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Advanced wave modeling, including wave-current
interaction

by Alexander V. Babanin1,2, Andre van der Weshuijsen3,
Dmitry Chalikov4, and W. Erick Rogers5

ABSTRACT
The paper outlines principles of phase-resolving and phase-average wave models, with emphasis

on the state of the art of wave-current interaction physics. We argue that these interactions are the least
well-developed part of such models. Linear and nonlinear dynamics of waves on currents are discussed;
depth-integrated and depth-varying approaches are described. Finally, examples of numerical model
performance for waves on currents in realistic oceanic scenarios are presented.
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1. Introduction

By the beginning of the new century, three major technological advances brought the
oceanographic science essentially into a new era. These are satellite remote sensing, Argo
fleet, and modern computer modeling. The former two provide the first ever opportunity
of global long-term observations of the ocean surface properties—including winds, waves,
and, to a lesser extent, currents—and three-dimensional ocean dynamics, respectively. The
numerical modeling has taken on a basically new function. Provided the physics of the
models is well defined and the limits are well understood, it can play both a role of a virtual
laboratory or even of the ocean, with unlimited number of sensors and probes in every
location in space and at any moment in time, and of an analytical tool to scrutinize known
features and discover new phenomena. In case of the ocean and its waves, the models can
also be used for forecast: to predict the future conditions, and for hindcast: to study the past
ocean states.
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Ocean waves, even in simple, deep-water background conditions, represent one of the
most challenging research objects from the experimental, analytical, modeling, and statis-
tical points of view (see, e.g., Phillips 1966; Young 1999). Generated and forced by the
turbulent wind at the scale of thousands of wave periods (Janssen 2004), ocean waves are
subject to dissipation and strong nonlinear exchanges at an intermittent scale of tens of wave
periods due to wave-breaking events that last a fraction of a wave period (Babanin 2011),
complemented by weakly nonlinear interactions that drive the evolution of wave spectra at
the scale of tens of thousands of wave periods (Hasselmann 1962; Zakharov 1968). Ocean
waves are superposed by a variety of less common or weaker processes, such as rogue
waves linked to modulational instability of wave trains (e.g., Kharif et al. 2009; Babanin
and Rogers 2014), or upper-ocean mixing due to wave-induced turbulence (Kinsman 1965;
Ghantous and Babanin 2014), which are of great significance in some circumstances and
applications. It should be stressed that most wave flumes, analytical theories, and numerical
models are two-dimensional (2D), whereas the ocean is three-dimensional (3D), and many
wave processes in the three dimensions are different or altered significantly (e.g., Chalikov
et al. 2014).

Wave modeling efforts and applications can be broadly classified into two large groups:
phase-resolving (or direct) models and phase-average (usually spectral) models. Direct
models can explicitly simulate basic equations of fluid mechanics for the water, air, or even
two-phase media, and therefore extend the analytical research beyond its traditional range
of approximate and asymptotic solutions of such equations.

At oceanic scales, such models are not practical, and thus spectral models are employed
for wind-wave forecast. The spectral models are based on parametric, often speculative
approaches, but their physics lately has been advancing (see, e.g., Lavrenov 2003; Cavaleri
et al. 2007).

It should be mentioned that operational wave forecast is much older than the oceano-
graphic forecast. It is usually accepted as having started in 1942 for military needs (Rogers
et al. 2014), but one may go back in time to find earlier mention (Gain 1918; Montagne
1922). Ideas of predicting the wave spectrum can be traced back to Gelci et al. (1956,
1957), and since then the second- and third-generation wave models have been progressing
alongside technical developments in computing facilities. By comparison, the ocean fore-
cast is only about 20 years old (but not the tide predictions, which are much older). A side
product of such an early start is that for decades the wave forecast was considered a part
of meteorology. In a way, it can be justified since the waves are wind-generated, but the
surface waves are mostly part of the motion on the water side of interface and are strongly
linked to the upper-ocean dynamics including the ocean currents. It is only recently that
wave modeling has begun to establish its place in the mainstream oceanography. In this
review, the oceanographic role of surface waves is discussed.

In finite-depth and shallow environments, waves essentially become a different physical
object (see, e.g., Holthuijsen 2007). Dispersion is reduced, or even ceases, nonlinearity
grows, but active nonlinear mechanisms change, the balance between energy input and
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dissipation is no longer maintained, and a variety of new physical processes come into
existence because of various wave-bottom interactions and sediment response. Respective
wave models are notable for a lesser degree of physics and greater degree of parametric and
ad hoc tuning.

While parameterizations of white-capping dissipation and wind input has progressed
largely over the last few years, the most uncertain physics for ocean wave modeling and
forecast currently rests on wave-current and wave-ice interactions, when and where such spe-
cific conditions occur. Wave-ice interactions have long been an exotic field of research, but
with the Arctic opening from ice in summer months, wave-ice modeling acquires important
practical meaning. Among the various theories to explain wave-ice interactions, some dif-
fer qualitatively, i.e., wave scattering (without dissipation) and dissipation (with or without
scattering); others differ quantitatively to the extent that some theories predict wavelength
to increase in presence of ice, whereas others predict wavelength to decrease. In the field,
all the mechanisms are acting together, depending on their relative magnitude, and practical
guidance of the existing theoretical knowledge in forecasting waves in marginal ice zones is
limited. Additional complications in this regard are due to necessity of also knowing initial
conditions for the ice coverage and properties, and to be able to predict effects of waves on
ice—this makes wave-ice interaction an essentially coupled problem.

As far as ocean currents are concerned, these are common conditions both in the open
ocean and in coastal areas. Major currents such as the Gulfstream, Kuroshio, or Agulhas are
well known for harsh seas and high likelihood of abnormal (rogue) waves. Tidal inlets with
waves on strong and variable currents are a typical feature of shipping routes in coastal areas.
While linear effects of currents on waves, such as refraction, Doppler shift, or relative speed
with respect to the wind are assumed to be implicitly or explicitly included in wave-forecast
models (often unverified and not validated), nonlinear effects are usually left out or even
unknown. These include changes to nonlinear interactions in the presence of currents with
horizontal or vertical velocity gradients, wave–current energy and momentum exchanges,
nonlinear modifications of the wave spectrum.

The last, but not the least, modeling waves in the context of wave-induced effects in the
lower atmosphere and the upper ocean should be mentioned (e.g., Babanin et al. 2012). It is
rapidly becoming clear that many large-scale geophysical processes are essentially coupled
with the surface waves, and those include weather, tropical cyclones, storm surges, climate,
and other phenomena in the atmosphere, at air-sea and sea-land interfaces, and many issues
of the upper-ocean mixing and ocean currents below the surface. Besides, the wind-wave
climate itself experiences large-scale trends and fluctuations (Young et al. 2011), and is
subject to changes in the weather climate.

2. Phase-resolving models

Phase-resolving modeling of surface waves is the mathematical modeling that includes
explicit reproduction of the sea surface and velocity field evolution. Compared with
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spectral-wave modeling, phase-resolving modeling is more general since it is closer to real-
ity and operates with basic equations and a larger volume of variables. Generally, therefore,
this method is more complicated and takes more computational resources. The complex-
ity of wave modeling depends on additional assumptions. Periodic models usually use the
precise Fourier Transform method, so they are well suited for long-term numerical simu-
lations of wave field transformation due to nonlinearity, input, and dissipation of energy.
For nonperiodic processes, such as waves in a restricted domain or waves above nonpe-
riodic bottom topography, the Fourier presentation is inapplicable and numerical schemes
should be based on finite-difference presentations. Usually, such models are not as exact
as the models based on Fourier presentation, but in most cases the nonperiodic approaches
consider short-lasting processes when very high accuracy is not necessary.

The phase-resolving models are based on the equation of potential motion with free
surface: the Laplace equation for velocity potential and two boundary conditions - the kine-
matic condition on surface and the Bernoulli integral (dynamic condition). The simplest
way of phase-resolving modeling is calculation of wave field evolution on the basis of lin-
ear equations. Such approach allows us to reproduce the main effects of the linear wave
transformation due to superposition of wave modes, reflections, refractions, among others
(e.g., Belibassakis 2007). This approach is useful in many technical applications, but obvi-
ously cannot be employed when it is needed to reproduce the nonlinear nature of waves and
transformation of a wave field due to nonlinearity.

The nonlinearity can be taken into account in more sophisticated models that are derived
from the fundamental fluid mechanics equations with or without some simplifications. The
most popular approach is based on the nonlinear Schrödinger equation of different orders
(see Dysthe 1979), obtained by expansion of surface wave displacement. This approach
was very useful for many applications including the problem of rogue waves. The main
advantage of the simplified approach is that it allows us to reduce the 3D problem to the
2D (or 2D to the 1D problem). However, it is not always clear which nonrealistic effects
are eliminated or included in the model after simplifications.

This is why the most general approach being developed over the past few years is based on
the initial 3D or 2D equations (still potential). As mentioned above, all tasks based on these
equations can be divided into two groups: the periodic and nonperiodic problems. Assump-
tion of periodicity considerably simplifies construction of numerical models, but such for-
mulation can be applied only when domain is considered as a small part of a large uniform
area. For the limited domains with no periodicity, the problem becomes more complicated.

Standard method of solution in a 2D case is based on introducing the conformal coordi-
nates and reducing the problem to the one-dimensional. This allows us to make very simple
and fast calculations of wave dynamics (Chalikov and Sheinin 1998). The scheme was found
to be very precise, i.e., typical accuracy of solution for a sufficiently high resolution was
around 10−10. Such accuracy is not surprising, since the equations written in the conformal
coordinates become 1D evolutionary equations that can be accurately solved by means of
the Fourier Transform method without local approximations. High accuracy of solution and
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conservation of integral invariants are both crucial for the numerical wave simulations. The
ratio of timescale for waves (wave period) to timescale for the energy input and dissipation
is of the order of 10−3. Hence, wave motion is highly conservative, i.e., at time scales of
the order of wave period (in the absence of breaking), the motion is actually adiabatic.

The equations derived give a unique example of a fully nonlinear description of a natural
process with a nearly computer accuracy. This approach can be applied for investigation
of wave dynamics when the two-dimensionality of spectrum does not play an essential
role, for example, for investigation of rogue wave dynamics. The 1D approach, however,
considers an idealized wave field, since even the monochromatic waves in the presence of
lateral disturbances quickly develop a 2D structure for their crests (e.g., Pinho and Babanin
2015). A difficulty thus arising is not a direct result of increase of the dimension. The
principal complication is that, in three dimensions, the problem cannot be reduced to the
two-dimensional, and even for the case of a double-periodic wave field, there remains the
problem of solution of the Laplace equation for the velocity potential. Effective methods in
this regard are based on the full 3D equations and surface integral formulations (Clamond
and Grue 2001). The main advantage of the Boundary Integral Equation Methods (BIEM)
is that they are accurate and can describe highly nonlinear waves. The method of solution
of the Laplace equation is based on use of the Green function, which allows us to reduce a
3D water-wave problem to a 2D boundary integral problem.

The surface integral method is well suited for simulations of wave effects due to very large
steepness, and specifically for investigation of rogue wave generation and wave breaking.
However, the BIEM method seems to be very complicated and time consuming if applied to
a long-term evolution of a multi-mode wave field in large domains. Therefore, applications
of the method were illustrated by simulations of relatively simple wave fields, and it is
unlikely that the method can be applied to the simulation of long-term evolution or a
large-scale wave field with broad spectrum. Implementation of the multi-pole technique
for a general problem of sea wave simulations solves this problem, but obviously leads to
considerable algorithmic difficulties.

Currently, the most popular approach is the High-Order Spectral Model (HOSM) devel-
oped by Dommermuth and Yue (1987) and West et al. (1987). The method is based on
standard presentation of the Laplace equation solution in Cartesian coordinate system and
extrapolation of this solution onto free surface via the Taylor series. Accuracy of this method
depends on the accuracy of estimation of the exponential function with finite order of the
Taylor series. For small-amplitude waves and for the narrow wave spectrum, such accuracy
is evidently high. Efficiency of the HOSM approach for simulation of the low-frequency,
energy-containing part of the spectrum should be good. After including realistic input and
dissipation terms, the HOSM can be used successfully for research purposes for wave simu-
lation in suitable domains. However, for a case of the broad wave spectrum, which contains
many wave modes, the order of the Taylor series should increase. It is likely that the HOSM
model should have limitations when simulating evolution of waves with broadband spec-
trum for large domains.
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Direct methods for 3D waves include the elliptic boundary layer problem solved by
finite-difference methods. Such approaches to simulation of the unsteady free surface flows
based on full equations have been under development for at least three decades (see, e.g.,
Bingham and Zhang 2007). The main advantage of this method is that it is based on initial
equations being transformed into the surface-following coordinate system. All of the papers
of this group were mostly dedicated to technical applications of the water wave theory, for
example, to calculations of dynamic load on submerged bodies or to simulation of the wave
dynamics in a domain with complicated shape. A long-term evolution of such water motions
was never simulated; this is why exact conservation of energy was not the main priority of
such models. Applicability of these models for investigations of nonlinear properties of sea
waves is also uncertain.

Another method for solution of the 3D equations is based on presentation of velocity
potential as a sum of linear and nonlinear components (Chalikov et al. 2014). Advantage
of this presentation is due to the nonlinear components having simple vertical structure and
being about two decimal orders smaller than linear components. This model is most suited
for simulating long-term evolution of multi-mode wave field.

All phase-resolving models can be extended by including algorithms for input and dissi-
pation of energy. This makes the whole approach highly efficient for investigation of physics
of realistic surface ocean waves.

3. Spectral models

Evolution of wind-generated waves in water of finite depth can be described by the wave
action N = F/ω balance equation

∂N

∂t
+ ∇ · [(cg + U)N ] + ∇k · [ckN ] = I + L + D + B

ω
. (1)

where F(ω, k) is wave energy density spectrum, ω is intrinsic (from the frame of reference
relative to any local current) radian frequency, k is wavenumber (bold symbols signify vector
properties). In linear case, temporal and spatial scales of the waves are linked through the
dispersion relationship

ω2 = gk · tanh(kd) (2)

where g is the gravitational constant and d is water depth. Note two asymptotic versions of
this equation, which signify the deep water when kd � 1, i.e., when Equation (2) becomes a
simple algebraic function ω2 = gk, and the shallow water when kd � 1, i.e., ω/k = √

gd.
The latter indicates nondispersive environment when phase speed of the waves c = ω/k

does not depend on the wavelength and frequency.
The left-hand side of Eq. (1) represents time–space evolution of the wave action density

as a result of the energy source terms on the right. On the left, cg is group velocity, ck

means the spectral advection velocity, and U is the current speed. ∇ here is the horizontal
divergence operator, and ∇k is such operator in spectral space.
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On the right, source terms are phenomenologically represented by atmospheric energy
input from the wind, I ; nonlinear interactions of various orders within the wave spectrum,
L, whose role is to redistribute the energy within the spectrum; dissipation energy sinks, D;
wave-bottom interaction processes, B; and more sources are possible in specific circum-
stances. Note that all the source terms, as well as the group and advection velocities, and
the advection current are spectra themselves. We refer the reader to Cavaleri et al. (2007)
for further details.

In the context of wave–ocean interactions, both left-hand side and right-hand side have
their meaning. U is the advection current velocity that in general should depend on the
vertical profile of the ocean current and on steepness (nonlinearity) of the waves at different
spectral scales, i.e., to describe coupled wave-current nonlinear exchanges (but in practice
is usually approximated by the speed of drift current). cg defines horizontal propagation of
wave energy; ck means the spectral advection velocity to represent refraction (turning of
wave crests) and change of wavelength when waves enter finite depths (shoaling), or the
dispersion relation (2) is modified due to some other circumstances such as, for example,
presence of the surface ice.

On the right, L is a conservative term, i.e., its integral is zero, but the other integrals
define energy fluxes in and out the wave system.

EI =
∫

I (ω, k)dωdk (3)

is the total flux of energy from the wind to the waves. Note that, depending on the relative
speed of wind U10 and wave speeds c(ω, k) = ω/k, contributions to the total flux can be
both positive (from the wind to the waves if U10 > c) and negative (from the waves to
the wind if U10 < c). In the tropics, for example, where the wave climate is dominated by
swells produced at high latitudes, the local winds are typically light and therefore the wind
climate can be actually dominated by wave-induced winds (Hanley et al. 2010).

It should be noted that the energy input to the waves is generally accepted as a purely
atmospheric exchange. In principle, however, energy input from the ocean side to the surface
waves of scales accommodated in Eq. (3) is perceivable. For example, upper-ocean currents,
tides, or internal waves can provide such dynamics. Given the amount of energy stored in the
ocean movements, this could have large impacts on surface wave fields, even if localized,
but it would be fair to say that it has not been considered by the wave-ocean modeling
community in practical terms.

Integrating the momentum-input spectrum gives the total momentum flux

τw =
∫

I (ω, k)/c(ω, k)dωdk =
∫

I (ω, k)
k
ω

dωdk (4)

which is an important measure of wind-wave interactions (see, e.g., Tsagareli et al. 2010).
Together with the tangential viscous stress τν, it forms the total wind stress at the ocean
surface
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τ = τw + τν, (5)

and this stress is known independently (usually through empirical parameterizations of the
so-called drag coefficient) and thus can be used as a constraint or for validation of the wind
input term I . On the other hand, the total stress is often the main, if not the only, property
that expresses dynamic exchanges in large-scale air-sea models. Apart from situations of
light winds, the wave-induced form drag (4) provides a dominant contribution to this total
stress (e.g., Kudryavtsev et al. 2001) and, thus, if the wave-model physics is well defined
and validated, such models can provide explicit rather than empirical estimates of fluxes
for General Circulation Models if those are appropriately coupled with wave models.

The dissipation function D has a similar meaning in the context of wave-ocean dynamic
exchanges, but with some essential distinctions. First, the integral

ED =
∫

D(ω, k)dωdk (6)

is the total flux of energy out of the wave field. The energy passed to the ocean is largely
spent on generating turbulence near the surface and on work against buoyancy forces acting
on bubbles injected in the course of the wave breaking.

Unlike the input, however, which only occurs on the air side of the interface, the loss (6)
can go both to the ocean below and to the atmosphere above the ocean surface. Numerical
simulations of Iafrati et al. (2013), for example, showed that up to 80% of wave energy due
to breaking can be actually dissipated through the atmospheric turbulence.

The momentum-loss integral of dissipation function gives the so-called radiation stress,

τr =
∫

D(ω, k)
k
ω

dωdk (7)

which is presumed to be going to the currents (although some of it may in fact be going
back to the wind or to the bottom in shallow areas). It should be pointed out that, in the
present wave models, radiation stress is parameterized in terms of wave-height difference
along the propagation direction. Obviously, such parameterization does describe the energy
dissipation, and can then be used to estimate the momentum loss, but only in the areas where
dissipation (6) is much larger than the energy input (3), i.e., usually in shallow waters. In
deep water, the mean wave height is not a proxy for the energy loss. It may in fact grow
under wind action, or not change if this action is balanced by the white-capping dissipation,
but the integral (7) and hence the radiation stress, is not zero.

Wave-ocean-bottom interactions in finite depths, depicted by term B in (1), are very rich.
Finite depths are characterized by the condition of kd ∼1 (wavelength is comparable to the
water depth d) and, their further subdivision, shallow nondispersive environment waters by
kd � 1 as mentioned above. Dispersive-wave nonlinear dynamics slow down in finite and
shallow depths, weaken, or cease, but other nonlinear behaviors come into existence.

Wave exchanges with the bottom include bottom friction, formation of ripples, sediment
suspension, and transport if the sea bed is sandy, generation of bottom waves if the bottom is
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muddy, percolation, among others. Long-shore and cross-shore currents, rip currents result
from radiation stresses (7), infragravity waves are produced by combined action of wave
breaking and nonlinear wave groups, which can be subsequently reflected back to the deep
ocean or trapped by coastal bays.

a. Wind input

It is generally accepted that the energy flux from the wind to the waves is due to work of
pressure stresses correlated with the surface slope (e.g., Young 1999):

I = 1

ρwg
p

∂ς

∂t
(8)

where ρw is water density, p is atmospheric pressure at the surface, ζ is surface elevation,
and overbar represents an average with respect to time. Pressure has to have a component in
quadrature with surface elevations, in order for this mechanism to work—note that the flux
can be both positive and negative as mentioned above. There are a number of theories that try
and explain the nature of such wave-induced pressure, ranging from the phenomenological
(Jeffreys 1924, 1925) through the quasi-laminar (Miles 1957, 1958) to the fully turbulent
(Belcher and Hunt 1998).

As such, this is the only source function in (1) which can be directly measured. The
omnidirectional quadrature spectrum provides fractional growth rates γ(ω) so that

I (ω) = γ(ω)ωF(ω). (9)

The measurements, however, are challenging. They need to be taken in a wave-following
system, in order to keep the air-pressure probe dry and still take readings near the surface
below wave crests. Up to date, only a handful of such experiments, field and laboratory, have
been done and only one field experiment carried out such measurements in a broad range of
conditions including strong winds (Donelan et al. 2005, 2006). Even then, only frequency
spectra have been measured and directional distribution of the wind input remains unknown,
although is imposed in models, usually as a cosine distribution following the suggestion of
Plant (1982) (see, however, Shabani et al. 2016).

It should be mentioned that the input term (8) can only be applied to the water surface once
the waves already exist. Practical importance of the very early stages of wave development
is small, but for spectral models of wave forecast, which often need a cold start from the
flat surface, this is of principal significance—if there is no initial spectrum in (9), the wind
input will always remain zero. The generally accepted basic theory for this kind of wave
generation is that of Phillips (1957), which relies on turbulent vortexes on the air side of
interface, propagated by the wind at a phase speed of waves being generated. This theory
has never been verified experimentally, and other mechanisms of the initial wave generation
such as, for example, Kelvin-Helmholtz instability, are also possible.
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As mentioned above, for surface waves in the range of wavelengths from centimeters to
kilometers, the wind (directly or indirectly) is regarded as the only source of energy and
momentum, but it is not impossible that at some circumstances the waves can gain energy
from other interactions.

b. Dissipation sinks

Dissipation function (or rather functions) is as important for modeling the ocean waves,
as the input term. As soon as the waves appear, the dissipation mechanisms activate, and the
wave growth and evolution is always a balance between energy inputs and outputs. Here
we refer to a review book on this topic (Babanin 2011).

Unlike the only energy input, dissipation is recognized as a variety of superposed pro-
cesses, not necessarily related, which effectively require separate dissipation terms in (6),
i.e., D = D1 + D2 + D3 . . . The primary dissipation of wind-forced waves is due to wave
breaking, which is an intermittent, rapid, and highly nonlinear process. It happens at the
scale of tens of wave periods, but an individual breaking wave loses its energy and momen-
tum, slowly accumulated due to the wind forcing, within a fraction of wave period. This
dissipation is only active when mean wave steepness (or spectral density) is above a certain
limit Fth(ω)—low steepness waves do not break.

The wave-breaking dissipation is routinely called “white-capping,” but it should be
remembered that micro-breakers do not produce whitecaps, and they are actually much
more widespread (e.g., Jessup et al. 1997). Another feature of the white-capping dissipa-
tion that distinguishes it from the wind input is that it is not local in wavenumber–frequency
space: waves at long scales up to peak frequency ωp affect the breaking and dissipation at
short scales, and hence the dissipation term has a cumulative integral of the wave spectrum
and is very different from the input term (9):

D(ω) = −γ1(ω)ω(F (ω) − Fth(ω)) −
∫ ω

ωp

γ2(ω)ω(F (ω) − Fth(ω))dω. (10)

Eq. (10) is an example that accommodates both the threshold and cumulative behavior, and
different implementations of this term now exist including its dimensionless and nonlinear
forms (e.g., Ardhuin et al. 2010; Rogers et al. 2012).

Once the wind forcing is reduced or ceased, or the waves propagate outside the storm
area, they become swell and the breaking stops. Therefore, swell dissipation should be of
completely different nature. Unlike the white-capping dissipation, it does not have thresh-
old and is not intermittent. It is a continuous and slow process; swells can cross entire
oceans subject to gradual decay due to such interactions. The main mechanisms usually
considered as such dissipation are generation of turbulence by surface waves, either in the
water (Babanin 2006, 2011) or on the air side (Ardhuin et al. 2009), while the viscous
attenuation of water waves is regarded negligible. It should be mentioned that the so-called
swell dissipation is present in the wind-generated waves also, albeit relatively small by
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comparison with white-capping, but can become dominant, for example, at the peak of
Pierson-Moscowitz spectrum when the waves are not steep enough to break.

While wave-breaking and swell dissipations are ever-present, other wave-attenuation
mechanisms can be very important locally and in specific circumstances. Among such
mechanisms, for example, is interaction of waves with adverse or oblique winds (e.g.,
Donelan 1999). Sometimes, it is treated as negative wind input, but essentially it causes
loss of energy from the surface waves and hence their dissipation.

c. Nonlinear interactions and other source terms

In the context of wave modeling, the term nonlinear interactions is loosely (but not always
strictly) attributed to the energy exchanges within wave system (i.e., wave fields or wave
spectrum, depending on whether physical space or Fourier space is being modeled), which
do not bring energy in or out of the system, but rather redistribute it within. For example,
the wind input (9) can be nonlinear if, for example, the growth rate γ(ω) is a function of
spectrum F(ω), such input function was proposed by Donelan et al. (2006), but it would
not be held responsible for nonlinear interactions in the traditional context of spectral wave
modeling. Neither would be a dissipation function, even though in some spectral models
the redistribution of wave energy within the wave spectrum is explicitly attributed to wave
breaking (e.g., Donelan et al. 2012).

The most traditional perception of the nonlinear-interaction term in spectral wave models
is that due to resonant four-wave interactions, as proposed originally by Hasselmann (1962),
but these days usually derived from the Zakharov (1968) equation. Unlike the input and
dissipation source functions, which are highly empirical, this term is described analytically
and usually perceived as conservative and known exactly. In reality, however, the exact
integral equation that describes this term is computationally very expensive and therefore,
even with the modern-day powerful computing facilities, cannot be employed for opera-
tional forecast. Instead, variations of the Discrete Interaction Approximation method (DIA;
Hasselmann et al. 1985) are routinely used for practical needs. Moreover, only a limited
number of frequencies around the spectral peak are usually used in such models, and hence
some nonlinear fluxes that are supposed to transfer energy to small scales with the spec-
trum are lost, and therefore practical implementations of the nonlinear term are not strictly
conservative either.

Quasi-resonant nonlinear interactions are not depicted by the Hasselmann equation, but
they are by the Zakharov Equation, and respective source terms suitable for spectral models
have also been derived (Annenkov and Shrira 2006; Gramstad and Stiassnie 2013) and
implemented in spectral models (Gramstad and Babanin 2016). Not only do they account
for some missing part of energy exchanges, but most essentially for missing dynamics, the
so-called modulational instability (Zakharov 1966 1967; Benjamin and Feir 1967; Yuen and
Lake 1982). This instability is responsible for large individual waves and wave breaking,
and is impaired in directional wave fields (e.g., Onorato et al. 2001; Janssen 2003). It is of
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great significance, however, if the angular spread is narrow enough, which can be the case,
for example, for waves on currents (e.g., Shrira and Slunyaev 2014).

The resonant and quasi-resonant interactions cease as the water shallows and the waves
become less dispersive. Other nonlinear dynamics, however, emerge and gain significance,
such as triad interactions (e.g., Young and Eldeberky 1998) or infragravity waves (e.g.
Herbers et al. 1995). The latter, however, takes us far away from the energy-conserving
nonlinear exchanges and into a broad suit of new dynamics important in finite depths.
Here we will refer to Komen et al. (1994), Cavaleri et al. (2007), Holthuijsen (2007) for
reviews of these specialized topics. Another broad range of new dynamics that gain attention
lately is wave-ice interactions (see e.g., Montiel et al. 2016) for a recent update. As already
mentioned, many more energy source and sink terms are possible and used in specific
circumstances.

4. Waves on currents

It would be fair to say that the wave-current interactions are the least well-described
physical mechanisms in the models for wave forecast. While linear wave effects are usually
included, nonlinear effects are usually not, and some of them are not even known or well
understood. We refer to Mei (1983) and a recent review by van der Westhuijsen (2016) of
the wave-current problem.

The linear effects contain changes to the frequency, wavenumber and direction, including
nonstationary and nonuniform currents, Doppler shifting and refraction, which are accom-
modated in the action balance equation (1). For practical applications, changes of the relative
wave speed with respect to the wind is of significance (Haus 2007), and are also incorporated
in recent versions of wave forecast and hindcast models.

In equation (1), however, with source and sink functions such as input (9) and dissipation
(10), the linear kinematic effects due to currents should cause significant (and nonlinear)
dynamic consequences. The wind input, for example, is influenced both by variation of
steepness (as a result of wavenumber change) and refraction. The steepness affects growth
rates γ(ω) (Donelan et al. 2006), and the direction with respect to the wind changes the
relative wave speed (Haus 2007). As a result, the input becomes a nonlinear function of the
wave spectrum F(ω).

Most essentially, however, the wave steepness controls the wave breaking and hence
the dissipation function (10). This is a very complex behavior, nonlinear, thresholded, and
cumulative, as described above. Besides, wave breaking further impacts on the atmospheric
boundary layer (Iafrati et al. 2013) and the wind input (Babanin et al. 2007). Thus, conse-
quences of waves entering, propagating along or across or leaving the currents, even in the
context of purely linear kinematics of such waves, are quite complicated. Since, moreover,
practical implementations of source and sink terms (9) and (10) are highly empirical and
usually obtained and tested for some simple conditions of wave evolution, their validity
when modeling waves on the currents is still largely an open question.
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One specific condition of waves on currents, responsible for dangerous seas and even
(supposedly) rogue waves, is when waves are entering opposing accelerating currents. Such
situations are regular occurrence, for example, at the southern tip of Africa where strong
Agulhas Current down the east coast meets also strong swells propagating north from the
Southern Ocean. Technically speaking, any tidal inlet can be subject to such situation daily,
depending on wind (and hence wave) direction during the ebb tide.

Waves propagating into an opposing current gradient with increasing strength will expe-
rience an increase in the intrinsic frequency ω (reduction in wavelength according to (2)),
which causes an increase in wave height due to (1). Hence, wave steepness is rapidly grow-
ing, as well as wave breaking. This effect is known and well appreciated, but is not well
understood and described analytically, and performance of wave models in such conditions
is usually poor due to inadequate dissipation functions (van der Westhyijsen 2012). It should
be noted that a following current that decelerates also causes wave steepening.

Wave steepening also brings about various nonlinear dynamics not accommodated in
phase average models. In particular, modulational instability, which can produce high indi-
vidual waves, even rogue waves, depends strongly on steepness (e.g., Tulin and Waseda
1999) and, furthermore, becomes very rapid in presence of currents (e.g., Chawla and Kirby
2002).

An asymptotic situation of waves meeting an opposing current is when velocity of the
current approaches the wave group velocity, and thus, according to the linear theory, the
waves should be blocked. In reality, modulational instability or other nonlinear effects can
cause downshifting of the wave energy, and hence penetration of waves beyond the blocking
point (Babanin et al. 2011).

The ocean surface is two-dimensional, and currents also have lateral velocity gradients.
Respective refraction of currents can express itself in wave focusing and trapping, which
is a phase-resolving effect and would not be revealed in outcomes of modeling the action
balance equation (1) (see, e.g., Lavrenov (1998) or Zhang et al. (2009) more recently). Non-
linear dynamics of wave-current trapping can also be of importance (Shrira and Slunyaev
2014).

In wave-current research, currents are often considered depth-integrated or uniform ver-
tically. Such approximation works well for tidal currents or in shallow water, but in the open
ocean surface currents are also ubiquitous. Such currents will have an exponential vertical
velocity gradient, which is usually different from the vertical gradient of the wave orbital
velocity, and therefore nonlinear wave-current interactions become inevitable.

5. Effects of waves on currents

Surface waves are essentially a 3D phenomenon. The vertical exponential profiles for
the orbital velocity and mean Stokes drift are a necessary part of the propagating surface
oscillations, extending down into the water at the scale of wavelength (∼200 m in the open
ocean). If, for example, a plunging wavemaker in a wave tank produces water oscillations
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with a linear vertical velocity profile, the wave train will not propagate forward like this and
will adjust it to an exponential vertical profile to fit the corresponding wavenumber:

v = v0 exp(−kz) = a0ω exp(−kz) (11)

where a0 and v0 are the surface amplitude and orbital velocity, respectively (in linear sense).
Any modifications to the surfaces waves imply respective changes to the velocity profile,

and the reverse is also true. If the orbital velocity profile is modified, due to presence of the
currents, for instance, this should reflect on the surface wave fields.

Energy and momentum of the wave motion by definition is concentrated near the surface
at the wavelength scale, and therefore are small by comparison with energy of, for example,
tides or geostrophic currents. As a result, even weak nonlinear exchanges between surface
waves and such currents can impact significantly on wave fields. For surface currents,
however, and for currents in shallow waters comparable to wave lengths, the wave-current
dynamic exchanges can influence the mean flow or ocean circulation locally.

a. Depth-integrated effects

In the depth-integrated approach, the continuity and momentum equations (the latter are
for horizontal and vertical velocities separately, with account for viscous stresses, but not
turbulent stresses), are written for the depth-integrated mean current velocity U . The mean
current is averaged over wave period, and instantaneous current u includes superposed wave
oscillation ũ:

ui(x, z, t) = Ui (x, t) + ũi (x, z, t). (12)

Here, index i signifies coordinate axes, x is horizontal vector, z vertical coordinate, t is time.
z-integration is from the bottom to the free surface (surface elevation ζ). If averaged over
the wave period, the last term is zero for linear waves, but for nonlinear waves the Stokes
drift becomes a part of the mean flow. We refer to Mei (1983), van der Westhuijsen (2016),
and will mention here that kinematic and dynamic boundary conditions are applied at the
free surface and the bottom. The surface stress τs is composed of the atmospheric stress
(including wind stress) and surface tension, applied to the wavy surface, and the bottom
stress τb is defined by the no-slip condition (bottom can be sloped).

The depth-integrated continuity equation develops into:

∂ < ς >

∂t
+ ∂

∂t
[(d+ < ς >)Ui] = 0 (13)

where < . . . > denotes time averaging over several wave periods. The wave-averaged form
of the horizontal momentum equation (if viscous stress, surface, and bottom slopes are all
assumed small) becomes

ρw(d + ς̄)

[
∂Ui

∂t
+ Uj

∂Ui

∂xj

+ g
∂ ς̄

∂xj

]
+ ∂Sij

∂xj

= τs
i − τb

i . (14)
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Here, i and j are horizontal coordinates, ς̄ is the mean free surface. Sij is the radiation stress
tensor, which, if the viscosity is neglected, is written out as follows:

Sij =<

∫ ς

−d

(ρwũi ũj + pδij )dz > −ρwg

2
(h + ς̄)2δij . (15)

In (15), δij is the Kronecker symbol, the first term in the integrant represents the amount of
momentum transferred by the water particles in the wave orbits, the second the transfer due
to normal pressure, and the last term represents the hydrostatic pressure. Finally, within the
same assumptions, the vertical velocity

Uz = 0 (16)

(no mean vertical flow).
Note that the hydrodynamic model above, and therefore the radiation stress formulation

Eq. (15), do not explicitly take wave breaking into account. Instead the momentum lost by
breaking waves is exchanged between the wave field and the mean flow (see also Garrett
1976; Smith 2006).

Confusions exist in the oceanographic literature in this regard because, indirectly, the
wave breaking may be accounted for through the variation of the mean water level. These
are conditions when the breaking is strong and frequent (scale of tens of wave periods or
less), and therefore the wave energy (and height) cannot be compensated by the wind input
(scale of thousands of wave periods). These are typically situations of rapid shoaling.

Such a situation was first discussed by Longuet-Higgins and Stewart (1954) and obtained
numerous applications in coastal modeling and engineering. They considered a one-
dimensional case (x-axis) of a monochromatic wave train approaching a mild-sloped beach,
on which the waves shoal and ultimately break. Here, the wave breaking is not explicitly
included, but is responsible for variation of the wave height ς̄. As a result, the non-uniform
cross-shore distribution of the radiation stress is formed

Sxx =<

∫ ς

−d

(ρwũ2
x + p)dz > −ρwg

2
(d + ς̄)2. (17)

If stationary condition is reached (mean horizontal flow Ux = 0), wind and bottom stresses
are neglected, Eq. (14) becomes

dSxx

dx
+ ρwg(d + ς̄)

d ς̄

dx
= 0. (18)

This gives us the direct relationship between the gradient of the cross-shore radiation stress
dSxx/dx and the slope of the mean free surface d ς̄/dx Hence, for a given wave field, by
integrating (18) from the offshore towards the coast, a cross-shore gradient in the water
level can be obtained. It is known as wave-induced set down and set-up.

Van der Weshuijsen (2016) distinguishes two zones. The first is leading from the offshore
up to the breaking point where energy gains or losses are typically gradual (e.g., wind input
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or bed friction), and the second from the breaker line to the shore, where the waves rapidly
lose their energy (and height) due to breaking.

In the first zone, the mean surface ς̄ becomes negative (lowering of the mean surface
level), with increasingly negative values as the total depth reduces. This phenomenon is
referred to as wave-induced set-down, and occurs because the radiation stress Sxx increases
with decreasing depth, in this non-dissipative approach. Considering the region from the
breaking point shoreward, as long as the bed slope stays positive, slope of the mean free
surface will also be positive, a phenomenon known as wave-induced setup.

The other well-known application of non-dissipation wave radiation stresses in shallow
waters is the phenomenon of longshore current generation, also introduced by Longuet-
Higgins (1970a, b). This process is two-dimensional, with y-axis oriented alongshore. The
incoming wave field is uniform along the length of the beach (y-axis), and the waves refract
towards shore normal and ultimately break as the depth reduces.

Considering that the flow and water level will be uniform along the infinitely long coast
(∂ ς̄/∂y = 0), assuming that the cross-shore flow will be zero (Ux = 0) and neglecting the
surface stress τs (but not the bottom stress τb in this exercise), we have for the longshore
current Uy the following balance

∂

∂t
[ρw(d + ς̄)Uy] = −∂Syx

∂x
− < τb

i > . (19)

Therefore, as waves obliquely approach a beach from deep water, the negative cross-shore
gradient of the radiation stress term ∂Syx/dx (mainly due to wave breaking) will tend to
accelerate the longshore current Uy .

It is now clear why τb was not neglected initially like in the case of wave setup above.
The acceleration of Uy will in turn increase the bed stress term τb:

τb = 1

2
fwρwU 2 (20)

where fw is the friction factor. This will continue until a steady longshore current develops,
at which time the left-hand side of (19) goes to zero, and the two terms on the right-hand
side are in balance.

b. Depth-varying description

In the case of depth-integrated current above, the Eulerian approach was applied and
the mean current and wave motion were split. This is not easy to do if the mean current is
depth varying. Typically, description of waves in such currents is accomplished by using
the Generalized Lagrangian Mean (GLM) method (Andrews and McIntyre 1978; Jenkins
1989; Groeneweg and Klopman 1998; Mellor 2003). For applications in numerical models,
Ardhuin et al. (2008), Bennis et al. (2011) modified GLM as a quasi-Eulerian approach.

Conceptually and mathematically GLM is a hybrid of Eulerian and Lagrangian
approaches (see the original papers and review by van der Westhuysen (2016)). While
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in an Eulerian description the control volume is defined as having a fixed position, in the
GLM approach the control volume is displaced by the disturbance motion. So it is neither
purely Eulerian nor Lagrangian system.

The generalized Lagrangian mean is defined as the mean at its disturbed position
x + ξ(x, t):

φ̄L(x, t) = < φ(x + ξ(x, t), t) >, (21)

i.e., following a single fluid parcel, in contrast to the Eulerian mean that is evaluated at its
original position. The Stokes correction is defined as the difference between the Lagrangian
and Eulerian means. For infinitesimal waves, the disturbance displacement is assumed
to obey

< ξ(x, t) > = 0 (22)

and the Lagrangian disturbance velocity is defined as

ul (x, t) = u(x + ξ(x, t), t) − < u(x, t) >L. (23)

Finally, the temporal derivative of the displacement ξ is defined as the rate of change
following the mean flow, so that

ul =
(

∂

∂t
+ < u >L ·∇

)
ξ. (24)

These equations form the basis of the GLM theory and are then used to derive Langrangian
mean expressions for the continuity of mass and momentum.

6. Numerical examples

Gravois et al. (2012) and Allard et al. (2014) describe a validation of the Navy’s coupled
ocean-wave modeling system, COAMPS (Hodur 1997), including a test case for southeast
Florida, where shore-based high frequency (HF) radars are used as ground truth for evalu-
ation of the wave model output. They find that by including the effects of surface currents
in the modeling, there is better correlation with the observations. This is, of course, to be
expected. One less obvious—and arguably more interesting—conclusion is that for cases
in which swells must pass through narrow apertures, or at angles that are very oblique to the
shoreline, a circumstance that is not uncommon for that area—the question of whether or
not swells arrive at nearshore locations is strongly dependent on the existence of currents,
meaning that if currents are omitted, swells that do not arrive at all may be predicted (false
positive), or swells that do in fact arrive may be missing in the model (false negative). This
is illustrated in Figures 1–3.
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Figure 1. Idealized propagation in wave model with all incoming wave energy coming from bound-
aries with propagation direction of theta = 7.5◦ (from north to northeast). The magenta rectangle
indicates a nearshore wave model nest (Fig. 2). Black lines indicate 10 m and 20 m isobaths. Black
diamond indicates location of in situ data used for validation by Gravois et al. (2012).

Figure 2. Idealized propagation in a nearshore wave model nest, in which all incoming wave energy
has propagation direction theta = 37.5◦ (from northeast). Black diamond and black contours: see
explanation in the caption of Figure 1. Arrows indicate mean wave direction. Left panel: without
currents included in forcing. Right panel: with currents included in forcing.
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Figure 3. Polar plot of transmission ratio as predicted by a wave model: [wave height at location of
in situ measurements (location marked in Figures 1 and 2)] / [wave height at offshore boundary of
wave model]. Black denotes case with no currents and red denotes case with currents included in
wave model forcing.

7. Discussion and summary

Wave-current interactions are a topic of great challenge in fluid mechanics and oceanog-
raphy, and of important practical significance. Its advanced modeling, however, is yet to
come.

Practical models, used for wave forecast, only accommodate linear effects due to waves
propagating on or across the currents. Even then, the linear changes to wave kinemat-
ics cause nonlinear dynamic consequences in wave growth and dissipation that are not
well described and understood, and performance of respective models in this context is
poor. Nonlinear behaviors of waves on currents are usually not accounted for or even
unknown.
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Waves, in turn, can substantially influence the surface currents through their Stokes drift,
and even more so through radiation stress (7) due to the momentum lost in wave breaking.
These influences are largely missing in modeling the ocean circulation of open oceans, and
they certainly need to be reinstated because of their importance, for example, in search
and rescue missions. In principle, this can be done by coupling the wave models with the
circulation models, but this should be done with caution. The present-day wave forecast
models were not designed to produce correct fluxes for input (4) and dissipation (7), but
rather an approximate balance of those in order to predict the resulting wave growth and
wave height reasonably well.

Most essential is the role of waves in influencing and even producing currents in finite
depths. Here wave breaking is extensive, and this role is known and well accounted for in
coastal circulation and coastal engineering models.

Apart from direct wave-current applications, a more complex suit of wave-current-
turbulence interactions, both on the atmospheric and ocean sides, is gaining attention over
the recent years. While energies involved are small in the context of changes to the waves
or currents, they may play an additional and missing feedback in the atmospheric boundary
layer, where airflow then generates both surface waves and currents, and in the upper ocean
mixing.

Overall, wave-current interactions are the last loose element of physics of wave forecast
models, and, to an extent, of ocean circulation modeling. A rich variety of dynamics are
involved, some of which are not well understood, and complicated mathematics to describe
such dynamics, make it an exciting research field at the boarder of wave, ocean and mete-
orological applications.
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