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THE SEA: THE SCIENCE OF OCEAN PREDICTION
Journal of Marine Research, 75, 403433, 2017

Forecast Errors, Goodness, and Verification
in Ocean Forecasting

by Gary B. Brassington'2

ABSTRACT

Verification is an essential part of the forecast process that provides guidance on the statistical
behavior of the system and a framework by which a forecast can be assessed for its “goodness.”
Much of the framework applicable to ocean forecasting has been developed within the atmospheric
community. A review of the available material is given with some commentary on its relevance in the
context of ocean forecasting. A statistical theory is presented for errors in an ocean forecast system
(both deterministic and ensemble) and for a number of verification metrics. Theoretical results are
demonstrated with empirical models and results from an operational ocean forecast system. Some new
results are presented comparing the mean absolute error and root mean square error and the inference
hypothesis testing of ensemble forecast systems. The progress in ocean verification is discussed, as
are advances in technology to analyze international verification databases.

Keywords: forecasting, mean absolute error (MAE), root mean square error (RMSE), verification

1. Introduction

Ocean dynamics comprise a wide range of processes ranging from basin scale thermo-
haline and wind-driven gyre circulation to small-scale turbulence. In the majority of cases,
ocean dynamics are chaotic, meaning the modeling of the dynamics is sensitive to small
errors in the estimated initial state and boundary conditions, resulting in rapidly growing
errors. A prediction system for a chaotic dynamical system comprises a method to estimate
the initial conditions and a discretized model to evolve the state and circulation forward in
time. From a stochastic point of view, the errors of a prediction system have a number of
properties, as summarized in Figure 1. Let us consider the temperature at a specific location
in the ocean to be represented by the time series shown by the solid line in Figure 1a. The
temperature is observed by an instrument with a known instrumentation error, which is
shown in Figure la as the lighter and thicker line following the true state. Based on this
time series, we can model the temperature as a normal distribution with a mean temperature
and variance, shown in Figure 1b by the blue shaded region. This climatology provides a
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Figure 1. Schematic of ocean forecast uncertainty. (a) A generic time series for an observed variable
T; lighter orange shows the observation instrument error; (b) the simplest forecast is to construct the
climatological mean and variance as shown by the blue shading and the Gaussian along the y-axis;
(c) three deterministic forecasts consisting of a sequential initial condition with a small uncertainty
(purple ellipse) and a singlemodel integration with increasing uncertainty (purple ellipse) with time.
Forecast uncertainty increases until the values exceed climatological forecast skill; (d) ensemble
forecast represents multiple initial conditions followed by multiple model integrations from which
the ensemble mean and ensemble variance can be estimated.

baseline stochastic forecast for temperature at that location where the most probable value
is the mean and all temperature values within the recorded range have a non-zero probabil-
ity of occurrence. In the absence of climate change, the climatology provides increasingly
robust estimates of the statistical mean and variance with increasing record length. A cli-
matological record is a useful guidance for some purposes, including long-range planning
and design. However, for many situations an accurate forecast would lead to positive social
and economic benefits. There are effectively two main modeling approaches to forecasting:
stochastic and deterministic. Persistence, the simplest stochastic forecast, can perform best
in the near-term, while a deterministic forecast performs best on the short- to medium-term,
and a combination (ensemble) is best on longer timescales. The state of the art in ocean
forecasting has been dominated by deterministic approaches for both global and shelf scale
forecasting, owing to the computational expense of these models and maturity of the sci-
ence and, particularly, the services to derive the benefit. However, multi-model (poor-man’s)
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ensemble (Spindler et al. 2016) and multi-cycle ensemble systems (Brassington 2013) have
recently emerged.

The errors of a well-behaved prediction system are shown in Figure 1c, where the initial
conditions have a relatively small error represented by the smallest purple ellipse. Typically,
this error is larger than the observation error variance but much smaller than the variance in
climatology. As the forecast model evolves forward in time, the error ellipse (uncertainty)
increases and eventually can produce forecasts with greater error than a climatological
forecast. At or prior to this time, the model state is re-initialized based on newly obtained
observations, reducing the uncertainty from which the model is then evolved for another
forecast period. A deterministic forecast is a single realization of this stochastic system, as
shown by the thick black line in Figure 1c. The rate of error growth varies from forecast to
forecast depending on the dynamics and forcing occurring in each instance. Therefore, it is
not possible to come up with reliable estimates for the uncertainty other than a statistical
estimate based on previous hindcasts. We can improve both the forecast estimate of the state
and also provide an estimate of the uncertainty by the use of an ensemble of forecasts (Fig.
1d). In this case, an ensemble of deterministic forecasts is performed, each member with
perturbed initial conditions based on the expected uncertainty. For an unbiased and reliable
ensemble, the best estimate (lowest error) and uncertainty are given by the ensemble mean
and ensemble variance, respectively.

In addition to the forecast error growth varying in time, as depicted by the example out-
lined above, error growth also varies in spatial location. At any instant in time, the dynamics
will comprise discrete regions that are unstable (rapid error growth) and other regions that
are relatively stable (slow error growth). The spatial extent, error magnitude, and location all
evolve in time. For example, Figures 2b and 2d show the monthly mean of daily ensemble
variance for January 2012 and January 2013 in the Tasman Sea from an operational ocean
forecast system at the Bureau of Meteorology, which is a four-cycle, time-lagged ensemble
system (Brassington 2013). In this example, the large forecast variance corresponds to the
position of temperature fronts as estimated by the corresponding ensemble monthly mean
of sea surface temperature in Figures 2a and 2c, respectively.

Obtaining benefit from a forecast system rests with the question of whether it is a “good”
forecast system. This question can be answered with some precision with the use of val-
idation, verification, and value. Validation and verification are terms used extensively in
other fields but may have slightly different meanings. In the context of ocean forecasting,
the modeling, predictability, and prediction system are all close analogies with atmospheric
forecasting, a chaotic geophysical fluid.

The atmospheric science community has systematically developed a framework and def-
initions (e.g., Murphy 1993), much of which can be directly reapplied in this context.
Validation is concerned with the question of whether the ocean model resolves (i.e., is
representative of) the physical processes present in the observations to within some require-
ment or threshold. Ocean models include numerous assumptions (e.g., incompressibility,



406 The Sea: The Science of Ocean Prediction [75,3

(k) T8 =) &
(o) i EER
a
{’L{w o ”
l[‘? ®

Sea surface temperature ensemble mean (degC Sea surface temperature ensemble STD (degC]
< > < ﬂ d

13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 2. The January four-cycle monthly mean, ensemble mean sea surface temperature for (a) 2012
and (c) 2013, and the corresponding monthly mean, four-cycle ensemble variance for (b) 2012 and
(d) 2013. The four-cycle ensemble mean is based on the OceanMAPS operational prediction system
at the Bureau of Meteorology (Brassington 2013).

Boussinesq, and hydrostatic), which are convenient in terms of numerical method choices
and are valid for a wide range of phenomenon. Other specific configuration design choices
can further limit the processes represented or resolved, such as the discretization method,
coordinate system, and the time and spatial resolution. An important initial step is to demon-
strate that the model configuration is valid for the location and phenomena being represented.
Verification is about measuring and monitoring the quality or performance of the forecast
system. An extensive range of statistical measures with respect to forecast verification can
be found in atmospheric science (e.g., Jolliffe and Stephenson 2012). Finally, forecast value
concentrates on whether the forecast system quality is sufficient to meet the user’s require-
ments and adds value in terms of their decisions and outcomes. Necessarily in a maturing
science, measures of value tend to be the last to develop.

We first survey how verification is defined within atmospheric science in Section 2.
Despite the close analogy, there are several important distinctions that lead to different
choices in terms of the metrics to be applied, as well as their modification or adaptation
in ocean forecasting, as described in Section 3. In Section 4, we review some of the basic
statistical theory that is being applied in ocean forecasting and highlight some important
results together with examples. We then provide an overview of the progress and current
state of verification in the field of ocean forecasting in Section 5, as well as some of the
supporting technology being developed in Section 6, before summarizing.
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2. Survey of verification from atmospheric science

There is an extensive literature in atmospheric science on verification, with well-
established statistical concepts and experience on their interpretation and pitfalls. There are
several books and reports (Stanski et al. 1989; Wilks 2011; Jolliffe and Stephenson 2012),
special issues (Ghelli and Ebert 2008) and websites (http://www.cawcr.gov.au/projects/
verification/; http://verification.nws.noaa.gov; http://www.eumetcal.org) covering a wide
range of topics.

The majority of human activity takes place over land and within the atmosphere. There-
fore, weather phenomena of all types (e.g., temperature, humidity, precipitation, winds, and
fog) shape and influence many human activities and decisions from an individual level (i.e.,
what to wear, the planning of one’s day, and one’s emotional state) to group activities and
decisions (i.e., building codes, event planning, and emergency response). Many applica-
tions require information of a general nature that is served by forecasts of the atmospheric
circulation. In these cases, verification using basic statistical metrics such as mean error and
mean absolute error are sufficient to quantify the expected performance. As the application
becomes less tolerant of particular aspects of the weather, more specialized information
is required to minimize the risks and impacts of bad forecast information. For example,
forecasts for binary events (e.g., a storm did or did not occur, did or did not arrive) lead
to specific verification concepts of Probability of Detection (POD) and Relative Operating
Characteristic (ROC) diagrams (see chapter 3 in Jolliffe and Stephenson 2012). In addition,
the atmosphere is a chaotic system leading to rapid error growth and forecast uncertainty.
Ensemble forecasting is the dominant pragmatic approach used to characterize the probabil-
ity distribution of this high dimensional problem (chapter 8, Jolliffe and Stephenson 2012).
For a comprehensive collection of papers covering atmospheric predictability, ensemble
forecasting, and verification, see Palmer and Hagedorn (2006).

The important question, “What is a good forecast?” has a long history in atmospheric
science (Winkler and Murphy 1968; Murphy and Winkler 1987; Murphy 1993), initiated
well before numerical weather prediction (NWP) systems acquired consistent skill. Many
forecast methods were developed preceding NWP, including forecast experience, histori-
cal records, and statistical forecasts. Murphy (1993) outlines key concepts relating to the
goodness of a forecast in terms of consistency, quality, and value. Consistency concerns the
degree to which the forecast matches the forecaster’s best judgment based on knowledge
and experience. Quality is the degree to which the forecasts correspond to what actually
happened. Value relates to the degree to which the forecast assists in decisions that will
have economic or other benefit. Verification predominantly is concerned with the statistical
measures related to quality, though in order for forecasts to have a significant impact, they
need to be consistent and have some value or benefit. The important properties of quality
cannot be condensed into a single metric. Rather, they can be expressed in a number of sta-
tistical properties based on the joint, conditional, and marginal distribution of the forecast
and observations (Murphy and Winkler 1987). Murphy (1993) outlined nine aspects that
define forecast quality, which are restated with some example metrics in Table 1 (others
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Table 1. Concise definitions for aspects of forecast quality and example metrics, where Tj; and Tp
represent the model forecast and observed state, respectively, and o7 and 6 represent the standard
deviation of the model and observation, respectively. E represents expectation, | condition, ens
represents an ensemble forecast.

Aspect Definition Example metrics
Bias Correspondence between mean E(Ty) — E(To)
forecast and mean observation
Association Strength of the linear E[(Ty—E(Ty)(To—E(Tp))]
relationship between OMTO
forecast/observation pairs
Skill Average correspondence E(Ty — Tol)
between pairs of forecasts and
observations
Reliability Correspondence between Eqim(TolTyy =T)

conditional mean observation
and conditional forecast over
all forecasts
Resolution Difference between conditional Eaim(E(To Ty = T) — Eaum (To))?]
mean observation and
unconditional mean
observation averaged over all

forecasts

Sharpness Variability of forecasts as E[(T" — E(T®"))?]
described by distribution of
forecasts

Discrimination 1 ~ Correspondence between Euio(TylTo =T)

conditional mean forecast and
conditioning observation,
averaged over all observations
Discrimination 2 Difference between conditional Euio(TylTo =T) — Equimo(Ty)
mean forecast and
unconditional mean forecast,
average over all observations
Uncertainty Variability of the observations E[(To — E (TO))Z]

can be found in section 2.10 of Jolliffe and Stephenson 2012). Another useful discussion
of these aspects is given in Stanski et al. (1989).

3. Applying verification in ocean science

One of the leading distinctions between ocean forecasting and atmospheric forecasting is
the maturity and legacy of the latter. Immaturity is both an advantage and disadvantage. For
a variety of reasons, including less general public interest for ocean forecast information
as well as numerous technical challenges, ocean forecasting as it is today only began to be
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defined in the 1980s (Hurlburt 1984). It first became feasible with the launch of satellite
altimetry and deployment of an array of autonomous profiling floats (Argo; Gould et al.
2004) in the 1990s. Ocean forecasting has therefore developed over a very short period of
time due to a coincidence of a mature science, modeling, and computational technology
when the observing system was implemented. Therefore, ocean forecasting has not had
a legacy of existing forecast practices to overcome, including the role of humans in the
forecast process. There is a significant portion of atmospheric verification concerned with the
question of the human forecaster and objectively quantifying the value that is added. Many
of these questions and metrics have much less relevance in ocean forecasting. Nonetheless,
this has been a disadvantage in ocean forecasting, as the absence of an experienced team
of forecasters and established sets of forecast practices has limited the value and impact
as the early immature prediction systems suffered from inconsistent skill and model bias.
Ocean forecasting development has evolved rapidly to higher levels of reliability in order
to deliver value and impact with more limited human forecaster guidance.

a. Physical and dynamical processes and forecast errors

In the Introduction, we noted that the closest analogy to the ocean is the atmosphere.
Both the atmosphere and ocean are thin, planetary-scale fluid layers with a comparable
system of governing equations (Navier-Stokes on a rotating planet). Many of the dynamical
concepts (e.g., conservation of potential vorticity, Rossby waves, barotropic or baroclinic
instabilities, and geostrophic turbulence) are common (see Gill 1982). However, there are
several unique dynamic features found in the ocean and dynamic processes that have greater
significance than the atmosphere. Among of the leading-order differences are the changes
in temporal and spatial scales and power spectra that are related to the difference in fluid
parameters (e.g., density, viscosity, and specific heat).

The density of seawater is a thousand times greater than air. It requires significant energy
transfer to raise and lower the ocean surface, such as the tidal force, wind-driven surge,
earth quake-generated Tsunamis; otherwise, the motion of the ocean is bounded within
ocean basins and marginal seas. The general circulation of the ocean, featuring basin-scale
gyres and western boundary currents (Stommel 1948), have no analog in the atmosphere.
The Antarctic Circumpolar Current is the only feature analogous to the atmospheric jet
stream. Western boundary current regions are the most energetic, leading to a cascade
of eddies and fronts that are chaotic and the most challenging regions to forecast. Being
located adjacent to the continental shelf with typically high population centers, they are
also important regions to forecast.

The density has an important impact on energy transfer between the ocean and atmo-
sphere. The kinetic energy of an ocean current of 1 ms~! is equivalent to an atmospheric
wind of 31 ms~! (113 km hr~'.) The potential energy needed to raise a parcel of ocean
by 1 m is equivalent to raising a parcel of atmosphere by 1 km. It also impacts important
length scales such as the internal Rossby radius of deformation (Gill 1982), which is an
order of magnitude smaller in the ocean leading to a higher number of eddy wavelengths



410 The Sea: The Science of Ocean Prediction [75,3

in the ocean basin. These scales have important implications for the resolution of models
(~10 km Hurlburt 1984 or finer, Hurlburt and Hogan 2000) and the observing system.

Adjacent to the majority of coastlines is a zone referred to as the continental shelf, which
extends from the coastline to a shelf break of ~100-200 m depth before a more rapid
decent to abyssal depths of 4000 m or greater. The continental shelf break approximately
represents a contour of potential vorticity, a conserved quantity in an earth rotating fluid
system. Significant energy is required to transfer vorticity or mass or both between the
shelf and deeper ocean, which could be induced by atmospheric winds or ocean currents. In
addition, the shallower depths lead to higher amplitude tidal heights and currents, leading
to a greater proportion of the water column that is well mixed and a greater influence
of bottom drag on the water column. The presence of the coastline boundary also traps
atmospheric energy, leading to storm-surge, upwelling, and coastally trapped waves that
are less prominent in the atmosphere. The modeling and observing system for this region
requires higher temporal sampling.

The specific heat, together with the ocean density, leads to a heat capacity 4000 times
greater than air. The majority of the heat transfer from the equator to mid-latitudes is
performed by the ocean (Wunsch 2005), which absorbs heat in the tropics driving a complex
global scale, density gradient response modified by salinity sources and sinks, and poleward
deep convection, referred to as the thermohaline circulation. The timescale of this circulation
is multi-decadal; however, its magnitude and volume is perturbed by the annual cycle. In the
upper layer, where there is a high concentration of in sifu and remotely sensed observations,
the time and space scales are well observed. However, at abyssal depths, this circulation is
poorly observed with unknown contributions to forecast biases.

Away from the polar regions (sea-ice) the only state changes for the ocean occur at the
air-sea interface in the form of evaporation leading to a latent heat exchange and loss of
mass. Otherwise, there are no internal state changes analogous to that of the atmosphere.
There are specialized techniques in atmospheric verification for clouds, convection, and
precipitation that are not required in ocean forecasting.

The rapid absorption of electromagnetic energy of seawater limits the penetration of solar
radiation to the upper ocean, though the biological impact of the euphotic zone is deeper
at ~200 m. Radiation physics is therefore much simpler than the atmosphere, with the
exception being the impact of phytoplankton on the absorption. Present ocean forecasting
systems use a climatological distribution of biology based on remotely sensed ocean color
to estimate this effect rather than including an active biogeochemical model (e.g., Ohlmann,
et al. 1996).

More generally, the air-sea interface exchanges mass, momentum, and heat and is esti-
mated through empirically derived relationships (e.g., Large and Pond 1982; Large et al.
1997) with extensions for high-wind speed conditions (e.g., Powell et al. 2003; Moon et
al. 2007). The air—sea exchange is composed of a large number of processes under low-
wind conditions (Edson et al. 2007) with additional processes under high-wind conditions
(Black et al. 2007). The exchange of momentum and buoyancy fluxes results in fine-scale
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turbulence in the upper ocean, which is not directly resolved but parameterized. Unlike the
atmospheric boundary layer, which has an ocean boundary that persists, the ocean-mixed
layer has a surface boundary condition that has low persistence. The errors of the atmo-
spheric model therefore contribute significantly to the upper ocean and coastal shelf forecast
eITors.

Other areas of ocean forecasting that require specialized modeling with implications for
verification include the sea-ice, coupled ocean-bio-geo-chemistry models, coupled ocean-
sediment models, and coupled air-wave-sea models.

b. Observing system sources of forecast errors

Since the 1990s, a global ocean observing system was sequentially implemented to a target
threshold and, through community effort (Hall et al. 2010), has been sustained. Nonetheless,
with respect to the mesoscale ocean dynamics it remains under-sampled (Brassington et al.
2010). The majority of operational global ocean forecast systems assimilate all available
real-time ocean observations (Dombrowsky et al. 2009). The availability of independent
observations is restricted to new research platforms and research campaign data, which are
limited in temporal and spatial extent and not suited to systematic verification. Verifica-
tion is therefore limited to the evaluation of system forecasts where the observations are
“independent,” as not previously assimilated by the prediction system. There remain flaws
to this verification when systems are compared. For example, assimilation of sea surface
temperature (SST) from drifting buoys has persistence as the drifting buoy is tethered to a
drogue in order to follow the ocean currents and therefore sample the same parcel of ocean.
Systems that assimilate drifting buoy observation benefit from the observation persistence,
unlike systems that do not assimilate. A second example is satellite altimetry. The products
that are assimilated require a significant amount of processing, relying on a mixture of
observed and model estimated corrections. Systems that assimilate the reference data have
an advantage compared with systems that assimilate data processed by a different center
(e.g., AVISO (http://www.aviso.altimetry.fr), RADS) (http://rads.tudelft.nl), USGODAE
(http://www.usgodae.org)).

Due to the absorption of electromagnetic radiation, remote sensing of the ocean is limited
to observing surface properties including sea surface height, sea surface temperature, and
sea surface salinity (exploiting the state dependence of brightness temperature).

Sea surface height varies across a broad range of time scales and processes, including
barotropic processes with gravity waves and tides as well as baroclinic density or specific
volume changes, or both. The relatively small sea level changes from the baroclinic density
anomalies (dynamic range of 1 m) provide a description for the distribution of mass
analogous to sea level pressure in the atmosphere. Similarly, the distribution of mass is
related to the ocean circulation through the geostrophic balance. For global ocean forecast
systems, these sea surface height anomalies are the dominant source of information used to
constrain the ocean model. However, there are several limitations to altimetry measurements
that need to be understood in their use in data assimilation as well as verification. Each
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sea surface height anomaly observation is derived as a small residual requiring up to 10
correction terms for the removal of the effects of waves, tides, wet troposphere, and others.
Nonetheless, observation errors have been systematically reduced to ~5 cm (Fu et al. 1994)
over the open ocean. In the near real-time altimetry products, some of the corrections use
model-estimated products, which can introduce biases into the observations. All altimeters
to date are based on nadir instruments on repeat orbits of periods of 9.9 days (Jason-series) or
greater. A nadir track provides information of sea surface height gradient only in the along-
track direction. Only through multiple satellite altimeters are gradients in the orthogonal
direction obtained within a small time window; however, this occurs for at most one point
for each ascending and descending orbit per satellite pair. In addition, the nominal resolution
of a single altimeter is ~500 km while two tandem satellites provide an effective resolution
of ~100 km (Fu et al. 2003). It has been demonstrated that four nadir polar-orbiting satellite
altimeters are required to constrain an ocean forecast system (Pascual et al. 2006) resolving
the mesoscale ocean variability. To this end, cross-calibration of multiple altimeters must
be performed, which involves using the Jason-series as the reference altimeter. The time
windows and spatial regions need to be sufficiently large to retain an adequate sample size
to obtain robust statistics.

Sea surface temperature is observed by multiple satellites with instruments in the infrared
bands (which provide higher spatial resolution but are absorbed by clouds) and microwave
bands (that are coarser resolution but can observe through clouds but not precipitation).
Cloud detection algorithms, quality control, and cross-calibration are undertaken by an
international science team (https://www.ghrsst.org/). Cloud clearing algorithms can be prob-
lematic for coastal upwelling regions where temperature of the ocean is comparable to that
of stratus clouds. Diurnal warming is also an important consideration, which can form a
shallow warm layer and mask the underlying foundation temperature. Quality control in
this case is based on defining thresholds for the 10-m winds required to remove the vertical
temperature gradient in the skin layer (Donlon et al. 2002). The 10-m wind correction is
dependent on atmospheric models rather than observed. An alternative strategy adopted by
the Bureau of Meteorology is to limit the observations to nighttime equator crossings for
polar orbiting satellites, where the threshold on winds is lower and the likelihood of large
skin gradients is minimized.

Sea surface salinity remote sensing is based on the dependence of brightness temperature
on ocean salinity (Koblinsky et al. 2003). Two missions, Aquarius (Koblinsky et al. 2003)
and Soil Moisture Ocean Salinity (SMOS; Font et al. 2004), were launched with relatively
large instrument errors due to the weak relationship. The impact of these observations in
a multivariate analysis with observations of SST and altimetry limit the region of impact
to the tropics (Brassington and Divakaran 2009). However, in this region, the impact is
reduced by the lower quantity of data due to interference of cloud or precipitation.

In situ observations of temperature and salinity are composed largely of vertical profiling
instruments from fixed moorings, expendable bathythermographs and conductivity temper-
ature depth (CTD) sensors from autonomous profiling floats and gliders. These instruments
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require quality control, which includes a set of generic tests and instrument specific tests
to remove “bad” observations (Ingleby et al. 2007; Cummings et al. 2010). Temperature
sensors are relatively stable; however, salinity instruments can deteriorate over time and
require recalibration, and they can sometimes be blacklisted for real-time applications.
Observation errors include measurement errors and representative errors (Daley 1993).
Representative errors are related to both grid resolution, which is model-dependent, and
the relative power of the sub-grid scales in the observations, which is state-dependent and
measurement instrument-dependent (Oke and Sakov 2008). The general formulation to
estimate the observation error variance is given by
0-20 = 0-iznst + 0%{E’ (31)
where O, inst, and RE represent observation, instrument, and representative error, respec-
tively. The representative error can be approximated by a function of the model variance (Oke
and Sakov 2008). While instrument errors are generally much smaller than model errors,
representative errors are larger and comparable to model errors. Representative errors are
frequently applied in data assimilation to penalize observations for scales unresolved by
the model and increase the weighting of the model background. Similarly, it is important
to account for these errors in forecast verification.

4. Theory

An error model for deterministic and ensemble forecasts of generic and observable state
variables is presented with assumptions as to their stochastic behavior. This error model
is then applied to a variety of common statistic operators for both large and small sample
sizes in order to discuss and interpret their properties.

A deterministic forecast model (M) estimates a state variable T (e.g., temperature) as

Ty = Ts + em + B, 4.1)

where Ty is the true value of the state variable, g, is the random error of the model, which
we assume is normally distributed N (B, 012”), and B is the bias.
We assume that the state variable is randomly observed such that

TO = TS + €0, (42)

where ¢ is the random error of the observations, which we assume is normally distributed,
N (O, 020), and unbiased (through calibration). The expectation (average) of the innovation
(difference between the model and the set of observations) is given by

E[TY™ — Ty] = Eley] — Eleo] + E[B] 4.3)
=p
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We can therefore diagnose the bias using the expectation of a large sample of innovations
and retrospectively derive an unbiased modeled estimate, i.e., Ty = Tﬂt}lased — B. We can
then construct the innovation variance as

E[(Ty — To)*] = Ele};] — 2E[emeo] + Ele5], (4.42)
=0l +00

where the model and observation errors are independent and uncorrelated. It can be shown
that the innovation variance for a biased is given by

E[(Tﬁt}iased _ T0)2] — O—%V[ + 0-20 + 62 (4.4b)

a. Statistical sampling

Verification of ocean forecasts are all based on finite sample sizes. It is therefore important
to understand the changes in behavior of the most common metrics. The first metric to
consider is the sample mean, which can be defined as

k
. 1 .
Tﬁt;ased — _ E : Tﬁl}lased
ki , (4.5)

=Ts+ey+B

where the overbar is the notation for a sample mean, & is the sample size, and &, is the
sample mean of the random model error. It is important to note that the sample mean is itself
a random variable and can be shown to have the same expectation as the original random

2
variable, but a reduced variance such that, g, is a normal distribution, N (B, GTM) Similarly,
the observation error can be expressed as

k
_ 1
7b=z§;“

=Ts+¢o

(4.6)

where g¢ is a normally distributed N (B, %)

The sample variance (s%) can be based on a system with a known expectation or a sample
mean. Verification of the latter is the more common. In this case, the sample variance must
be defined in terms of the unbiased estimator,

k
1 . L
2 biased biased
SM,kfl = _k 1 E (TMlase _ TMlase )
i=1 , “@.7)

2
— 2 Xi—1
ME—1

where x,%_l is a chi-squared distribution, E[xz_l] =k —1,and VAR[xz_l] =2(k—1).
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b. Mean absolute error and root mean square error

An unbiased forecast system does not imply that it is perfect due to the fact that errors
of different sign cancel each other in a mean error metric. Two metrics frequently used as
a measure of forecast error are the mean absolute error (MAE), a first-order moment, and
root mean square error (RMSE), a second-order moment.

The MAE for a biased model can be expressed as

MAE = E[|T5* — To|]
= Ellen +B —eol] : (4.82)
= Oouy/2/me ) — Berf (—B /v 2010u)

where we note that the difference of two normally distributed errors is another normally
distributed error given by N (B, Gﬁ,l) —N(, 01‘0,1) = N(B, Gtzotal)’ where Gtzoml = 012‘,1 +c%) and
the expectation of the folded normal distribution (Leone et al. 1961) is given by E[|ex|] =
GX\/Z/_ne(’ﬁz/z"%() - Berf(—B/\/zox), where erf is an error function. For a biased
corrected model B = 0, the folded normal distribution reduces to E[|ex|] = ox+/2/m

and the MAE is given by

MAE = E[|Ty — Tol]

= E[ley —¢o0l]

(4.8b)
2
N
The RMSE can be expressed as
RMSE = \/ E[(TH#d — Tp)?] (4.92)

=,/0%, + 0% +B?

where we have substituted Eq. (4.4b). For an unbiased or bias-corrected model, Eq. (4.9a)
reduces to

RMSE = V E[(Ty — To)?]
= /o3 + 0%, (4.9b)
where § = 0.

Using an empirical statistical model, we will highlight the difference in properties and
discuss in what context MAE and RMSE might be better applied in ocean forecasting. The
ocean state T is assumed to be a normally distributed random variable with unit variance
N(0, 1). The forecast error is defined by Eq. (4.1), where €, is modelled by N(0, 0.2)
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Figure 3. (a) The empirical estimates of mean absolute error (MAE; circle) and root mean square

error (RMSE; triangle) for a range of biases are shown. This is compared with the theory Eq. (4.8b)
ST : : ) 2

(dashed) and Eq. (4.9b) (solid) lines, respectively. The dotted line corresponds to /2/7, /0%, + 05,

the value in Eq. (4.9a), corresponding to zero bias. (b) Empirical estimates of MAE (circle) and
RMSE (triangle) relative to an increasing number of outliers.

such that 0%,, < 1, i.e., less than the state variance. The MAE and RMSE are estimated
using a sample size of 10,000 and a range of biases —1 < f < 1, as shown in Figure 3a.
Both MAE and RMSE provide a symmetric behavior as they are both positive metrics. For
low bias, the RMSE provides an estimate of the model variance while MAE provides a
more optimistic measure. Both metrics increase approximately linearly and converge with
increasing bias magnitude. It is therefore useful to diagnose and remove any gross biases. It
is noted that MAE is less sensitive than RMSE to statistical outliers (Jolliffe and Stephenson
2012, section 5.3.2). Using the same statistical model for the forecasts, the observations
are augmented to include an increasing number of outliers modeled by random model with
a higher likelihood of, large-magnitude errors, €outier = sgn(e1)|2 + 2¢;|, where both ¢;
and ¢ are N (0, 1). As shown in Figure 3b, while the MAE grows slowly with a small but
increasing number of outliers, the RMSE is unstable and grows rapidly.

For real-time verification applications where automatic quality control will permit a small
number of outliers, the MAE metric should be adopted in preference to RMSE due to the
stability to “bad observations.” It is important to note that results from RMSE and MAE can
be compared provided an account is made of the scaling factor ,/2/7. While the stability or
insensitivity of MAE to outliers is an advantage when the outliers reside in the observations,
it is a disadvantage when the outliers occur in the model forecasts. If the ability of the
forecasts to estimate rare extreme conditions is important, then there is value in repeating
the forecast verification posteriori, using delayed mode, quality-controlled observations
(i.e., free of fictitious outliers) based around the RMSE metric. When the random errors
are stationary, the influence of bias is similar for both MAE and RMSE, in that metrics
show little change for biases that are small relative to the error variance but grow to a linear
increase as the bias becomes large.
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The sample mean absolute error based on Eq. (4.8a) and Eq. (4.8b) is given by
MAE = |Ty — To|, (4.10)

where the overbar is the notation for a sample mean. The expectation and variance is shown
in (G. B. Brassington, unpubl. data) to be given by

_ [2
E[|Ty — Toll = /o3, + 0%,/ =, and (4.11a)
bl

VAR[|Ty — Toll = (o3, + 020)% (1 - 3) , (4.11b)

B
where the expectation and variance is based on a folded normal distribution (Leone et al.
1961) for N (O, 0,2‘4 + 020) is modified by the sample size.

The sample root mean square error is given by

RMSE =/ (Ty — To)2, 4.12)

where the overbar is the notation for a sample mean. The expectation and variance is shown
in (G. B. Brassington, unpubl. data) to be given by

—— 2T ((k+1)/2
E |:\/ (Tm — To)2 = /oy [ ((F(:/z))/ ), and (4.13a)
f— 3 | 2 (T((k+1)/2)Y

where the RMSE can be modeled by a weighted chi-distribution, I" is the gamma function,
and k is the sample size.

Using the same empirical statistical model for the forecast error and observation error, as
described above, we now compare the theoretical results for the expectation and variance
of the sample MAE and RMSE. For each sample size (degrees of freedom) of [10, 15, 20,
30, 40, 60, 80], a random sample of the error pairs is obtained to compute the MAE and
RMSE metrics. This is repeated 5000 times for each sample size in order to estimate the
mean and standard deviation of the metrics. The values for the error in the mean value
from the asymptotic expectation values (Eq. 4.8b and Eq. 4.9b, respectively) are shown in
Figure 4 for MAE (circle) and RMSE (square) relative to the sample size. These empirical
values compare well with the theory in Eq. (4.11a) and Eq. (4.13a) for MAE (blue) and
RMSE (red), respectively. The empirical values for the standard deviation for both MAE and
RMSE also compare very well with the theory in Eq. (4.11b) and Eq. (4.13b), respectively,
as shown as dotted lines in Figure 4.

The theory corroborated by the empirical data shows that the RMSE has larger error for
smaller sample sizes but converges to be indistinguishable to MAE for the parameters of
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Figure4. Sample mean error and standard deviation for the mean absolute error (MAE) and root mean
square error (RMSE) relative to sample size. The analytical theory for the error in the expectation
of the sample for MAE (blue) (Eq. 4.11a) and RMSE (red) (Eq. 4.13a) is shown as a solid line
relative to the asymptotic value for an infinite sample (Eq. 4.8b) and (Eq. 4.9b), respectively. The
standard deviation of the sampled MAE and RMSE are shown as a dotted line. The equivalent
sampled empirical model is shown for MAE (circle) and RMSE (square).

this experiment, at sample sizes greater than 100. The theory also shows a persistently lower
uncertainty (standard deviation) for MAE than with RMSE. These results provide further
support for the conclusion that MAE should be used for measuring errors in ocean fore-
casting. Root mean square error should be used as indicated above, but with the additional
caveat of sample sizes in excess of 100. A debate on the relative merits of MAE and RMSE
is contemporary with empirical arguments put forward favoring MAE over RMSE (see
Willmott and Matsuura 2005) and other papers countering against some of their claims (see
Chai and Draxler 2014). Here we provide the theoretical underpinning to both schemes and
examine the properties of both schemes. In an unbiased or de-biased system, both metrics

are estimating the same quantity within a scale factor \/g . The distinction between the two
metrics relates to their convergence, uncertainty, and sensitivity to outliers. In general, MAE
has the more favorable behavior. However, whether the sensitivity to outliers is “good” or
“bad” is application-specific.

This statistical theory is based upon a number of statistical properties, including the
independence of the modeled and observed random errors, the stationarity of the normal
distributions, and the sample size (or degrees of freedom). Of these, the most difficult to
comply with in ocean forecasting is independence. It is common practice to treat verification
of the forecasts against new observations as independent. However, there is a potential flaw in
this assumption with respect to systematic errors. Only the combined bias can be removed
through the mean error. Any part of the bias that is shared by the two systems will not
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be detectable other that through calibration. If an observing platform is biased, there is no
account made within data assimilation as it is applied today, and such biases will be included
in the analyses. If some fraction of these biases project onto large spatial scale modes, then
they will ha