urea in bacteria and phytoplankton N
metabolism.
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