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A constraint on the thickness-weighted average
equation of motion deduced from energetics

by Kunihiro Aoki1

ABSTRACT
This study reviews the system governed by the thickness-weighted average (TWA) equation of

motion, considering energetics. It is known that the TWA equation of motion based on the primitive
equation describes the fluid motion with the residual mean velocity defined as the TWA velocity and
is written in the same form as the nondissipative primitive equation, except that the eddy momentum
fluxes (the interfacial form stress and Reynolds flux associated with eddy motion) are embedded in
this equation. Also, incompressibility and density (buoyancy) conservation in the adiabatic condition
hold in this system. In this study, considering that the TWA system satisfies a time mean energy
conservation of the primitive equation system, we obtain an energy equation showing that the rate of
change of eddy energies (the sum of the kinetic and potential energies of the eddies) along pathlines
with the residual mean velocity is caused by the work done by the eddy momentum fluxes. This
relation is analogous to the relation between internal energy and the dissipation function in a viscous
fluid. This study also reconsiders the TWA system in terms of Hamiltonian dynamics. Regarding the
eddy energies and the eddy momentum fluxes as analogous to the internal energy and the viscous
momentum fluxes, respectively, the methodology of the variational principle for a viscous fluid can
be applied to the TWA system. The Lagrangian density in this system is defined as the mean kinetic
energy minus the mean potential energy and the eddy energies. Minimizing this Lagrangian density
integrated over space and time under the constraints of the incompressibility equation, the buoyancy
equation, and the equation of the eddy energies yields the TWA equation of motion. If we neglect
the eddy energies in the Lagrangian density and the constraint of the equation of the eddy energies,
the resulting equation in the variational calculus is merely the nondissipative primitive equation. This
suggests that considering these is essential for describing the motion in the TWA system. Moreover,
we inferred from the equation of the eddy energy that the TWA equation of motion can be expressed
in a different form in which the isotropic component of the eddy momentum fluxes is included as a
part of the pressure. Applying this modified equation to the issue of downstream decaying mechanism
of the western boundary current extension jets, it can be interpreted that the deceleration of the jet is
caused by the pressure induced by the eddies.
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1. Introduction

In recent years, there has been a movement for formulating a macroscopic equation
system to describe ocean circulations under the circumstance that mesoscale eddies occur.
Although the mesoscale eddies with horizontal and temporal scales of 100 km and 100 days,
respectively (e.g., Chelton et al. 2007), are unable to be fully resolved from observations,
they have an important role in transporting density along with passive scalars (Jayne and
Marotzke 2002; Meijers, Bindoff, and Roberts 2007; Sumata et al. 2010; Tsujino et al.
2010; Aoki et al. 2013). The eddy transport of the density causes a mass transport, which
is referred to as an eddy-induced velocity or a bolus velocity (Rhines 1982; Gent and
McWilliams 1990; Gent et al. 1995; McDougall and McIntosh 1996, 2001; Treguier, Held,
and Larichev 1997; Greatbatch 1998; Griffies 1998; Plumb and Ferrari 2005). Thus, in
the mean state, such as a low-pass-filtered oceanic field, the velocity causing the net mass
transport is given by the sum of the mean and the bolus velocities. This net velocity is
called a residual mean velocity or a Lagrangian mean velocity. Accordingly, to estimate
the residual mean velocity, physical oceanographers have addressed parameterization of
the bolus velocity (Gent and McWilliams 1990; Killworth 1997; Visbeck et al. 1997; Aiki,
Jacobson, and Yamagata 2004; Cessi 2008; Ferrari et al. 2010). On the other hand, instead
of parameterizing the bolus velocity, one can formulate a equation system by setting the
residual mean velocity as a prognostic variable, which gives a macroscopic fluid motion (de
Szoeke and Bennet 1993; Ferreira and Marshall 2006; Young 2012). In this formulation,
the effects of eddies are embedded as eddy momentum fluxes in the macroscopic equation
of motion.

A thickness-weighted average (TWA) formulation of the primitive equations has poten-
tial for providing a macroscopic system describing low-pass-filtered ocean circulation. The
TWA system premises a set of the primitive equations: the equation of motion with the
Boussinesq and hydrostatic approximations, the incompressibility equation, and the buoy-
ancy equation. The TWA equation of motion, originally proposed by de Szoeke and Bennet
(1993) and further argued in terms of the tensor analysis by Young (2012), is given by averag-
ing the momentum equation in buoyancy coordinates weighted by the isopycnal thickness.
The TWA equation of motion expressed in the height coordinates has the same form as the
primitive equation, where the prognostic variable is the residual mean velocity and eddy
momentum fluxes composed of an interfacial form stress and Reynolds fluxes emerge. The
residual mean velocity satisfies the incompressibility condition. Also, the buoyancy equa-
tion is written in the same form as that in the primitive equation, where the advection is
caused by the residual mean velocity and the buoyancy diffusion is defined as its TWA.
These equations of motion give the set of fundamental equations in the TWA system (de
Szoeke and Bennet 1993; Young 2012).

However, the energetics of the TWA system has not been considered. As we will see in
Section 3a, the total energy, given by the sum of the kinetic and potential energies (KM

and PM , respectively; for convenience, we refer to these as the mean kinetic and potential
energies) for this system, generally is not conserved in a volume, V , surrounded by rigid
boundaries due to the work done by the eddy momentum fluxes (WFlux):
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d

dt

∫
V

d3x (KM + PM) =
∫

V

d3x WFlux. (1)

where d3x ≡ dxdydz. However, we note that the TWA system must satisfy a time mean
energy conservation of the primitive equation in the period of the time average supposed in
TWA because no additional assumption is imposed on the primitive equations. This implies
that the total energy for the TWA system is altered, and the corresponding energy equation
can be written in a conservative form.

The TWA formulation of the energetics of the primitive equation system may give a
hint (Bleck 1985; Aiki and Yamagata 2006; Aiki and Richards 2008). Under the adiabatic
and nondissipative conditions, this energetics shows the conservation of the sum of the
kinetic and potential energies for the mean field and those for the eddy field (KE and PE ,
respectively) in a volume of interest:

d

dt

∫
V

d3x (KM + PM + KE + PE) = 0. (2)

Comparing equations (1) with (2) leads to the following relation between the eddy energies
and the eddy momentum fluxes:

d

dt

∫
V

d3x (KE + PE) = −
∫

V

d3x WFlux. (3)

From equations (1) and (3), we see that the mean energies are interactively converted to
the eddy energies through the work done by the eddy momentum fluxes, indicating that
the mean variables in the TWA system are closely related to the eddy energies. However,
because momentum and energy of the primitive equation system in the TWA framework
have been individually explored in previous studies, the influence of the eddy energy on the
fluid motion in the TWA system has not been argued.

Moreover, considering the eddy energy is important for the parameterization problem
of the eddy fluxes. For instance, in the quasi-geostrophic (QG) system, the norm of the
tensor of the eddy momentum fluxes is bounded by the total eddy energy, and each com-
ponent of the eddy momentum flux tensor can be written using the eddy energy and the
geometric parameters of eddy shape such as the orientation of principle axis and anisotropy
of eddies (Marshall, Maddison, and Berloff 2012; Maddison and Marshall 2013). Thus,
by parameterizing the geometric features, the prognostic equation of the eddy energy can
be solved, which leads to developing a closed system. Given that the equations governing
low-frequency motion in the QG system are expressed in similar forms to those in the TWA
system (e..g., Marshall, Maddison, and Berloff 2012), a similar argument can be extended
to the TWA system. To do this, however, we need to clarify how the prognostic equation of
the eddy energy is described in this system.

The purpose of this study is to comprehensively understand the TWA system by taking
account of energetics. In this study, to simplify the problem, we suppose an adiabatic
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nondissipative fluid in the absence of any external force such as wind force because the
mesoscale eddies, associated with instability of geostrophic sheared flows, are basically
adiabatic unforced phenomena. As a corollary to the energetics, we will derive the equation
of the eddy energy in a local form. Moreover, we propose a variational principle for the
TWA system. In terms of this principle, in general, the equation of motion is identical to
minimizing the Lagrangian density corresponding to the energy to be conserved over a
time interval (e.g., Landau and Lifshitz 1976). Although a rich literature of the variational
principle for the fluid dynamics now exists (Salmon 1988, 2013; Holm, Marsden, and Ratiu
1998, 2002; Kambe 2004; Bennet 2006; Fukagawa and Fujitani 2010, 2012), that for the
TWA system has not been addressed. The problem in this regard is that we cannot derive the
energy field to be conserved from the hitherto known set of equations in the TWA system
as shown in equation (1). However, we will see that additional consideration of the eddy
energies and its governing equation enables us to apply the variational principle for the
TWA system, and they are essential for describing the motion in this system.

This article is organized as follows. In Section 2, we derive the hitherto known set of
equations in the TWA system. Section 3 consists of two parts. First, we show the detail of
the aforementioned problem on the energy equation for the hitherto known TWA system.
Second, revisiting the time mean energetics for the primitive equation system in the TWA
framework, we formulate the local energy equation of the eddy energies. In Section 4,
we validate the importance of the equation of the eddy energy in terms of the variational
principle. In Section 5, we discuss an arbitrary nature of the definition of the eddy momentum
fluxes and show that its isotropic component can be included in the pressure in the TWA
equation of motion. Section 6 contains the summary and conclusion.

2. TWA equation of motion

The TWA system is developed based on the primitive equations. In the primitive
equation system assuming a Boussinesq fluid, the density of seawater is approximated
as ρ(x, y, z, t) = ρ0 + δρ(x, y, z, t) � ρ0, where ρ0 is a constant reference density. Let
v ≡ (u, v, w) and u ≡ (u, v) be the three- and two-dimensional velocity vectors, respec-
tively; p be the pressure; and b be the buoyancy defined as b = −gδρ/ρ0, where g is the
gravitational acceleration. In the adiabatic nondissipative conditions, the primitive equa-
tions (i.e., the momentum equation, buoyancy equation and incompressibility equation) are
given by

Dtu + f k × u = − 1

ρ0
∇H p, (4)

0 = − 1

ρ0

∂p

∂z
+ b, (5)

Dtb = 0, (6)

∇ · v = 0, (7)
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where ∇ ≡ (∂x, ∂y, ∂z) and ∇H ≡ (∂x, ∂y) are the three- and two-dimensional spatial gra-
dient operators, respectively; Dt ≡ ∂t + v · ∇ is a Lagrangian time derivative; and f is the
Coriolis parameter. As established in previous studies (e.g., Young 2012), the boundary
condition in this system is assumed to be v · n = 0, where n is a unit vector normal to the
spatial boundaries.

Supposing the buoyancy b is monotonically increasing with height, we can transform the
coordinates from (x, y, z, t) to (x, y, b(x, y, z, t), t). The former and the latter are referred
to as z-coordinates and b-coordinates, respectively. Following the transition rules between
the coordinate systems (e.g., Vallis 2006), derivatives with respect to z and b are related by

∂

∂b
= ∂z

∂b

∂

∂z
and

∂

∂z
= ∂b

∂z

∂

∂b
, (8)

and temporal and horizontal derivatives in these coordinate systems are related by

∂

∂xi

= ∂

∂x̃i

− ∂z

∂x̃i

∂

∂z
, (9)

where the partial derivatives with respect to (x1, x2, x3) ≡ (x, y, t) and (x̃1, x̃2, x̃3) ≡
(x̃, ỹ, t̃ ) denote those holding z and b fixed, respectively, following the notation employed
in Young (2012). In particular, for the buoyancy, this relation reduces to

∂b

∂xi

= − ∂z

∂x̃i

∂b

∂z
. (10)

Applying this relation to the buoyancy equation (6), we have(
∂

∂t̃
+ u · ∇̃

)
z = w, (11)

where ∇̃ ≡ (∂x̃, ∂ỹ). From this equation and the equation of incompressibility mapped into
b-coordinates, we obtain the mass conservation equation2 expressed in b-coordinates:

∂zb

∂t̃
+ ∇̃ · (uzb) = 0. (12)

Similarly, the horizontal component of the equation of motion in b-coordinates is written as(
∂

∂t̃
+ u · ∇̃

)
u + f k × u = − 1

ρ0
∇̃π, (13)

where π(x̃, ỹ, b, t̃) ≡ p(x, y, z(x̃, ỹ, b, t̃), t) − ρ0bz(x̃, ỹ, b, t̃) is the Montgomery poten-
tial, by which the hydrostatic equation is expressed as πb = −ρ0z.

2. Equation (12) gives the mass conservation because the density is constant for b-coordinates.
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We shall derive the TWA system. Taking the temporal average of equation (12) yields

∂z̄b

∂t̃
+ ∇̃ · (ûz̄b) = 0, (14)

where the overbar denotes temporal average and û is the residual mean velocity defined as
TWA of the velocity vector: û ≡ zbu/z̄b (Andrews 1983; Bleck 1985; de Szoeke and Bennet
1993). Hereafter, we write Â ≡ zbA/z̄b for any variable A. The residual mean velocity can
be decomposed into the isopycnal mean velocity and the bolus velocity, û = ū + u′z′

ρ/z̄ρ,
where we adopted the Reynolds decomposition, A = Ā + A′. The bolus velocity represents
the mass transport caused by eddies. From equation (14), we find that the residual mean
velocity satisfies the time mean mass conservation; this velocity gives the net motion of the
fluid. Applying the TWA to equation (13) with the aid of equations (12) and (14), we have
the TWA equation of motion expressed in b-coordinates:(

∂

∂t̃
+ û · ∇̃

)
û + f k × û = − 1

ρ0
∇̃π̄ + F, (15)

where

F ≡ − 1

z̄b

{
∇̃

(
z′2

2

)
+ ∇̃ ·

(
z̄b

̂u′′u′′
)

+ ∂

∂ρ

(
z′∇̃π′

ρ0

)}
(16)

is an eddy momentum flux vector (see Young [2012] for detailed derivation of this vec-
tor). When deriving this equation, we adopted the decomposition, u = û + u′′, where
u′′ satisfies zbu′′ = 0 (de Szoeke and Bennett 1993). The latter yields the relation
zbuu = z̄bûû + z̄b

̂u′′u′′. Although the double primed variable is peculiar to the TWA
framework, this can be approximated as A′′ � A′ in the QG limit because we have
A′′ = A′ − A′z′

ρ/z̄ρ by definition, and the second term can be neglected due to the fact
that z′/z̄ρ is on the order of the Rossby number (e.g., Vallis 2006). The second and third
terms of the eddy momentum fluxes are called the isopycnal Reynolds flux and the inter-
facial form stress associated with fluctuation of buoyancy surface, respectively (see Young
2012).

To complete the TWA system, we define the vertical velocity as

w# ≡
(

∂

∂t̃
+ û · ∇̃

)
z̄. (17)

Notice that this vertical velocity does not mean the TWA of equation (11) but is defined so
as to satisfy the incompressibility condition (de Szoeke and Bennet 1993), that is,

∇ · v# = 0, (18)

where v# ≡ (û, v̂, w#) is referred to as the residual mean velocity vector. The boundary
condition in this system is v# · n = 0, which can be deduced from the no-normal-flow
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boundary condition for the instantaneous field (Aiki and Richards 2008). In the TWA system,
we can regard the variables Â, A#, and Ā as macrovariables and the variables A′ and A′′
as microvariables associated with eddies. The TWA system can, thus, be interpreted as
the system describing the macromotion of the fluid forced by the eddy momentum fluxes
associated with the micromotion.

The TWA equation of motion can be expressed in z-coordinates. Consider the transfor-
mation between the coordinates (x, y, z̄, t) and (x, y, b#(x, y, z̄, t), t), where b# ≡ b. In
this article, we use this notation only for the hydrostatic equation and the density equa-
tion shown later. The aforementioned transition rules can be employed by replacing z with
z̄, but we will not distinguish these variables in the rest of this article if we express the
derivative and integral operators. Applying the transition rules, after some manipulation,
we have

D#
t û + f k × û = − 1

ρ0
∇H p# + ∇ · γij , (19)

where we defined a Lagrangian time derivative,3 D#
t ≡ ∂t + v# · ∇; the eddy momentum

flux tensor, γij (Appendix 1); and the pressure, p#(x, y, z̄, t) ≡ π̄(x̃, ỹ, b#(x, y, z̄, t), t) +
ρ0b

#(x, y, z̄, t)z̄, satisfying the hydrostatic relation

0 = − 1

ρ0

∂p#

∂z
+ b#. (20)

Also, equation (17) is equivalent to the conservation of the buoyancy:

D#
t b

# = 0. (21)

Equations (18) to (21) give the hitherto known set of equations in the TWA system. We may,
in passing, note that the TWA equation of motion can hold for nonrotating stably stratified
turbulent flows because the TWA system only assumes b as a monotonically increasing
function of z (e.g., Young 2012).

As previous studies have pointed out (e.g., Young 2012), apart from the eddy momentum
fluxes and dropping symbols such as #, the TWA system is identical to the primitive equa-
tions. This implies that the eddy momentum fluxes distinguish between these systems. In
other words, the existence of the eddy momentum fluxes guarantees that the “fluid particle"
moves with the residual mean velocity. In Section 4, we will see, in terms of the varia-
tional principle, that this fact is closely related to the existence of the eddy energies and its
governing equation derived in the next section.

3. The Lagrangian time derivative in the TWA system in z-coordinates can be expressed in advective and flux
form in b-coordinates (Appendix 2).
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3. Energetics

a. Problem on the hitherto known TWA system

We derive the energy equation from the hitherto known set of equations in the TWA
system. A vector form of the TWA equation of motion can be written as

D#
t û + f k × û = − 1

ρ0
∇p# + bk + ∇ · γij . (22)

Multiplying this by ρ0v# yields

D#
t

(
ρ0

|û|2
2

)
= −∇ · (v#p#) + ρ0w

#b + ρ0v# · ∇ · γij , (23)

where we applied the incompressibility condition for the pressure term. Using equation (17)
and taking into account that b is constant in b-coordinates, we have

ρ0w
#b =

(
∂

∂t̃
+ û · ∇̃

)
(ρ0bz̄) = D#

t (ρ0bz̄). (24)

Second equality is derived from using the relation (A13); see Appendix 2. Substituting this
into equation (23) yields the equation of energy for the sum of the mean kinetic and potential
energies,

D#
t

{
ρ0

( |û|2
2

− bz̄

)}
= ρ0v# · ∇ · γij − ∇ · (v#p#), (25)

or using the incompressibility condition,

∂

∂t

{
ρ0

( |û|2
2

− bz̄

)}
= ρ0v# · ∇ · γij − ∇ ·

[
v#p# + v#ρ0

( |û|2
2

− bz̄

)]
. (26)

Integrating over the volume under the no-normal-flow boundary condition for v# gives

d

dt

∫
V

d3x

{
ρ0

( |û|2
2

− bz̄

)}
=

∫
V

d3x ρ0v# · ∇ · γij . (27)

Integrands in this equation correspond to KM , PM , and WFlux in equation (1), respectively.
As mentioned in Section 1, the total energy consisting of the sum of the kinetic and

potential energies for the mean state is not conserved due to the work done by the eddy
momentum fluxes. Although either self-vanishing of the work done by the eddy momentum
fluxes in the volume integral or additional inclusion of external forces may lead to the
conservation of the total energy, for the former there is no physical basis, and the latter
is inconsistent with the fact that the eddy momentum fluxes can intrinsically occur in the
ocean. Accordingly, for the energy in the TWA system to be conserved, the work done by
the eddy momentum fluxes is required to be written as a time evolution of a state function,
which will be shown in the next subsection.
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b. Equation of the eddy energy and its physical interpretation

Because the eddy energy in the TWA framework is defined as the difference of the mean
energy from the total energy in b-coordinates (e.g., Aiki and Richards 2008), we start
with reformulating the equation of the mean energy in b-coordinates. The TWA equation of
motion (equation 15) multiplied by ρ0ûz̄b and the equation for the vertical velocity (equation
17) multiplied by −ρ0bz̄b, with the aid of equation (14), give the equation for the mean
kinetic and potential energies, respectively,

∂

∂t̃

(
z̄bρ0

|û|2
2

)
+ ∇̃ ·

(
ûz̄bρ0

|û|2
2

)
= −û · z̄b∇H p# + ρ0z̄bû · F, (28)

− ∂

∂t̃
(ρ0bz̄z̄b) − ∇̃ · (ûρ0bz̄z̄b) = −ρ0bw# z̄b. (29)

Although the previous studies have performed volume integrals of these equations to develop
the energy diagram for the mean and eddy kinetic and potential energies in a volume budget,
we abandon it in favor of seeking local equations of the sum of the mean energies and that
of the eddy energies.

Now, we notice that using the hydrostatic equation and the incompressibility equation,
the term of ρ0bw# in the right-hand side of equation (29) can be written as

ρ0bw# = p#
zw

#

= p#
zw

# + p#∇ · v#

= ∇ · (p#v#) − û · ∇H p#.

We see that the second term in the bottom line in this relation is identical to the first term in
the right-hand side of equation (28). This means that the mean kinetic and potential energies
are converted each other through the terms of û · ∇H p# and ρ0bw# in equations (28) and
(29), respectively. Thus, using this relation, the equation for the sum of the mean kinetic
and potential energies becomes

∂

∂t̃

{
z̄bρ0

( |û|2
2

− bz̄

)}
+ ∇̃ ·

{
z̄bûρ0

( |û|2
2

− bz̄

)}
= ρ0z̄bû · F − z̄b∇ · (v#p#),

(30)

which results in the same energy equation as equation (25) by mapping the terms in the
left-hand side to z-coordinates (Appendix 2) and replacing F with ∇ · γij .

The temporal average of the equation of motion (equation 13) and that of the equation of
vertical velocity (equation 11) multiplied by ρ0uzb and −ρ0bzb, respectively, with the aid
of equation (12), give the total kinetic and potential energies, respectively,

∂

∂t̃

(
z̄bρ0

|̂u|2
2

)
+ ∇̃ ·

(
ûz̄bρ0

|̂u|2
2

)
+ ∇̃ · BK = −zbu · ∇̃π, (31)

− ∂

∂t̃
(ρ0bẑz̄b) − ∇̃ · (ûρ0bẑz̄b) + ∇̃ · BP = −ρ0bwzb, (32)
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where BK ≡ z̄bρ0
̂u′′|u|2′′

/2 and BP ≡ −z̄bρ0bû′′z′′, which are energy fluxes by eddies.
Note that b is constant for the temporal average in b-coordinates. Following the same
procedure just below equation (29), ρ0bw can be rewritten as

ρ0bw = ∇ · (pv) − u · ∇H p,

whose TWA yields

ρ0bwzb = zb∇ · (pv) − zbu · ∇̃π,

where we used the fact that ∇H p = ∇̃π. Similar to the case of the mean energies, this
relation expresses the conversion between the total kinetic and potential energies.

Subtracting equations (28) and (29) from equations (31) and (32), we have the equations
of the eddy kinetic and potential energies, respectively,

∂

∂t̃

(
z̄bρ0

̂|u′′|2
2

)
+ ∇̃ ·

(
ûz̄bρ0

̂|u′′|2
2

)
= −zbu · ∇̃π + z̄bû · ∇̃H p#

− ρ0z̄bû · F − ∇̃ · BK, (33)

− ∂

∂t̃

(
z̄bρ0b

z′z′
b

z̄b

)
− ∇̃ ·

(
ûz̄bρ0b

z′z′
b

z̄b

)
= −ρ0bwzb + ρ0bw# z̄b − ∇̃ · BP , (34)

where we used |̂u|2 = z̄b|û|2 + z̄b
̂|u′′|2 and ẑ = z̄ + z′z′

b/z̄b. Introducing a variable, S#,
denoting the sum of the eddy kinetic and potential energies,

S# ≡ |u′′|2
2

− b
z′z′

b

z̄b

, (35)

the equation for the sum of the eddy kinetic and potential energies is given by

∂

∂t̃
(z̄bρ0S#) + ∇̃ · (

ûz̄bρ0S#) = −ρ0z̄bû · F − zb∇ · (vp) + z̄b∇ · (v#p#)

− ∇̃ · (BK + BP ). (36)

Mapping the terms on the left-hand side into z-coordinates (Appendix 2) and replacing F
with ∇ · γij , we have the equation of the eddy energies in a local formulation:

ρ0D
#
t S# = −ρ0v# · ∇ · γij + G, (37)

where

G ≡ −
[

1

z̄b

zb∇ · (vp) − ∇ · (v#p#)

]
− 1

z̄b

∇̃ · (BK + BP ). (38)
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The rate of change of the eddy energies is caused by the work done by the eddy momen-
tum fluxes and the scalar function defined as G. The term for the eddy momentum fluxes
also appeared in the energy equation of the mean state (equation 25) and, thus, causes a
reversible conversion between the mean and eddy energies. Such a conversion is caused by
the occurrence of the Reynolds flux and the interfacial form stress associated with barotropic
and baroclinic instabilities (e.g., Aiki and Richards 2008). The function G contains the pres-
sure fluxes and energy fluxes by eddies. The former is written as the difference of the total
pressure flux in a time average from the pressure flux by the residual mean velocities and,
thus, can be interpreted as the pressure flux associated with eddy motion. The function, G,
however, has the property that it vanishes if it is integrated over the volume. The vanishing of
the first4 and second terms of G is due to the boundary conditions of v and v#, respectively,
and that of the third term is demonstrated in Appendix 3.

By definition, taking account of the eddy energies leads to the conservation of the total
energy. The sum of equations (25) and (37) gives the local energy equation for the total
energy,

D#
t

{
ρ0

( |û|2
2

− bz̄ + S#
)}

= −∇ · (v#p#) + G, (39)

or in flux form,

∂

∂t

{
ρ0

( |û|2
2

− bz̄ + S#
)}

= −∇ ·
[

v#ρ0

( |û|2
2

− bz̄ + S#
)]

− ∇ · (v#p#) + G. (40)

This is the energy equation, that the TWA system must satisfy. In this energy equation, the
total energy is the sum of the mean kinetic energy, the mean potential energy, and the eddy
energies. The local temporal change of the total energy is caused by the flux of the total
energy, the mean pressure flux, and the fluxes in G. The work done by the eddy momentum
fluxes does not appear in the total energy budget because it is the term representing the
conversion between the mean and eddy energies. Applying the boundary condition of v#

and by the nature of G, the volume integral of this equation gives

d

dt

∫
V

d3x

{
ρ0

( |û|2
2

− bz̄ + S#
)}

= 0. (41)

Making the notational substitutions ρ0|û|2/2 −→ KM , −ρ0bz̄ −→ PM , and ρ0S# −→
KE + PE , we have the energy conservation shown in equation (2), which is the same
as that in previous studies (Bleck 1985; Aiki and Yamagata 2006; Aiki and Richards 2008).

4. Notice that the vertical integral of the first term of G is equal to
∫

dz∇ · (vp) by the “pile-up rule” termed
in Aiki and Yamagata (2006).
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Generally, for a perfect or a dissipative fluid with a conservative force, the total energy
to be conserved consists of the kinetic energy, potential energy, and internal energy (e.g.,
Landau and Lifshitz 1987). Compared with this, the eddy energies, S#, can be regarded as
internal energy inherent in the TWA system. The internal energy in the general sense follows
the thermodynamic relation, in which its variation depends on work done by pressure and
the variation of entropy. For a viscous fluid, the rate of change of entropy along the path line
is caused by the dissipation function (e.g., Landau and Lifshitz 1987). Regarding the eddy
momentum fluxes as analogous to viscous momentum fluxes, the relation (37) tells us that
S# works like entropy in this system. To be exact, different from the general meaning of
entropy, S# can take a negative value depending on the sign of the work done by the eddy
momentum fluxes. Although, if we assume, however, that the eddy momentum fluxes are
written as a form of Fickian diffusion, S# may be qualified as entropy in the general sense,
and discussion of this point may be beyond the scope of this article.

In this system, there seems to be no contribution of the work done by the pressure to the
variation of the internal energy. This is attributed to the assumption of the Boussinesq fluid.
Consider the thermodynamic relation without entropy variation:

dε(ρ) = p

ρ2
dρ, (42)

where ε denotes internal energy. Replacing the exterior derivative, d, with the Lagrangian
time derivative, Dt , and using the mass conservation, Dtρ + ρ∇ · v = 0 (e.g., Landau and
Lifshitz 1987), this relation can be rewritten as

Dtε = −p

ρ
∇ · v. (43)

For the Boussinesq fluid, the variation of internal energy vanishes due to incompressibility
of the fluid. Thus, in the TWA system premising the Boussinesq fluid, the work done by the
pressure never occurs.

4. The TWA equation of motion in terms of variational principle

Here, we argue the necessity of the equation of the eddy energies for deriving the TWA
equation of motion by the variational principle. In Section 3, premising the fluid motion
following the TWA momentum equation, it was shown that the eddy energy and its gov-
erning equation are necessary to satisfy the time mean energy conservation of the adiabatic
nondissipative primitive equations. In terms of the variational principle, in turn, they are
necessary to describe the fluid motion itself in the TWA system.

In the variational principle, generally, the Lagrangian density for a three-dimensional per-
fect fluid with a conservative force, φ, is given by L = ρ[v2 − ε(ρ, s) − φ] (e.g., Salmon
1988). Minimizing this Lagrangian density integrated over space and time under the con-
straints of the conservation of mass and entropy yields the Euler equation (e.g., Salmon 1988;
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Holm, Marsden, and Ratiu 1998; Kambe 2004; Bennet 2006). For an adiabatic nondissi-
pative Boussinesq fluid including the primitive equation system, internal energy is omitted
from the Lagrangian, and consequently, constraints are replaced with the incompressibility
and buoyancy conservation (e.g., Holm, Marsden, and Ratiu 1998, 2002). Fukagawa and
Fujitani (2012) extended the variational principle for a dissipative fluid based on an argu-
ment of a nonholonomic system (e.g., Landau and Lifshitz 1976). In this section, regarding
the eddy momentum fluxes as analogous to viscous momentum fluxes, we apply the varia-
tional principle proposed in their study for the TWA system. Also, for simplicity, we omit
notation characterizing the variables in the TWA system such as # and do not treat the
Coriolis term, because it is nonessential for this system as mentioned in Section 2.

a. Methodology and the case excluding eddy energies

The variational principle can be formulated in the Eulerian or Lagrangian description,
and the former is adopted in this study. In this case, the velocity of the fluid is a variable
of the Lagrangian density instead of the position of the fluid particle. Thus, to specify the
position of each particle, we need to introduce the Lagrangian coordinates. Let x(A, t) be
the position at time t for a fluid particle labeled by A ≡ (A1, A2, A3), which gives the
Lagrangian coordinates. The relation between the Lagrangian coordinates and the velocity
field is given by

∂Ai

∂t
+ v · ∇Ai = 0, (44)

which may be written as

vj = − ∂xj

∂Ai

∂Ai

∂t
(45)

(e.g., Fukagawa and Fujitani 2012). In the latter form, we used Einstein’s summation con-
vention for the index variable “ i.” Hereafter, we use similar notation for summation.

Using the Lagrangian coordinates, we rewrite the incompressibility equation and the
buoyancy equation in different forms. Assigning the Lagrangian coordinates so as to sat-
isfy dVA ≡ ρdVX, where dVA and dVX are volume elements made by A and x (i.e.,
dVA ≡ dA1 ∧ dA2 ∧ dA3 and dVX ≡ dx ∧ dy ∧ dz, respectively), we have the relation

J−1 ≡ ∂(A1, A2, A3)

∂(x, y, z)
= ρ (46)

(e.g., Salmon 1998). For the TWA system based on the Boussinesq fluid, this relation is
approximated as

J−1 � ρ0, (47)
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which is another expression of the incompressibility condition (equation 18) (e.g., Salmon
1998). By the temporal integration, the conservation of buoyancy (equation 21) can be
expressed as

b(x(A, t), t) − binit(A) = 0, (48)

where binit denotes the buoyancy field at initial time. Note that the Lagrangian coordinates
can be regarded as the initial position of the fluid particle because they are fixed on the
moving fluid.

Based on the energy conservation for the TWA system (equation 41), the Lagrangian
density in the Eulerian description to be considered here should be given by

L ≡ J−1
(

u2

2
+ bz − S

)
, (49)

where we replaced ρ0 with J−1 following the relation (47). Although S = 0 in this case, we
leave S to the Lagrangian density with an eye to the case including the eddy energies. The
action is given by the integral of the Lagrangian density over space and time with respect
to the constraints of incompressibility, buoyancy conservation, and the conservation of the
Lagrangian coordinates,5 that is,

INE[J−1, v, b, A, K, Λ, β]

≡
∫ t2

t1

dt

∫
V

d3x

{
L + K(ρ0 − J−1) + Λ(b − binit) + βi

(
∂Ai

∂t
+ v · ∇Ai

)}
, (50)

where K , λ, and βi are undetermined Lagrange multipliers. The end-point condition is
defined as δA(x, t1) = δA(x, t2) = 0. Using the method of Lagrange multiplier, the station-
ary conditions that minimize the action (i.e., δINE = 0, with respect to δK , δΛ, δβi , δv,
δJ−1, δb, and δA, respectively), give (47), (48), (44), and

δv : (u, v, 0) = − 1

ρ0
βi∇Ai, (51)

δJ−1 : K = u2

2
+ bz − S, (52)

δb : Λ = −ρ0z, (53)

δA : Dtβi = −Λ
∂binit

∂Ai

. (54)

5. The conservation of the Lagrangian coordinates is referred to as Lin’s constraint, which enables us to give a
rotation of the velocity field derived by the Eulerian variational calculus (Lin 1963).
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For deriving equation (54), we applied the end-point condition and the no-nomal-flow
boundary condition. Furthermore, the variation with respect to δJ−1 can be rewritten as(

u2

2
+ bz − S − K

)
δJ−1 =

(
u2

2
+ bz − S − K

)
∂J−1

∂(∂Ai/∂xj )
δ
∂Ai

∂xj

= ∂

∂xj

[(
u2

2
+ bz − S − K

)
J−1 ∂xj

∂Ai

δAi

]
− J−1 ∂xj

∂Ai

∂

∂xj

[(
u2

2
+ bz − S − K

)]
δAi, (55)

where we used the integration by parts and the facts that

∂J−1

∂(∂Ai/∂xj )
= J−1 ∂xj

∂Ai

, (56)

and

∂

∂xj

∂J−1

∂(∂Ai/∂xj )
= 0. (57)

The first term of equation (55) vanishes for the volume integral because v · n =
−(∂xj /∂Ai)(δAi/δt)nj = 0 at the boundary. Thus, the stationary condition with respect
to δA can be replaced with

Dtβi =
[
J−1 ∂

∂xj

(
−u2

2
− bz + S + K

)
− Λ

∂b

∂xj

]
∂xj

∂Ai

, (58)

where we used equation (48).
We define the Lagrangian time derivative as ∂t + Lv, where Lv denotes the Lie derivative,

which is given by v · ∇ for a scalar and ∇(v·) − v × ∇× for a cotangent vector and is
commutative with the gradient and rotational operators (Schutz 1980; Holm, Marsden, and
Ratiu 1998; Fukagawa and Fujitani 2010). The Lagrangian time derivative of equation (51)
becomes (

∂

∂t
+ Lv

)
u = − 1

ρ0
(Dtβi )∇Ai. (59)

Substituting equations (53) and (58) into this equation yields

Dtu = − 1

ρ0
∇(ρ0K) + bk, (60)

where we usedJ−1 = ρ0 andS = 0. If we regard the Lagrange multiplier,K , as the pressure,
that is, K ≡ p/ρ0, we have the TWA equation of motion excluding the eddy momentum
fluxes. Note that this equation is the same as the adiabatic nondissipative primitive equation.
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b. Case including eddy energies

Fukagawa and Fujitani (2012) proposed the variational principle for a dissipative fluid
by using a nonholonomic constraint. Because the internal energy is generally a function of
density and entropy, the fluid motion is influenced by the states of these variables. For the
adiabatic perfect fluid, the conservations of mass and entropy give these constraints. For a
dissipative fluid, however, the entropy, follows the relation such that

ρT Dts = σij

∂vi

∂xj

+ ∇ · θ, (61)

where T is temperature, s is entropy, σij is the viscous stress tensor, and θ is the heat flux
vector (e.g., Landau and Lifshitz 1987). The first term on the right-hand side of this equation
gives the so-called dissipation function. Supposing an adiabatic wall at the boundaries and
the no-normal-flow boundary condition, the volume integral of this equation yields∫

V

d3x ρT
∂s

∂t
=

∫
V

d3x
{−v · (∇ · σij + ρT ∇s

)}
. (62)

Expressing v as equation (45), where v means instantaneous velocity only in this case, and
replacing ∂t with δ, we have∫

V

d3x ρT δs =
∫

V

d3x

{
∂xj

∂Ai

· (∇ · σij + ρT ∇s
)}

δAi, (63)

which is the nonholonomic constraint on the dissipative fluid.
Regarding the eddy energies and the eddy momentum fluxes as analogous to an entropy

and a viscosity, respectively, we apply their argument to the TWA system. Integrating the
equation of the eddy energies (equation 37) over the volume and using equation (45) yields∫

V

d3x ρ0δS =
∫

V

d3x
∂xj

∂Ai

· (
ρ0∇ · γij + ρ0∇S

)
δAi, (64)

which is the nonholonomic constraint for the TWA system. By this relation, the variation
with respect to the eddy energies δS can be replaced with that to the Lagrangian coordinates
δA. The action to be considered here is defined as

IE[J−1, v, b, A, K, Λ, β, S]

≡
∫ t2

t1

dt

∫
V

d3x

{
L + K(ρ0 − J−1) + Λ(b − binit) + βi

(
∂Ai

∂t
+ v · ∇Ai

)}
, (65)

where we notice that the action is also a function of the eddy energies S. Although the
stationary conditions with respect to δv, δJ−1, and δb are the same as equations (51), (52),
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and (53), respectively, that to δA is given by equation (58) and the integrands of equation
(64), that is,

δA: Dtβi =
[
J−1 ∂

∂xj

(
−u2

2
− bz + S + K

)
− Λ

∂b

∂xj

− ρ0∇ · γij − ρ0∇S
]

∂xj

∂Ai

.

(66)

Employing the same procedure to yield equation (60), we have the TWA equation of motion
including the eddy momentum fluxes:

Dtu = − 1

ρ0
∇p + bk + ∇ · γij . (67)

By comparison with the case of noneddy energies, we find that the equation of the eddy
energies is necessary to derive the TWA equation of motion. This equation can also be
expressed as a Hamiltonian formulation (Appendix 4).

5. Discussion of the pressure induced by eddies

As mentioned in Section 3, the equation of the eddy energies (equation 37) includes the
term G whose volume integral becomes zero. If the tensor of the eddy momentum fluxes
includes a component, σij , satisfying

∫
V

d3x v# · ∇ · σij = 0, then this component can be
absorbed into G, and we can define a modified tensor, γij − σij . An isotropic tensor gives
an example, say, σij = μ, where μ is a scalar function. We can easily find that with the aid
of the boundary condition of v#, the volume integral of v# · ∇μ vanishes because this can
be written in a flux form due to the incompressibility. Denoting Γij ≡ γij − μδij , where
δij denotes the Kronecker delta, and G† ≡ G − v# · ∇μ, the equation of the eddy energy
is rewritten as

ρ0D
#
t S# = −ρ0v# · ∇ · Γij + G†. (68)

Likewise, replacing γij with Γij in the energy equation for the mean state (equation 25)
yields

D#
t

{
ρ0

( |û|2
2

− bz̄

)}
= ρ0v# · ∇ · Γij − ∇ · (v#P), (69)

where

P ≡ p# − ρ0μ. (70)

These transformations enable us to express the TWA equation of motion differently, that
is, in a vector form,

D#
t û + f k × û = − 1

ρ0
∇P + bk + ∇ · Γij . (71)
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Notice that this equation of motion is the one in which we just changed the notation for p#

and γij in equation (22). That is, the TWA system is invariant for those transformations.
The transformation of pressure (equation 70) indicates that the eddy momentum fluxes have
the role of inducing pressure. Taking into account that an isotropic component of a stress
tensor is generally given by the sum of the diagonal components of the tensor, that of the
eddy momentum fluxes can be defined as μ ≡ γ11 + γ22 + γ33 =−z′2b#

z /ρ0 − û′′u′′ − v̂′′v′′
(Appendix 1).

We consider the problem of the zonal extent of the eastward jet of the western boundary
current extension such as the Kuroshio Extension or the Gulf Stream as an example of
the application of the eddy-induced pressure. Analyzing the solution of a two-layer QG
potential vorticity (PV) equation with rigid surface and flat bottom, Waterman and Jayne
(2011) showed that eddy PV flux associated with the instability of the unstable idealized
eastward jet occurs equatorward in the upstream and poleward in the downstream. They
suggested that the former acts to decay the jet consistent with barotropic instability and the
latter leads to the formation of the jet’s flanking recirculations in the upstream through the
westward propagation of Rossby waves. They also reported that the spatial structure of the
eddy PV flux is almost explained by barotropic model. Such a complex picture of eddy-
mean flow interaction has been confirmed in several studies based on numerical experiment
and observation (Jayne, Hogg, and Malanotte-Rizzoli 1996; Jayne and Hogg 1999; Mizuta
2009; Waterman, Hogg, and Jayne 2011; Waterman and Hoskins 2013).

Waterman and Hoskins (2013) analyzed the solution of the barotropic QG PV equation
employed in Waterman and Jayne (2011), focusing on the Reynolds flux by decomposition
into

(
u′2 v′u′

v′u′ v′2

)
=

(
K 0
0 K

)
+

(
M N

N −M

)
, (72)

where K ≡ u′2 + v′2/2, M ≡ u′2 − v′2/2, and N ≡ u′v′. From these expressions, diver-
gence of the eddy PV flux giving the forcing of the mean PV field can be written as
∇ · u′ζ′ = −2Mxy + Nxx − Nyy , where ζ′ ≡ v′

x − u′
y denotes relative vorticity by eddy.

According to their study, the divergence of the eddy PV flux is accounted for by the terms
Nyy and Mxy . The contribution of the Nyy term concentrates along the flank of the jet
in the upstream and has a role in stabilizing the jet consistent with barotropic instability.
The contribution of the Mxy term is significant throughout the domain and, in particular,
solely accounts for the aforementioned poleward eddy PV flux in the downstream, which
drives the recirculations. The distribution of the Mxy term in the downstream represents
that the direction of the elongation of eddies alters from east-west to north-south toward
the downstream along the jet, in association with the deceleration of the jet. From these
results, considering the mechanism that causes the deceleration of the jet may be a key to
understanding the eddy-mean flow interaction of the eastward jet.
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We reconsider the result by Waterman and Hoskins (2013) in terms of the momentum
equation. Although the eddy kinetic energy, K , does not appear in the forcing term of the
PV equation because it is a rotational component of the eddy PV flux, it becomes the forcing
in the momentum equation, which potentially accelerates or decelerates the motion. It is
interesting to note that K is dominant in the tensor of the Reynolds flux (equation 72) and
occurs to the east of the site where the jet begins to weaken (see their Fig. 3 and Fig. 4a),
suggesting that the occurrence of the eddy kinetic energy is likely to decelerate the jet in
addition to the effect of N . Now, we notice that the TWA system includes the barotropic QG
system because it is also included in the primitive equation system that the TWA system
premises. Thus, the eddy momentum fluxes formulated in the TWA system are consistent
with the tensor of the Reynolds flux in (equation 72) if we consider the barotropic QG fluid.6

Accordingly, in terms of the modified version of the TWA equation of motion (equation
71), the eddy kinetic energy can be interpreted as the pressure induced by eddies in the
barotropic QG system.

6. Summary and conclusion

This study has dealt with the TWA system in terms of energetics. The total energy
(the kinetic and potential energies for the mean state) derived from the hitherto known
set of equations in this system generally is not conserved due to the work done by the
eddy momentum fluxes. Supposing that the TWA system satisfies a time mean energy
conservation of the primitive equations, however, yields an equation showing that the eddy
momentum fluxes influence the variation of the eddy energies (the sum of the kinetic and
potential energies for the eddies) along the path lines with the residual mean velocity.
Regarding the eddy momentum fluxes as analogous to viscous momentum fluxes, the eddy
energies can be interpreted as internal energy in the TWA system by analogy to a dissipative
fluid. Although the work done by pressure in the equilibrium state generally can cause
the variation of the internal energy, this is not the case in the TWA system due to the
incompressibility of the fluid.

The process of identifying the eddy energies as the internal energy can be viewed as coarse
graining of microphenomena. In the TWA system, in which the residual mean velocity, û,
and accompanying state of buoyancy surfaces, z̄, are regarded as macrovariables, deviations
from them associated with the eddy motion are implicitly defined as microvariables. Instead
of describing the individual motions associated with the eddies, we define a characteristic of
these motions by a statistical manipulation (temporal average in this case). This is analogous
to the fact that one defines a mean energy of molecular motions as a state function in
statistical mechanics.

6. The TWA momentum equation for the barotropic fluid in a rigid surface and flat bottom can be derived by just
performing the temporal average of the primitive equation because the layer thickness of the fluid is constant. The
Reynolds decomposition in the time mean barotropic momentum equation yields the Reynolds fluxes. If we apply
the QG approximation of this fluid, the Reynolds flux tensor is identical to that used in Waterman and Hoskins
(2013).
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Table 1. A fundamental set of equations for the thickness-weighted average system.

Momentum (horizontal) D#
t û + f k × û = − 1

ρ0
∇H p# + ∇ · γij

Momentum (vertical) 0 = − 1
ρ0

∂p#

∂z + b#

Incompressibility ∇ · v# = 0

Buoyancy D#
t b# = 0

Internal energy D#
t S# = v# · ∇ · γij + ρ−1

0 G

In this study, we showed that taking account of the equation of the eddy energies suc-
cessfully derives the TWA equation of motion by the variational principle. If we otherwise
neglect the eddy energies, the motion of the fluid is the same as that expected in the nondis-
sipative primitive equation, even if we claimed that the prognostic variable is the residual
mean velocity. This fact suggests that the equation of the eddy energies is important for
determining the motion of the macrofluid in the TWA system. In other words, the term
discerning the TWA system from the primitive equation system is not the residual mean
velocity, but rather the eddy momentum fluxes embedded in the equation of motion.

From these results, this study proposes a fundamental set of equations in the TWA system,
adding the equation of the eddy energies (Table 1). As mentioned in Section 5, this system is
invariant for the alteration that we include the isotropic component of the eddy momentum
fluxes as a part of the pressure; these terms cannot be distinguished from each other. Based
on this concept, we can give an interpretation that the downstream decaying of the western
boundary current extension is caused by the pressure induced by eddies. Also, we expressed
the TWA system in the Lagrangian and Hamiltonian formulations, which will be helpful to
describe this system in terms of the Hamiltonian dynamics in the future.
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APPENDIX 1

Tensor representation of the eddy momentum fluxes

We express the eddy momentum flux vector F using a tensor, γij . Defining Φ ≡ z′2/2;

Vij ≡ z̄b
̂ui

′′uj
′′, where (u1, u2) ≡ (u, v); and C ≡ z′∇̃π′/ρ0, the eddy momentum flux

vector F becomes
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F ≡ − 1

z̄b

∇̃Φ − 1

z̄b

∇̃ · Vij − ∂C
∂z

. (A1)

Using the transition rule (equation 9), after some manipulation, the first term of this formula
is expressed in Cartesian coordinates as

1

z̄b

∇̃Φ = ∇H

(
b#

zΦ
) + ∂

∂z
(−Φ∇H b#). (A2)

This can be written in a tensor form as

1

z̄b

∇̃Φ = ∇ · ξij , (A3)

where

ξij ≡ Φ

⎛⎝ b#
z 0 0

0 b#
z 0

−b#
x −b#

y 0

⎞⎠ (A4)

and ∇ · ξij ≡ (∂/∂xi)ξij . Because a similar relation to (A2) holds for the tensor, Vij , the
second term of (A1) becomes

1

z̄b

∇̃ · Vij = ∇ · ηij , (A5)

where

ηij ≡
⎛⎜⎝ û′′u′′ û′′v′′ 0

v̂′′u′′ v̂′′v′′ 0

−∇H b#

b#
z

· ̂u′′u′′ −∇H b#

b#
z

· û′′v′′ 0

⎞⎟⎠ . (A6)

Also, denoting C ≡ (C1, C2), the third term of (A1) can be written as

∂C
∂z

= ∇ · ζij , (A7)

where

ζij ≡
⎛⎝ 0 0 0

0 0 0
C1 C2 0

⎞⎠ . (A8)

Because there is a relation between the coordinates such that ∇̃π′ = ∇H π′ − π′
z(∇H b#)/b#

z ,
the vector C can be expressed as a horizontal vector in Cartesian coordinates. The eddy
momentum flux tensor, γij , is defined as the sum of the following tensors:

γij ≡ −(ξij + ηij + ζij ). (A9)
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Note that γi3 = 0, meaning that this tensor does not influence the vertical component of
the residual velocity, and, therefore, the work done by this tensor on the residual vertical
velocity is zero: w�∂γi3/∂xi = 0. Also, a generalization of the eddy momentum flux tensor
is shown in Maddison and Marshall (2013).

APPENDIX 2

On expression of the Lagrangian time derivative in the TWA system

This appendix compiles some expressions of the Lagrangian time derivatives in the TWA
system. Although they have been shown in previous studies, showing them again here may
be helpful to the readers.

Consider a tracer equation for A forced by Q in the TWA system such that

∂A

∂t
+ v# · ∇A = ∂A

∂t
+ ∇ · (v#A) = Q. (A10)

The first equality comes from the incompressibility. With the aid of equation (17), the
transformation of this equation into b-coordinates yields

∂A

∂t̃
+ û · ∇̃A = Q. (A11)

Multiplying it by the thickness, z̄b, and using the time mean mass conservation in b-
coordinates (equation 14) gives

∂

∂t̃
(z̄bA) + ∇̃ · (ûz̄bA) = z̄bQ. (A12)

Comparing these three equations, we have relations such that

∂A

∂t
+ v# · ∇A = ∂A

∂t
+ ∇ · (v#A) = ∂A

∂t̃
+ û · ∇̃A = 1

z̄b

[
∂(z̄bA)

∂t̃
+ ∇̃ · (ûz̄bA)

]
.

(A13)

A similar argument can also be made for the primitive equations because the equation
of incompressibility, the equation of the vertical velocity, and the equation of the mass
conservation in b-coordinates in the primitive equations are written in the same form in the
TWA system.

APPENDIX 3

Integral constraint

We show here that the volume integral of the terms z̄−1
b ∇̃ · BK and z̄−1

b ∇̃ · BP in Section
3 vanishes. Let Ω be the domain consisting of (x, y, b). Owing to the relations dz = zbdb

and dz̄ = z̄bdb, this domain corresponds to the volumes in the x-y-z and x-y-z̄ spaces,
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respectively. These volumes are the same because all of the buoyancy surfaces in a temporal
mean, z̄, are stacked in the volume for the x-y-z space.

Consider temporal and spatial changes of an arbitrary quantity, A, in a flux form such
that

zbψ ≡ (zbA)t̃ + ∇̃ · (zbuA) = zb[At + ∇ · (vA)], (A14)

where for the second equality we used equation (A13) for the primitive equations. The
integral of ψ over the domain, Ω, with the no-normal-flow boundary condition of v becomes∫

Ω

d2xdb zbψ = d

dt

∫
Ω

d2xdb zbA, (A15)

whose temporal average gives∫
Ω

d2xdb z̄bψ̂ = d

dt

∫
Ω

d2xdb z̄bÂ = d

dt

∫
V

d3x Â. (A16)

Likewise, consider temporal and spatial changes of Â such that

z̄bφ ≡ (z̄bÂ)t̃ + ∇̃ · (z̄bûÂ) = z̄b[Ât + ∇ · (v#Â)], (A17)

where we used equation (A13) again for the second equality. As done for deriving equation
(A15), the integral of φ over the domain with the no-normal-flow boundary condition for
v# yields ∫

Ω

d2xdb z̄bφ = d

dt

∫
V

d3x Â, (A18)

which equals equation (A16). The detailed derivations of these volume integrals are found
in (equation A4) and (equation A12) in Aiki and Richards (2008).

Now, the temporal average of equation (A14) yields

z̄bψ̂ ≡ (z̄bÂ)t̃ + ∇̃ · (z̄bûÂ) + ∇̃ · (z̄b
̂u′′A′′). (A19)

The third term on the right-hand side of this equation corresponds to ∇ · BK or ∇ · BP .
Taking into account that the sum of the first and the second terms equals z̄bφ, and the
equality between equations (A16) and (A18), the volume integral of ψ̂ over the domain
leads to ∫

Ω

d2xdb ∇̃ · (z̄b
̂u′′A′′) =

∫
V

d3x
1

z̄b

∇̃ · (z̄b
̂u′′A′′) = 0. (A20)

Thus, the volume integral of z̄−1
b ∇̃ · BK and z̄−1

b ∇̃ · BK vanishes.
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APPENDIX 4

Hamiltonian

Fukagawa and Fujitani (2010, 2012) successfully obtained a Hamiltonian formulation
for perfect and dissipative fluids, employing Pontryagin’s minimum principle (Pontryagin
et al. 1962). In this principle, the state, q, controlled by the input, v, is defined as

d

dt
q ≡ F(q(t), v(t)), (A21)

and we seek the optimal input, v∗, minimizing the factional∫ t2

t1

dt L(q(t), v(t)) (A22)

on the end-point condition that

δq(t1) = δq(t2) = 0. (A23)

The optimal input is obtained by minimizing the action

I [q, p, v] =
∫ t2

t1

dt

[
L(q, v) + p ·

(
d

dt
q − F(q, v)

)]
=

∫ t2

t1

dt

[
−H(q, p, v) + p · d

dt
q
]

, (A24)

where p is the undetermined multiplier called costate and

H(q, p, v) ≡ −L(q, v) + p · F (A25)

is the Hamiltonian for this system. Let v∗(q, p) be the optimal input, which satisfies

∂H(q, p, v∗)
∂v∗

∣∣∣∣
q, p

= 0. (A26)

Denoting H ∗(q, p) ≡ H(q, p, v∗), the preoptimized action is defined as

I ∗[q, p, v] =
∫ t2

t1

dt

[
−H ∗(q, p) + p · d

dt
q
]

. (A27)

Solving the stationary conditions of this action for q and p yields the canonical equation
given by

dqi

dt
= ∂H ∗(q, p)

∂pi

, (A28)

dpi

dt
= −∂H ∗(q, p)

∂qi

. (A29)
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For applying this principle to the TWA system, we let the state and the costate be q ≡ Ai

and p ≡ βi , respectively, and F ≡ −v · ∇Ai . Consider minimizing the functional given by∫
V

d3x L(q, v, S) (A30)

under the constraint in a form of equation (A21). Different from the basic theory of this
principle, this Lagrangian is also a function of the eddy energies related to the nonholonomic
constraint (equation 64). We define the Lagrangian in the form of

L(q, v, S) ≡ J−1
(

v2

2
+ bz − S

)
+ K(ρ0 − J−1), (A31)

where v ≡ (u, v, αw) and α is an aspect ratio; w is redefined as αw. In the limit of α → 0, we
have the same Lagrangian as equation (49). The definition of the Lagrangian using the three-
dimensional velocity vector with the aspect ratio is an analogy from an inclusive definition
of the Lagrangian for a nonhydrostatic and hydrostatic system (e.g., Holm, Marsden, and
Ratiu 2002). By definition, the Hamiltonian corresponding to equation (A25) can be written
as

H(q, p, v, S) = −L(q, v, S) − βiv · ∇Ai, (A32)

from which the optimal input is deduced as v∗ = −βi∇Ai and the corresponding Hamilto-
nian is found to be

H∗(q, p, S) ≡ H(q, p, v∗, S) = J−1

(
v∗2

2
− bz + S

)
− K(ρ0 − J−1). (A33)

Notice that for α → 0, this preoptimized Hamiltonian is equivalent to the total energy for
the TWA system. Using this Hamiltonian, the preoptimized action is given by

I ∗[q, p, S] =
∫ t2

t1

dt

∫
V

d3x

[
−H∗(q, p, S) + p · d

dt
q
]

. (A34)

With the aid of equations (48) and (37), the stationary conditions with respect to δp and δq
(i.e., δβi and δAi) yield Hamilton’s equations as follows:

∂Ai

∂t
= ∂H∗

∂βi

− ∂

∂xj

∂H∗

∂(∂βi/∂xj )
, (A35)

∂βi

∂t
= −∂H∗

∂Ai

+ ∂

∂xj

∂H∗

∂(∂Ai/∂xj )
− ρ0

∂xj

∂Ai

· ∇ · γij . (A36)

These equations are equivalent to equations (44) and (66), respectively. Also, omitting
the term of the eddy momentum fluxes, these equations become the so-called canonical
equation, which corresponds to the nondissipative primitive equation.
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