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Data assimilation for initialization of seasonal forecasts

by Magdalena A. Balmaseda1,2

ABSTRACT
This article reviews the requirements for a data assimilation system from the perspective of ini-

tializing seasonal forecasts. It provides a historical perspective of the developments in ocean data
assimilation and ocean observing systems. It also discusses the differences between state estimation
and initialization, and presents a brief assessment of different initialization strategies.

The value of assimilating ocean data to estimate the ocean state and to initialize seasonal forecasts is
demonstrated. However, it is also shown that the assumption of unbiased models in conventional data
assimilation methods is not suitable for the production of long temporal records of ocean initial states.
This is due to the combined effect of model-forcing error and the changing nature of the observing
system. Bias correction algorithms are therefore important in the estimation of long records of ocean
states. In the equatorial ocean, the delicate balance between the mass and the velocity fields should
be preserved in order to maintain realistic circulations.

The most common approach for initializing seasonal forecasts is the so-called full uncoupled initial-
ization, which basically consists of producing an ocean reanalysis by assimilating ocean observations
into an ocean model driven by atmospheric fluxes. Alternative approaches are the so-called anomaly
initialization, which only attempts to initialize the anomalous state without any attempt of correcting
mean; the latter is usually conducted in coupled mode, but coupled and anomaly initialization are
not synonymous, and there are approaches where the initialization of the full state is done in coupled
mode. The relative value of the approaches is system dependent, but as a long-term strategy the full
initialization in coupled mode is more promising.

Keywords: initialization seasonal forecasts, coupled models, initialization strategies, full initial-
ization, anomaly initialization, ocean data assimilation, ocean observing system, flux correction, bias
correction

1. Introduction

There is clear demand for reliable forecasts of climate at seasonal timescales for a vari-
ety of societal applications. Good-quality seasonal forecasts with reliable uncertainty esti-
mates are of great value to society, allowing institutions and governments to plan actions
to minimize risks, manage resources, and increase prosperity and security. Human and
economic losses (e.g., famine, epidemics) that may be caused by adverse climate events
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can be mitigated with early warning systems and disaster preparedness. Equally, adequate
planning can aid the exploitation of favorable climate conditions.

Seasonal forecasting is currently a routine activity in several operational centers, with a
growing number of economic and societal applications in fields such as agriculture, health,
and energy.

Seasonal forecasts predict variations in the atmospheric circulation in response to anoma-
lous boundary forcing, which significantly changes the probability of occurrence of weather
patterns (Palmer and Anderson 1994). In order to extend the predictability horizon, these
boundary conditions need to be either slow-varying or predictable given the initial condi-
tions. Examples of boundary forcing are variations of sea surface temperature (SST), land
conditions (snow depth, soil moisture), sea-ice, and radiative gases. This paper deals in
particular with the initialization of the ocean for successful predictions of SST at seasonal
timescales. Of special importance are the variations of the tropical SST associated with
El Niño Southern Oscillation (ENSO), which have the potential to alter the large-scale
atmospheric circulation associated with tropical convective cells.

In this paper, we discuss the application of data assimilation for the initialization of
seasonal forecasts, organized as follows: a brief overview of the impact of SST variations
in climate, presentation of different elements of a seasonal forecasting system, and in-
depth consideration of the initialization problem. The latter includes introduction of data
assimilation systems used for ocean initialization, the impact of assimilating data on forecast
skill, and an assessment of initialization strategies. We conclude with a discussion of future
prospects and directions regarding the initialization of coupled model forecasts.

2. Impact of SST on climate

The dominant climate fluctuations at interannual timescales are related to ENSO, a quasi-
periodic warming of sea surface temperatures in the eastern and central equatorial Pacific that
affects the patterns of temperature and rainfall in much of the world (Bjerknes 1969). ENSO
plays a dominant role in the climate anomalies over the land areas surrounding the entire
Pacific basin. The effects of ENSO are also noticeable in other tropical and extratropical
regions via the so-called atmospheric bridge (Lau et al. 1996; Klein et al. 1999)—for
example, in the Indian monsoon, Atlantic hurricanes, and the climate of southern and eastern
Africa. It has been shown that the most predictable variations in worldwide precipitation at
interannual timescales are related to ENSO (Goddard and Dilley 2005).

The central role ENSO plays for seasonal forecasting is enhanced by its relatively high
potential predictability, which is inherently dependent on the ocean’s initial conditions
(Zebiak and Cane 1987), and in particular on the precursor provided by the equatorial heat
recharge (Jin 1997). Realizing the potential depends critically on the adequacy of initial
conditions for the ocean component of the coupled models used for prediction. It is now
accepted that linear wave dynamics is insufficient for predicting the evolution of SST: not
every eastward propagating Kelvin wave leads to an SST anomaly of the expected sign, and
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Figure 1. Longitude–time diagrams of equatorial anomalies of (a) thermocline depth and (b) sea sur-
face temperature (SST), for 2009–2011 daily anomalies (1981–2009 climate) ending 31 December
2011. The thermocline depth is represented by the depth of the 20-degree Isotherm (D20). The
anomalies are computed with respect to the 1989–2008 climatology. The eastward propagation of
equatorial Kelvin waves is visible in D20 usually preceding the appearance of SST anomalies in
the eastern Pacific (from the ORAS4 ocean reanalysis [Balmaseda et al. 2013]).

intensity varies from one event to another (Fig. 1). Indeed, the observed ENSO diversity is
the result of the different mean-state/wave interactions, the role of the equatorial and extra-
equatorial ocean and other tropical ocean basins in modulating the large-scale atmospheric
convection, the response of the ocean to different aspects of the so-called Westerly Wind
Events (intensity, timing, and fetch, among others), and the role of salinity in the vertical
mixing and horizontal pressure gradients (Zhu et al. 2014).

Figure 1 shows time–longitude diagrams illustrating the cross-equatorial eastward propa-
gation of thermocline anomalies (left) preceding the onset of the ENSO-related SST anoma-
lies (right) in the eastern Pacific. The figure also shows that a thermocline anomaly associated
with an individual Kelvin wave does not always translate into a large-scale SST anomaly;
for example, in the “failed” El Niño of 2011, in spite of a substantial propagation of the
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thermocline anomalies the warm SST anomaly was very short lived, and the El Niño did
not materialize.

Variations in tropical SST other than those related to ENSO can also drive temperature
and precipitation anomalies on seasonal timescales. Examples include the connection of the
tropical Atlantic with rainfall in northeastern Brazil (Folland et al. 2001) and with rainfall
in west Africa and Sahel (Giannini et al. 2003), the impact of the extratropical Atlantic
(e.g., Rodwell et al. 2002) on European climate, and the tropical Indian Ocean impact on
east African rainfall and the Indian monsoon (Goddard and Graham 1999), in particular the
mode of variability known as the Indian Ocean Dipole IOD, (Saji et al. 1999). Especially
important is the role of SST variations due to the IOD that drives rainfall variations across
southern Australia during ENSO (Behera et al. 2005; Cai et al. 2011).

3. Elements of seasonal forecasting systems

Seasonal forecasting systems are based on coupled ocean–atmosphere general circula-
tion models that predict both surface boundary forcing and its impact on the atmospheric
circulation. The chaotic nature of the atmosphere is taken into account by issuing proba-
bilistic forecasts, obtained by performing an ensemble of coupled integrations. Because of
the deficiencies in coupled models, the forecasts need calibration before they are issued.
The calibration is done by conducting a series of retrospective seasonal forecasts over past
years (or hindcasts), which in turn require initial conditions for a historical period (typically
15–25 years), usually obtained from reanalyses. The hindcasts are also needed for skill
assessment. Figure 2 illustrates schematically the different stages in the generation of a
probabilistic forecast.

Figure 3 illustrates the production of probabilistic forecasts and the calibration procedure.
At a given time, an ensemble of coupled forecasts is produced to sample the likely range
of occurrence of atmospheric states in the following seasons (forecast Probability Density
Function or PDF). Due to model error, this PDF needs calibration, and this is achieved by
comparing “today’s” model PDF with the model climatological PDF. The latter is estimated
by a series of coupled model “hindcasts” initialized using ocean initial conditions from a
historical record (i.e., from an ocean reanalysis). The seasonal forecast is issued as the
difference between the climatological PDF and today’s PDF. Differences can show in the
mean, the spread, or the tails of the distribution. The ensemble information also allows the
estimation of statistical significance. The hindcasts produced for the estimation of model
climatological PDF are also used for skill assessment. The quality of seasonal forecasts is
therefore determined by the various components of the system (the ocean initialization, the
coupled model, the ensemble generation, and the calibration strategy).

The need for calibration and uncertainty information has two important implications
for the design of the initialization of operational seasonal forecasts. In addition to the
near-real-time knowledge of the ocean state given by an ocean analysis, initialization of
operational seasonal forecasts requires an ocean reanalysis, which is as consistent as possible
with the real-time ocean analysis system used in the production of today’s forecast. The
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Figure 2. Schematic diagram representing the stages in the production of a calibrated probabilistic
forecast. The first stage is the initialization, which merges the physical world observations (yi
observations (yi, with probability p(yi))) and model (xi) information by adequate use of probabilities
at initial time ti. The initialization is also equivalent to a transformation H−1 from observation to
model spaces, and provides p(xi|yi), or the probability of a model state given the observations. The
model M is using an approximation of the laws of physics N, thus producing a probability forecast
in model space p(xf). The probability is estimated by means of an ensemble of forecasts. The final
stage at time tf is the calibration G−1, which estimates the probability p(yf|xf) of occurrence of
some event in the physical world (yf) given the model forecast probability.

Figure 3. Schematic procedure for forecast calibration of probabilistic forecasts. An ensemble of
coupled integrations initialized for the date of interest is used to sample the forecast probability
(magenta). A series of hindcasts initialized for the historical period sample the model climatology
(black). The differences between forecast and climatology provide insight about possible climate
anomalies and their statistical significance. In the figure, the horizontal blue arrow represents time:
the end of the arrow is real time while the length of the arrow represents the re-forecast period,
of arbitrary length (dotted line; typically 20–30 years or longer). The different short arrows (black
and magenta) represent the individual forecasts comprising the ensemble. A typical number of
ensemble members is 50 for a real time forecast, and 11 for the re-forecast.
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Figure 4. Progress in the seasonal forecast skill of the European Centre for Medium Range Weather
Forecasts (ECMWF) operational system during a decade. The solid bar shows the relative reduction
in mean absolute error of forecast of sea surface temperature in the eastern Pacific (NINO3). The
brown-striped bar shows the contribution from the ocean initialization, and the white-striped bar is
the contribution from model improvement (from Balmaseda, Fujii, Alves and Lee et al. 2010).

uncertainty in the ocean initial conditions—required for probabilistic coupled forecasts—
can be sampled by an ensemble of ocean (re-)analyses. The ocean reanalyses produced for
the initialization of seasonal forecasts are a valuable resource for climate variability studies
(Balmaseda et al. 2013), and have the advantage of being continuously brought up to real
time, which allows monitoring of relevant climate variables (Xue et al. 2010).

The production of seasonal forecasts is resource-demanding: the need for ensembles and
calibration implies the integration of the coupled model for several hundreds of years. This
computational burden limits the practical resolution of the ocean model, which is typically
of the order of one to one-quarter of a degree in the horizontal, and about 1–10 meters in
the vertical in the upper ocean.

The consolidation of seasonal forecasting as a routine operational activity during the last
decades has been possible thanks to the improvement in coupled models, data assimilation
methods, availability of forcing fluxes from atmospheric reanalysis, and the development
of the ocean observing system. Figure 4 shows the improvements in ENSO forecasts at
the European Centre for Medium Range Weather Forecasts (ECMWF) over a decade. The
improvements can be attributed equally to better initialization of the ocean and improved
coupled models (Balmaseda, Fujii, Alves and Lee et al. 2010).
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4. Initialization

The most common approach for initializing seasonal forecasts is the so-called full uncou-
pled initialization (Balmaseda and Anderson 2009). This basically consists of producing a
long ocean reanalysis (typically 20 years or longer) by assimilating ocean observations into
an ocean model driven by atmospheric fluxes. More recently, with the advent of decadal
forecast the so-called anomaly initialization (Smith et al. 2007) has become popular. In
this approach, only the anomalous state is assimilated without any attempt to correct the
model mean state in the initial conditions. The anomaly initialization is usually conducted
in coupled mode, but coupled and anomaly initialization are not synonymous, and there are
approaches where the initialization of the full state is done in coupled mode. The discus-
sion in this and the next section (Impact on forecast skill) assumes full initialization. In the
section below entitled “Assessment of initialization strategies,” we discuss the differences
and merits of full versus anomaly initialization.

a. Full initialization

Assimilation of observations into an ocean model forced by prescribed atmospheric
fluxes is the most common practice for initialization of the ocean component of a coupled
model (Balmaseda, Fujii, Alves and Awaji et al. 2010). The assimilation should improve
the estimation of the ocean state (reducing uncertainty and improving the mean interannual
variability), but ultimately it should improve the skill of the seasonal forecasts. These
objectives are challenged by the paucity of ocean observations, by the abrupt changes
in the ocean observing system, and by presence of model errors. (In other words, it is not
guaranteed that a good estimation of the real world can project in the model attractor and thus
evolve successfully into the forecasts.) In what follows we discuss why the initialization of
seasonal forecasts needs data assimilation. We will describe the ocean observing system, the
impact of data assimilation in correcting model error, and the need to apply bias corrections
for reliable representation of the interannual variability. The section ends with an example
of a seasonal forecast initialization system (that used to initialize the ECMWF System4
[S4] seasonal forecasting system, operational at the time of writing).

b. Why do we need to assimilate subsurface ocean data?

In seasonal forecasts the emphasis is on the initialization of the upper ocean thermal
structure, particularly in the tropics, where SST anomalies have a strong influence on the
atmospheric circulation.

A simple way of providing initial conditions would be to run an ocean model forced with
winds and freshwater fluxes from atmospheric reanalyses and with a strong relaxation of
observations of SST.

But the quality of the models and/or surface fluxes is usually not sufficient to provide an
accurate estimation of the ocean state. The uncertainty induced in the upper ocean by using
different wind products can be as large as the interannual variability (Ji et al. 1995). Figure 5a
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Figure 5. Time evolution of the upper 300 m averaged temperature in the equatorial Atlantic from
two ocean model simulations forced by different atmospheric fluxes (a). The magnitude of the
differences is comparable to the interannual variability. ERA15 and ERA40 are two consecutive
versions of the ECMWF Re-analyses for the Atmosphere. OPS refers to the fluxes from the ECMWF
operational output. (b) As above, but assimilating subsurface observations. The assimilation of
ocean observations is efficient in reducing the uncertainty in the ocean estimate resulting from
uncertainty in surface fluxes (although differences remain at the beginning of the record, since the
observations are scarce there). The time axis units are years in the 20th century.

shows the evolution of upper-300-m averaged temperature in the equatorial Atlantic from
two ocean-only simulations forced by different atmospheric fluxes. The magnitude of the
differences is comparable to the interannual variability. By assimilating ocean observations
it is possible to reduce the uncertainty in the ocean estimate. Figure 5b shows the equivalent
quantity in two equivalent ocean reanalyses, where the first guess is given by an ocean
model forced by the different surface fluxes, but this time subsurface ocean observations
are assimilated.

A distinctive aspect of data assimilation in the initialization of seasonal forecasts is the use
of observations to constrain the large-scale forced ocean variability. In other applications,
such as short-range weather or marine forecasts, data assimilation is used to constrain
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Figure 6. Time evolution of the ocean observing system by type of instrument (XBT, expendable
bathythermograph; SST, sea surface temperature).

mainly their chaotic nature; in the case of high-resolution marine forecasting, this implies
constraining the small (eddy) scales. In contrast, the observations in seasonal (and decadal)
forecasts are used to a large extent to initialize the wind-driven circulation, which often
occurs in large-scale modes.

In addition to reducing the uncertainty in the ocean state, the data assimilation of ocean
observations often also improves the estimation of the ocean thermal structure and the skill
in forecasting the tropical SST at interannual timescales (see for instance Balmaseda et al.
2013).

c. Ocean observing system

Figure 6 shows schematically the different components of the ocean observing system
and their availability in time. Sea surface temperature observations are essential for sea-
sonal forecasts. Most of the initialization systems also use subsurface temperature from
XBTs (Expendable bathythermograph; Goni et al. 2010); CTDs (Conductivity, Tempera-
ture, and Depth), usually from scientific cruises; moored buoys (TAO/TRITON in the Pacific,
PIRATA in the Atlantic, RAMA in the Indian Ocean; see McPhaden et al. 2010); and Argo
floats (Freeland et al. 2010). Salinity (mainly from Argo and CTDs) and altimeter-derived
sea-level anomalies (SLAs, since approximately 1993; Wilson et al. 2010) are also assim-
ilated. The latter usually need a prescribed external Mean Dynamic Topography (MDT),
which can be derived indirectly from gravity missions such as GRACE (Gravity Recovery
and Climate Experiment) and, in the near future, GOCE (Gravity field and steady-state
Ocean Circulation Explorer). Recent seasonal forecasting systems also include interactive
sea-ice, which is initialized using sea-ice concentration estimates from space-born instru-
ments (primarily built up from passive microwave data); these provide a record from 1979
until the present. Determination of sea-ice thickness from space is less mature. Estimates
based on ice freeboard are currently provided from high-inclination orbit by the CryoSat
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Figure 7. Left: Number of temperature (a) and salinity (b) observations within the depth range 400–
600 meters as a function of time per instrument type. The black curve is the total number of obser-
vations. The orange curve shows the number of assimilated observations in the ORAS4 reanalysis
(from Mogensen et al 2012). Right: Typical observation coverage in June 1980 (c) and in June
2005 (d). Note that the color coding for the instruments is not the same in the left and right
panels.

radar altimeter; data from laser altimetry was provided earlier by ICESat-1 and in the future
will come from ICESat-2. Brightness temperature from L-band radiometry such as those
in SMOS also provides estimates of thickness for thin-ice.

Figure 7 (left column) shows the number of subsurface temperature (top) and salinity
(bottom) observations in the depth range 400–600 m as a function of time, illustrating the
large increase in observations associated with the advent of Argo. The right panels of Figure
7 show the spatial observation coverage in June 1980 (top) and in June 2009 (bottom). The
properties of spatial and temporal sampling vary substantially between instruments: the
XBTs usually follow commercial ship routes, CTDs are associated with intense scientific
missions, and moored arrays sample the equatorial oceans at a few selected fixed positions.
Argo is the only observing system that samples the subsurface of the ocean uniformly,
measuring temperature and salinity up to a depth of 2000 m. Altimeter sea-level (not shown)
also samples the surface of the ocean quite uniformly, but a good relation between sea level
variations and subsurface structure is only possible in regions of strong stratification (the
tropics).
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Figure 8. Equatorial longitude-depth section of mean assimilation temperature increment from a
previous European Centre for Medium Range Weather Forecasts (ECMWF) ocean analysis system
(ORAS2). The contour interval is 2 × 10-4 ◦C/hr. The mean corresponds to the time-average during
the period 1987–2001 (from Balmaseda et al. 2008).

d. Assimilation increment and model error: Need for bias correction

Figure 8 shows the 1987–2001 average of a longitude–depth section of the assimilation
increments along the equator from a previous ECMWF ocean analysis (system 2). The
nonzero mean increment is indicative of a systematic model error. In this particular case,
the large-scale dipolar structure of the increment can be interpreted as a correction in the
slope of the thermocline (making it deeper in the western Pacific and shallower in the eastern
Pacific). This kind of error could appear if the equatorial winds were too weak, although it
may be due to incorrect ocean mixing.

Notwithstanding the source of error, Figure 8 shows that the data assimilation is cor-
recting the system bias, whereas the scheme assumes the first guess given by the model
background is unbiased. In practice, the presence of systematic error may introduce spuri-
ous temporal variability in regions where the observation coverage is not uniform in time,
which may be a serious problem when the ocean analysis is used to predict interannual vari-
ability (Balmaseda et al. 2007). This is illustrated in Figure 9, which shows the evolution
of 20-degree isotherm in the equatorial Atlantic for three experiments. The control CNTL,
in black, corresponds to an ocean simulation forced by atmospheric reanalysis fluxes. The
red curve (ASM) is an equivalent experiment where subsurface temperature is being assim-
ilated. There is a clear jump around 1999 caused by the advent of the PIRATA moorings.
The data from PIRATA are correcting the position of the model thermocline, and in doing
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Figure 9. Time evolution of the depth of the 20-degree isotherm in the equatorial Atlantic in an ocean
model simulation (CNTL, black), in a data assimilation experiment without bias correction (ASM,
red), and in a data assimilation experiment with bias correction (blue). The PIRATA observations
are correcting for the too-deep model thermocline, introducing a spurious interannual variability.
By applying a bias correction, the depth of the thermocline it is corrected for and the changes in
the observing system do not translate into spurious signals.

so introduce a large jump contaminating the interannual variability. The blue curve corre-
sponds to an assimilation experiment where a bias correction scheme (see later) is being
applied to the model (or first guess) before each analysis cycle. The bias scheme corrects
the model mean error, thus avoiding spurious signals each time that there are changes in
the ocean observing system.

The problem of bias is not exclusive to the ocean data assimilation systems; it is also an
important issue in atmospheric reanalysis (Dee 2005). Dee and Da Silva (1998) (DdS in
what follows) developed an algorithm for the online estimation and correction of the bias
in sequential data assimilation. But the general algorithm is costly, since it requires an extra
assimilation step to estimate the bias. A simplified DdS algorithm using a single step is also
possible, by assuming proportionality between the bias and state variables.

Bell et al. (2004) (BMN in what follows) implemented for the first time a bias correction
scheme in ocean data assimilation for tropical oceans. The BMN scheme was quite inno-
vative in that the bias correction is not applied directly to the temperature field, but applied
as a correction to the pressure gradient. In this regard, the BMN scheme deviates from the
DdS algorithm. Balmaseda et al. (2007) introduced a more general framework in which the
bias control variables were linked to the state variables by multivariate bias relationships.
In this way, the BMN scheme could be interpreted as a particular choice of multivariate
constraint. Thus, the analysis equations of a generalized bias correction were given by
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xa = xf + bf + K[y − H(xf + bf )]
ba = bf + L[y − H(xf + bf )] (1)

where xa and xf are the analysis and forecasts state variables respectively, and ba and
bf are the analysis and forecast bias variables. The latter are ignored in the standard data
assimilation. The last term on the right-hand side of the equation at the top represents the
assimilation increment, a correction applied to the forecast variables in order to obtain
the analysis. This is proportional to the differences between the observations y and model
variables x, often called innovation. Observations and model are compared by collocating
the model variables with the observations (in space, time, or other transformation) via the
so-called observation operator H. In the case represented by Eq. (1), the model variables
are also bias-corrected with the first estimate of the bias bf . The innovation is projected
back into the model space with the so-called gain matrices K (for the state variables) and L
(for the bias variables), which can in principle be different. Balmaseda et al. (2007) suggest
a linear relationship A between L and K:

L = AK (2)

In Eq. (2) A can be in general different from the identity, and represents different mul-
tivariate relationships in the state and bias variables. Figure 10, from Balmaseda et al.
(2007), illustrates the importance of the multivariate relations between state and bias vari-
ables: while correcting the bias in the pressure field reduces the bias in temperature and
velocity fields, the direct correction of the bias in the temperature field (A equals identity)
reduces the temperature bias, but significantly increases the error in the velocity field.

The bias correction algorithm also requires the prescription of a model for the time
evolution of the bias. The simplest and most widely-used model is that of constant-in-
time bias. Dee and Todling (2000) discuss this assumption, pointing out the pitfall that a
constant bias allows a single observation to influence the bias estimation indefinitely. The
introduction of a memory term may thus be desirable. Moreover, the systematic error may
not be constant in time: it may be flow dependent (e.g., depend on the diurnal or seasonal
cycle), or it may be associated with the nonstationary errors of the external forcing (such
as discontinuities in the atmospheric analysis system that provides the surface fluxes).

Balmaseda et al. (2007) propose a generic model for the time evolution of the bias. The
model bias correction scheme (Eq. 3) comprises an adaptive component (b′), evolving and
updated online, and a-priori component (b̄), which has been estimated from a previous
iteration.

bf
t = b̄+

t b
′f
t

b
′f
t = αb

′f
t−1

(3)

The a-priori component (b̄) can represent, for instance, a climatological error estimated
from a recent period with more complete observation coverage. This allows the extrapolation
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Figure 10. Equatorial longitude-depth sections of mean temperature increment (left) and vertical
velocity (right) in data assimilation experiments without bias correction (a, d), with bias correction
applied directly on temperature and salinity (b, e), and with bias correction applied on pressure
gradient (c, f). At the equator the adiabatic pressure gradient bias correction is preferred, since the
direct correction of temperature and salinity degrades the circulation (from Balmaseda et al 2007).

of recent data into the past, assuming that the dominant component of model error is station-
ary (or just depends on the seasonal cycle). The online component (b′) acts as a correction
to the term (b̄); it is modeled as an autoregressive model with a memory term α (typically
with a multiyear timescale), and it is updated with information derived from the assimilation
increments according to Eq. (1–2).

The following section provides an example of ocean data assimilation of seasonal fore-
casts. It summarizes the current ECMWF reanalysis system (ORAS4), and provides a spe-
cific example for the application of the bias correction algorithm.

e. An example of an ocean initialization system: the ECMWF ORAS4

The ORAS4 (Ocean Reanalysis System 4; Mogensen et al. 2012; Balmaseda et al. 2013)
provides ocean initial conditions for the ECMWF Seasonal Forecasting System 4 (Molteni
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et al. 2011). ORAS4 has been produced by combining, every 10 days, the output of an ocean
model forced by atmospheric reanalysis fluxes with quality-controlled ocean observations.

ORAS4 uses the NEMO ocean model (Madec 2008) with a horizontal resolution of
approximately one degree, and the NEMOVAR (Daget et al. 2009; Mogensen et al. 2012)
data assimilation system in its 3Dvar configuration. The ocean model is forced by daily
atmospheric-derived surface fluxes of solar radiation, total heat flux, evaporation-minus-
precipitation, and surface wind stress. These are from the ERA-40 reanalysis (Uppala et al.
2005) from September 1957 to December 1989, and ERA-Interim (Dee et al. 2011) there-
after. The heat fluxes are adjusted using a strong relaxation to gridded SST products. As the
relaxation coefficient is equivalent to about a two- to three-day timescale over a depth of 10
m, this is a strong constraint to track observed SSTs. The freshwater flux is also adjusted
using ocean observations: i) globally, by constraining the global model sea-level changes to
the variations in the altimeter-derived value, and ii) locally, via a weak relaxation (one-year
timescale) to a monthly climatology of surface salinity.

The analysis cycle is 10 days, and it is summarized in Eq. (1). The state xf produced
by integrating the NEMO model forced by daily surface fluxes and relaxed to SST is bias-
corrected with a bias term bf (as in Eq. 1–3) to produce the first guess (xf + bf ), which
is contrasted with each available observation y at its appropriate time and position via the
observation operator H.

The observations consist of temperature and salinity (T/S) profiles from the Hadley
Centre’s EN3 data collection (Ingleby and Huddleston 2007), which includes XBTs,
CTDs, TAO/TRITON/PIRATA/RAMA moorings, Argo profiles, and Autonomous Pinniped
Bathythermograph (APBs or elephant seals, T/S). Altimeter-derived along-track sea-level
anomalies from AVISO are also assimilated. The quality-controlled model-observations
departures are passed to the 3D-Var minimization to compute the optimal assimilation
increment, which is applied as a tendency forcing during a second model integration span-
ning the same time window as for the first guess, thus producing the analysis xa . The
analysis increments are also used to modify the bias first guess bf , producing an update
of the bias state ba (Eq. 1 and 2). The model bias correction scheme (Eq. 3) comprises an
adaptive component (b′), estimated online from previous observations, and a-priori com-
ponent (b̄), derived offline from a monthly climatology of model errors estimated during
the data-rich Argo period (2000–2008) and applied to ORAS4 from the beginning of the
record.

Figure 11 shows the offline temperature bias correction term used in ORAS4, for the
depth range 300–700 m. Clearly visible are the corrections needed by the western boundary
currents, which the low resolution of the model prevents resolving properly.

ORAS4 consists of five ensemble members spanning the period 1958 to present. The
five ensemble members sample plausible uncertainties in the wind forcing, observation
coverage, and the deep ocean. To sample the uncertainty in the deep ocean, five different
ocean states from an ocean model integration sampled at five-year intervals from 1960 to
1980 are used to initialize each of the ensemble members of ORAS4. The impact of this
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Figure 11. Temperature bias correction term estimated offline from Argo for the depth range 300 to
700 meters. The term is used in ORAS4 as a tendency term in the evolution equation to correct the
first guess. Units are degrees Celsius per hour (from Balmaseda et al. 2013).

step in the deep ocean is noticeable in the first 20 years of the reanalysis (see Figure 4 of
Balmaseda et al. 2013).

In addition to sampling the uncertainty in reanalysis spin-up, the ensemble of ORAS4
also samples uncertainty in the wind stress and its impact on the ocean state. Monthly wind
perturbations are added to the forcing fields during the production of the ocean reanaly-
sis, while the ocean model is integrated forward, resulting in spread in the ocean subsur-
face, especially along the thermocline. The perturbations are simply differences of monthly
anomalies (i.e., the differences in the mean seasonal cycle have been removed) between two
data sets—ERA-40 and NCEP-CORE atmospheric reanalyses—for the period 1958–2002
(40 years). The differences are the basis for a repository of perturbations (consisting of
40 realizations per calendar month), from which perturbations are randomly selected for
a given month. The perturbations are applied with a plus/minus sign, so the ensemble is
centered (see Vialard et al. 2003).

Quality improvements in ORAS4 relative to earlier ocean reanalyses are due to the use
of atmospheric surface fluxes from the ERA-Interim reanalysis, various improvements in
ocean modeling and data assimilation, and more comprehensive and improved quality-
controlled ocean data sets, including important corrections to the ocean observations. Bal-
maseda et al. (2013) evaluated ORAS4 using different metrics, including comparison with
observed ocean currents, RAPID-derived transports, sea-level gauges, and GRACE-derived
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Figure 12. The effect of initialization (ORAS4 compared to CNTL) in seasonal forecast skill.
Anomaly correlations between forecast and observed SST anomalies averaged over the central
equatorial Pacific (170◦W–130◦W, 5◦S–5◦N) are shown as a function of forecast lead time. The
CNTL is a nonassimilative ocean run, which is only constrained by surface fluxes and SST (from
Balmaseda et al. 2013).

bottom pressure. They showed that compared to a control ocean model simulation, ORAS4
improves the fit to observations and the interannual variability, and consistently results in
improved seasonal forecast skill of SST. Figure 12 shows the impact of assimilating data
in the skill of the seasonal forecasts. It shows the anomaly correlation skill of seasonal
forecast of SST in the central equatorial Pacific (170W–130W, 5S–5N), initialized from
ORAS4 (black) and from an equivalent run (CNTL) where neither subsurface observations
nor altimeter data are assimilated, so that it is only constrained by surface fluxes and SST.
The statistics comprise results from seasonal forecasts initialized in 40 start dates, three
months apart, over the period 1989–2008. For each date, an ensemble of five members is
integrated for seven months (from Balmaseda et al. 2013).

5. Impact on forecast skill

The skill of seasonal forecasts is often used to gauge the quality of the ocean initial
conditions. This may not always be appropriate, since the quality of the coupled model
is also important—if the major source of forecast error comes from the coupled model,
improvements in ocean initial conditions would have little impact on forecast skill. This is
something to bear in mind when interpreting results of the impact of ocean data assimilation
on seasonal forecasts. Several studies have demonstrated the benefit of assimilating ocean
data on the prediction of ENSO (Alves et al. 2004 and Balmaseda et al. 2008, among others).
The benefits are less clear in other areas, such as the equatorial Atlantic, where model errors
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(i) SST+Atmos+Oce
(ii) SST+Atmos
(iii) SST only

Figure 13. Impact initialization strategy in forecast drift (a) and normalized interannual variability
(b). Green uses SST (sea surface temperature) only, blue uses SST and atmospheric reanalyses,
and red uses SST, atmospheric reanalyses, and ocean observations. All the forecasts have been
conducted with the same coupled model (from Balmaseda and Anderson 2009). Although data
assimilation improves skill scores (not shown), it can also introduce initialization shocks. See text
for further discussion.

are large and there is no long history of moored observations, as in the Pacific. Ultimately,
the impact of initialization in a seasonal forecasting system will depend on the quality of
the coupled model (Stockdale et al. 2006; Balmaseda and Anderson 2009).

The contribution of the different sources of observational information in seasonal forecast
skill has been quantified by Balmaseda and Anderson (2009). They used a previous version
of the ECMWF seasonal forecasting system (S3) to evaluate three different initialization
strategies, each of which uses different observational information. Strategy (i) uses ocean,
atmospheric, and SST information; strategy (ii) uses atmospheric and SST information; and
strategy (iii) uses only SST, as in Keenlyside et al. (2008). The results from the different
strategies are summarized in Figure 13: strategy (i) is labelled as SST+atmos+ocean (red
curves), strategy (ii) is labelled as SST+atmos (blue curves), while strategy (iii) is labelled as
SST-only (green curves). In strategy (i) the coupled system thus starts close to the observed
state but it is not obvious that this leads to the most skillful forecasts as the method can have
undesirable initialization shocks. Strategy (iii) can reduce the initialization shock since
the atmospheric and ocean models will be in closer balance at the start of the coupled
integrations. Results show that the initialization strategy has an impact on both the mean
state and the interannual variability of coupled forecasts (Fig. 13). The left panel of Figure
13 shows how the model bias develops as a function of lead times for forecasts initialized
at four different starting dates (January, April, July, and October) for a given region in the
equatorial eastern Pacific. The results show that the way the model bias develops does indeed
depend on the initialization procedure. (The forecast coupled model is the same in all the
experiments.) The forecasts initialized with SST only develop a strong cold bias, while the
ones initialized with SST+atmos+ocean observations develop a warm bias. The right panel
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(a) (b)

Figure 14. Effect of observations in forecast skill for different regions, as measured by the reduction
in mean absolute error for the forecast range. (a) Ocean observations (OCOBS), atmospheric
observations (ATOBS), and both; for the forecast range 1–3 months, period 1987–2008. (b) Effect
of Argo, altimeter, and moorings for the period 2001–2006.

in Figure 13 shows the ratio between the interannual SST variability of the model versus
observations, illustrating that the initialization also affects the amplitude of the interannual
variability of the forecast anomalies. The interpretation of these results is fully discussed
in Balmaseda and Anderson (2009).

The relation between initialization shock and forecast skill is also discussed in Balmaseda
and Anderson (2009). They show that, in the particular system of study, initialization shock
does not preclude forecast skill, and the most skillful forecasts are those obtained when the
initial conditions are closer to the “real ocean state,” even if this causes sizable adjustment
processes.

The three experiments above can also be seen as observing system experiments. Dif-
ferences between strategies (i) and (ii) are indicative of the impact of ocean observations,
and those between (ii) and (iii) are indicative of the impact of the atmospheric observa-
tions that were used to produce the atmospheric reanalyses. Figure 14 (upper panel) shows
the relative reduction in the monthly mean absolute error (MAE) resulting from adding
information from the ocean and/or atmospheric observations for the one- to three-month
forecast range in the regions defined in the inset table. Observational information has the
largest impact in the western Pacific (EQ3), where the combined information of ocean and
atmospheric observations can reduce the MAE more than 50%. With the exception of the
equatorial Atlantic (EQATL), the best scores are achieved by strategy (i). This means that
for the ECMWF system, the benefits of ocean data assimilation and the use of fluxes from
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atmospheric (re)analyses more than offset possible problems arising from initialization
shock. Seasonal forecast skill can also be used to evaluate the ocean observing system.

The lower panel of Figure 14 shows the impact on forecast skill of Argo, moorings,
and altimeters. The statistics have been calculated only for the (rather short) Argo period
2001–2006 and so the impacts are best considered as indicative rather than definitive.
The figure shows that no observing system is redundant. Argo has a dominant impact
in the western Pacific (NINO4) and equatorial Indian Ocean. Argo is the only observing
system with a significant positive impact on the WTIO (Western Tropical Indian Ocean) and
SETIO (Southeastern Tropical Indian Ocean) regions. The information from the moorings
is still dominant in most of the equatorial Pacific, although in the NINO4 region it is
less important than that from Argo. Meanwhile, altimetry has a significant positive impact
in the equatorial Pacific, and is the only observing system with positive impact in the
north subtropical Atlantic. Again, for this period, all the observing systems have a negative
impact on the EQATL region, probably because the assimilation method is deficient here.
The impact of the TAO/TRITON array and Argo float data has also been evaluated with
the Japan Meteorological Agency (JMA) seasonal forecasting system (Fuji et al. 2008) by
conducting data retention experiments for 2004–2007. The results (not shown) are consistent
with those above, indicating that TAO/TRITON data improves the forecast of SST in the
eastern equatorial Pacific (NINO3, NINO4), and that Argo floats are essential observations
for SST prediction in the tropical Pacific and Indian Oceans.

Ultimately the impact of the observations in the seasonal forecasts depends strongly on
the ability of the assimilation to retain the relevant information. Fujii et al. (2015) compare
results from observing system experiments conducted in several systems, and they show,
for instance, that the impact of TAO/TRITON in the ocean estate varies a great deal among
data assimilation systems.

6. Assessment of initialization strategies

Systematic model error leads to difficulties in the forecasting process. This mostly hap-
pens when transferring of information between the observation space and the model space
is required, namely the initialization and the issuing of the forecast. At the initialization
stage, information needs to be transferred from observations to model space. When issu-
ing the forecast, the model output needs to be calibrated using reliable information about
the real world. In numerical weather prediction (NWP), the forecast typically covers 1–15
days, and, because of the relatively short forecast time, the difference between model and
observed climatologies can be ignored (i.e., the model error is neglected). At longer lead
times (monthly, seasonal, and decadal timescales) the systematic model error cannot be
ignored and strategies for accounting for model error are needed. Below is a description of
three different strategies (Full Initialization, Anomaly Initialization, and Flux Correction),
followed by a summary of the results from Magnusson, Alonso-Balmaseda, Corti et al.
(2012), who produced an assessment of the different forecast strategies.
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a. Full initialization

The full initialization strategy follows the NWP approach, i.e., the model (in this case
the ocean model) is initialized from an ocean analysis performed via data assimilation. The
analysis is a combination of the latest observations together with a short-range forecast (typ-
ically 10 days). By continuously using the information from the observations, the analysis
state is kept close to the attractor of the nature (although in poorly observed areas, a differ-
ence could still be present), and often an explicit bias correction is used. During the forecast,
the state of the model will diverge from the state of nature both due to the loss of predictabil-
ity, related to high sensitivity to initial conditions, and development of systematic errors. At
long lead times (monthly, seasonal, and decadal timescales), the model bias is often large
compared with the random component of the forecast error. In these cases the model bias
cannot be neglected and the strategy for accounting for the model systematic error is the
a-posteriori removal of it. The bias is corrected by applying a lead-time-dependent bias
correction in postprocessing. The bias correction is also made dependent on the seasonal
cycle. This is the strategy commonly used in monthly and seasonal forecasts (Stockdale
1997). For example, in an operational seasonal forecast issued every month with a typical
lead time of seven months, the estimation of 84 (7 × 12) bias correction terms is needed to
account for all lead times and all starting dates. The robust estimation of this large number
of bias fields requires a large data set of hindcasts (retro-perspective forecasts).

This strategy will fail if the bias is nonstationary, and can lead to suboptimal forecast skill.
The nonstationarity of the bias may be due to nonstationary errors on the initial conditions
(Kumar et al. 2012), or to flow-dependent bias arising from the nonlinear nature of the
system (Balmaseda and Anderson 2009). Generally speaking, if the systematic error is
large enough, the nonlinear terms will become nonnegligible and therefore a mere linear
calibration process will be insufficient.

The full initialization strategy may also be affected by the so-called initialization shock,
a term referring to rapid adjustment processes caused by the imbalance between the initial
conditions and the forecast model. This can occur if the forecast model is different from
the initialization model, or if the initialization does not preserve physical constraints. In
the case of the full initialization, the imbalance can be induced by the fact that the forecast
model is coupled, while the initialization has taken place in uncoupled mode.

Figure 15 from Kumar et al. (2012) illustrates the nonstationarity of the SST bias in
the NCEP CFS model (version 2). It shows that the bias depends on the lead time and the
seasonal cycle (accounted for in the a-posteriori removal of the bias), but it also shows
nonstationary behavior at interannual timescales (not accounted for in the strategy) leading
to degradation of forecast skill. The figure also hints at the presence of initialization shock,
since in some cases the bias at eight-month lead time is smaller than the bias at one-month
lead time.

Although the full initialization strategy follows the NWP approach, its practical imple-
mentation in monthly and seasonal timescales differs from NWP in three main elements:
i) the model bias is explicitly corrected during the data assimilation, ii) the forecast error
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Figure 15. Time evolution of the sea surface temperature (SST) forecast bias in the NCEP CFS
version 2. The figure shows the bias at one-month and eight-month lead times, and it illustrates the
nonstationarity of the bias (from Kumar et al. 2012).

needs to be removed a-posteriori, and iii) the forecast and initialization models are not the
same. The latter can lead to initialization shock, and it prevents using the bias information
obtained by the data assimilation in the forecast stage.

b. Anomaly initialization

The idea of using anomaly initialization is to avoid the nonstationary model drift and
initialization shock, by initializing the model around its own climatology. The procedure
is to calculate anomalies in the observations, with respect to the observations climatology,
and add such anomalies to the climate of the model. The method has been very popular for
decadal forecasts (Smith et al. 2007, among others).

Eq. (4) describes the anomaly initialization procedure, using the same naming convention
as in Eq. (1):

xa = xf + K[y − ȳ − H(xf − x̄)] (4)

Two new variables (ȳ and x̄) are introduced in Eq. (4) to denote the observed and model
multiyear climatology respectively. Therefore, while in Eq. (1) the assimilation increment
was proportional to the differences between model and observed full states, in Eq. (4)
the assimilation increment is proportional to the differences between model and observed
anomalies. The anomaly initialization is often called bias-blind data assimilation: the pres-
ence of bias is acknowledged, but there is no attempt to correct it. In the full initialization
(Eqs. 1–2), the bias was also corrected by the data assimilation.

The procedure of the anomaly initialization is not without problems. The estimation
of the anomaly requires the knowledge of the observed climatology (ȳ). This introduces
two kinds of difficulties. On one hand, it is important that the sampling period used for
the observed climatology is consistent with that used for the model climatology x̄. For
instance, a model climatology estimated for the preindustrial era should not be used for
the anomaly initialization of decadal forecast post-1960s, with an observed climatology
estimated during the period 1970–2005. The other kind of problem relates to defining the
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climatology of new or sporadic observations. For instance, some regions such as southern
oceans had not been observed prior to the advent of Argo. Most of the deep ocean has only
been observed sporadically with cruise data, and there is not enough information to define
a long-term climatology. To avoid this problem, the anomaly initialization strategy of the
ocean often uses gridded fields from existing ocean reanalysis. In this way, it turns an initial
weakness into a good advantage, since it means that different coupled modeling groups can
initialize their decadal forecasts with external ocean reanalysis, without the need of having
to develop data assimilation systems for their own models.

The problem with nonlinear interaction between mean state and anomaly is even more
acute in the anomaly than in full initialization, since the mean error is fully developed during
the coupled model integrations. Although it is often claimed that the anomaly initialization
avoids initialization shock, this is by no means guaranteed since it depends how the anomaly
is assimilated into the model. The structure of the observed anomaly may not be consistent
with the model mean state. For example, when anomalies are associated with displacement
of sharp fronts or gradients that are in different locations in model and observations, simply
adding the anomaly can lead to rapid adjustment processes. (Examples are anomalies asso-
ciated with vertical displacements of the equatorial thermocline, Gulf Stream, or sea-ice
edge.)

A more interesting advantage of the anomaly initialization, which is often not discussed,
is the avoidance of model drift. By avoiding model drift, the a-posteriori correction of the
forecast does not require the bias dependence on the forecast lead time (so typically only the
12-month climatology of the bias is required), and the bias estimators can be more robust.
This is more relevant for decadal forecast ranges, when it is also more computationally
expensive to conduct the calibrating hindcasts. The procedure requires, however, a long
integration to estimate the model climatology.

c. Flux correction

It is clear from a variety of studies that strong nonlinear interactions between mean state
and anomaly are at play in the coupled model forecasts. Model improvement is the ultimate
way of reducing model biases. However, this is a slow process, especially if the systematic
errors are related to model resolution (as in the case of the correct Gulf Stream). A temporary
solution, until the problems in the model are detected and solved, is to compensate for the
systematic errors by applying empirical corrections.

One specific correction is the so-called flux correction, applied only in the coupling
between the atmosphere and the ocean. The aim of this strategy is to avoid (or limit) the
model drift by adding a correction term to the model during the simulation, to avoid non-
linear interactions between model mean state and variability. In this strategy the empirical
correction of the forecast is done during the model integration rather than only in the final
calibration phase. Magnusson and colleagues investigated this topic, using both momentum-
flux correction and a combination of momentum and heat-flux correction (Magnusson,



354 The Sea: The Science of Ocean Prediction [75, 3

Alonso-Balmaseda and Corti et al. 2012; Magnusson, Alonso-Balmaseda and Molteni
2012). The following section provides a brief summary of their findings.

d. Assessment of initialization strategies

Full initialization, anomaly initialization, and flux correction have been implemented
in the ECMWF coupled forecasting system. The three strategies have been evaluated at
seasonal and decadal timescales. The results are presented along with the practical implica-
tions of the different strategies in Magnusson, Alonso-Balmaseda and Molteni (2012) and
Magnusson, Alonso-Balmaseda and Corti et al. (2012).

Magnusson, Alonso-Balmaseda and Molteni (2012) investigate the impact of the mean
state on the properties of ENSO in a set of coupled decadal integrations, where the mean state
and its seasonal cycle have been modified by applying flux correction to the momentum-
flux and a combination of heat and momentum fluxes. They show that correcting the mean
state and the seasonal cycle improves the amplitude of SST interannual variability and also
the penetration of the ENSO signal into the troposphere and the spatial distribution of the
ENSO teleconnections. An analysis of a multivariate PDF of ENSO shows clearly that
the flux correction affects the mean, variance, skewness, and tails of the distribution. The
changes in the tails of the distribution are particularly noticeable in the case of precipitation,
showing that without the flux correction the model is unable to reproduce the frequency
of large events. For the interannual variability, the momentum-flux correction alone has a
large impact, while the additional heat-flux correction is important for the teleconnections.

Magnusson, Alonso-Balmaseda, Corti, and their colleagues (2012) show that full initial-
ization results in a clear model drift towards a colder climate (although for other models the
drift could be towards a warmer climate). The anomaly initialization is able to reduce the
drift, by initializing around the model mean state. However, the erroneous model mean state
results in degraded seasonal forecast skill. The best results on the seasonal timescale are
obtained using momentum-flux correction, mainly because it avoids the positive feedback
responsible for a strong cold bias in the tropical Pacific. These results are illustrated in
Figure 16. It is likely that these results are model dependent: the coupled model used here
shows a strong cold bias in the Central Pacific, resulting from a positive coupled feedback
between winds and SST. At decadal timescales it is difficult to determine whether any of the
initialization strategies is superior to the other. Similar conclusions are reached by Smith
et al. (2013), using the MetOffice forecasting system.

7. Conclusions

It has been shown that seasonal forecasting of SST is an initial condition problem. In
order to initialize the upper thermal structure of the ocean it is important to assimilate ocean
observations.

Assimilation of ocean observations reduces the large uncertainty (error) in the ocean
model state due to the uncertainty (error) of forcing fluxes. Using information from
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Figure 16. Forecast drift in sea surface temperature (a) and skill in precipitation (b) in the central
Pacific from different forecast strategies: full initialization (red), anomaly initialization (purple),
momentum flux correction (green) and momentum and heat flux correction (blue). For comparison,
the skill of persistence is also shown (dashed black line). The best skill is achieved by the momentum
flux correction (from Magnusson, Alonso-Balmaseda and Corti et al. 2012).

SST, surface fluxes from atmospheric reanalyses, subsurface temperature and salinity, and
altimeter-derived sea-level anomalies is instrumental in the ocean initialization and may
improve forecast skill.

Because seasonal forecasts need a-posteriori calibration, a sample of the model per-
formance over a long enough period is required; this is obtained by performing a series
of coupled hindcasts during some historical period. A historical record of hindcasts is also
needed for skill assessment. Ocean reanalyses with reliable representation of the interannual
variability are then required to initialize these hindcasts.

The most common initialization strategy is the so-called full initialization, where the
data assimilation corrects the ocean model mean state, as well as the variability. In order
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to avoid spurious variability associated with changes in the observing system, consistent
ocean reanalysis requires an explicit treatment of the bias during the initialization procedure.
The bias estimation obtained during the initialization procedure could in principle be used
to correct model error during the forecasts. However, this is not possible when the full
initialization is conducted in uncoupled mode, which currently is the most common practice.
The separate initialization of the ocean and atmosphere systems can also lead to initialization
shock during the forecasts. A more balanced “coupled” initialization is desirable, but it
remains challenging.

The anomaly initialization is more frequently used in decadal forecasts, but shows weaker
performance than the full initialization, especially at seasonal timescales. In decadal fore-
casts the anomaly initialization shows practical advantages regarding the computational
cost of the calibration data set.

Systematic model error remains a difficult problem for seasonal forecasting and climate
predictions. An error in the mean state could affect the variability of the system. Results
indicate that the current forecast practices of removing the forecast bias a-posteriori or
anomaly initialization are by no means optimal, since they cannot deal with the strong
nonlinear interactions. A consequence of the results presented here is that the predictability
on annual time-ranges could be higher than currently achieved. The conclusion from the
ECMWF model that the correction of the model mean state by some sort of flux correction
leads to better forecasts needs to be assessed in other prediction systems. This may also lead
to further model improvements since flux correction may be a powerful tool for diagnosing
coupled model errors and predictability studies.
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