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The relation between unstable shear layer thicknesses and
turbulence lengthscales

by Eric Kunze1

ABSTRACT
This note explores the connection between the (i) lengthscales of unstable finescale shear layers

which are responsible for turbulence production, (ii) turbulence patch thicknesses and (iii) the outer
scales of turbulence, that is, the density overturn (Thorpe) and Ozmidov lengthscales, in the stratified
ocean interior. Explanations are offered both for why (i) turbulence patches are often observed to be
much thicker than outer turbulence scales and (ii) there is a spectral gap between finescale internal
waves and the outer scales of turbulence. A finescale parameterization based on unstable shear predicts
Ozmidov lengthscales smaller than unstable-shear-layer thicknesses for moderately unstable gradient
Froude numbers |Vz|/N < 5.5 [or equivalently, gradient Richardson numbers Ri = N2/V 2

z > 0.03
where |Vz| is the instantaneous finescale vertical shear magnitude and N the instantaneous buoyancy
frequency] for a critical gradient Froude number δc = 2; this is little changed for critical gradient
Froude numbers as low as 1. Thus, assuming that patch thicknesses correspond to unstable shear-
layer thicknesses, outer turbulence lengthscales will be smaller than patch thicknesses for moderately
unstable shear but not strongly unstable shear. A spectral gap between internal wave and turbulent
shear arises for similar reasons.

1. Introduction

Turbulent mixing is important for a wide range of ocean phenomena – (i) driving the
upwelling limb of the meridional thermohaline overturning circulation, (ii) maintaining
abyssal density stratification, (iii) removing water-mass and tracer variability, and (iv)
facilitating nutrient and dissolved-gas exchange between the stratified interior and sur-
face boundary layer. Turbulence in the stratified ocean interior away from surface or bottom
boundaries arises mostly from breaking internal gravity waves, most often due to instabil-
ity of finescale near-inertial shear (Gregg et al., 1986; Itsweire et al., 1989; Peters et al.,
1995; Polzin, 1996). However, turbulent patches are often observed to be much thicker than
outer turbulence lengthscales (for example, see Gregg et al., 1986) and there is a spectral gap
between the smallest internal-wave and largest turbulence lengthscales (Fig. 1; Gargett et al.,
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Figure 1. Vertical wavenumber kz spectrum of gradient Froude number δN = |Vz|/N spanning
the weakly blue Garrett-Munk internal-wave spectrum [kz < kr = 2π/(10 m)], the saturated

k−1
z spectrum [kr < kz < kO = (N3/ε)1/2] and the Kolmogorov turbulence k

1/3
z spectrum

[kO < kz < kK = (ε/ν3)1/4]. This figure uses the GM76 model vertical wavenumber spectrum
(Gregg and Kunze, 1991) and the dissipation rate <ε> = 7 × 10−10 W kg−1 predicted for GM-
level internal waves by the Gregg-Henyey parameterization (Gregg et al., 2003) for a buoyancy
frequency N = 5.3 × 10−3 rad s−1 and the GM model spectral level EGM = 6.3 × 10−5. Sharp
corners at rolloff kz = krand Kolmogorov kK wavenumbers are not observed. The dotted diagonal
corresponds to k−1

z .

1981; Gregg et al., 1993). This note offers a dynamical explanation for these lengthscale
separations though likely not the only one.

The vertical wavenumber spectrum for vertical shear (Fig. 1) is dominated by internal
gravity waves for vertical wavelengths λz longer than a rolloff wavelength λr ∼ 10 m;
in this paper, vertical wavelengths λz, vertical wavenumbers kz = 2π/λz in rad m−1,
and lengthscales L = k−1

z = λz/2π will be used interchangeably. The spectrum is blue
at low wavenumbers becoming approximately flat just below kr . At higher wavenumbers
kz > kr , the shear spectrum rolls off as k−1

z in what is known as the saturated spec-
trum in the atmospheric literature (Smith et al., 1987). The rolloff wavenumber is thought
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to scale as E−1 where E is the internal-wave spectral level at lower wavenumbers, that
is, kGM/kr = E/EGM (Gargett et al., 1981; Gregg et al., 1993; Fritts, 1984) where the
GM subscript denotes the value for the canonical Garrett-and-Munk model spectrum,
EGM = 6.3 × 10−5 and kGM = 2π/(10 m) (Munk, 1981). The change in slope associ-
ated with the saturated spectrum has been explained as strongly nonlinear internal-wave
interactions (Hines 1993; 1996) but it has also been suggested that it represents entirely
different physics, that is, potential vorticity finestructure left behind by turbulent mix-
ing (Polzin et al., 2003; Lelong et al., 2002; Sundermeyer and Lelong, 2005). However,
it may simply represent a spectral gap between internal waves and turbulence, the k−1

z

slope a purely kinematic consequence of vertical straining of superimposed internal waves
by other internal waves (Eckermann, 1999). At higher wavenumbers still, turbulent shear
dominates between the Ozmidov wavenumber kO ∼ (N3/ε)1/2 ∼ (γN/K)1/2 (Osborn,
1980), where the buoyancy frequency N inhibits density overturns associated with turbu-
lent kinetic energy dissipation rates ε, and the Kolmogorov wavenumber kK ∼ ε/ν3)1/4,
where molecular viscosity ν strongly damps out smaller-scale shear variance. Here, K is
the turbulent diapycnal diffusivity and γ the mixing efficiency. Dimensional scaling implies
a k

1/3
z spectrum for kO < kz < kK. The internal-wave spectrum is more or less universal

while turbulence is intermittently present 5–10% of space-time (Gregg and Sanford, 1988)
as are unstable shear conditions (Kunze et al., 1990; Peters et al., 1995; Polzin, 1996). A
spectral description (Fig. 1) cannot capture the physics of turbulence production because it
smears over these sporadic unstable shear events.

2. Shear instability

Turbulence in the ocean is neither homogeneous nor stationary, arising sporadically in
most of the stratified interior. Shear instabilities, such as Kelvin-Helmholtz billows, raise
heavy water above light on the largest turbulent lengthscales LT ∼ LO to produce a negative
buoyancy-flux < w′b′ > (Fig. 2), that is, in the sense of mixing. Secondary 3-D instability
then breaks down the resulting unstable density overturn (D’Asaro et al., 2004; Smyth and
Moum, 2000). Anomalous density parcels rise and sink toward their original isopycnal
surfaces in a positive buoyancy-flux counter to the sense of mixing. This restoration to the
unperturbed stratification is partially short-circuited by molecular diffusion, resulting in net
mixing. In observations, the density overturn (Thorpe) scale LT is related to the Ozmidov
lengthscale LO ∼ 0.8LT on average (Dillon, 1982; Dillon and Park, 1987) though, as
evident from Figure 2, their ratio evolves over the lifecycle of a turbulent event, with
LT >> LO during the initial overturn when turbulent dissipation rates ε are small and
LT < LO when the dissipation rate can no longer support density overturns (ε <∼ 200 νN2)

(Gargett et al., 1984; Wijesekera and Dillon, 1997; Smyth and Moum, 2000).
A shear instability criterion can be posed in terms of gradient Froude number δN =

|Vz|/N > δc [equivalent to a gradient Richardson (1920) number criterion Ri = N2/V 2
z =

δ−2
N < δ−2

c ], where |Vz| = (u2
z + v2

z)
1/2 is the vertical shear magnitude. A critical gradient



98 Journal of Marine Research [72, 2

Figure 2. Evolution of a shear instability showing the growth of a density overturn, its breakdown
into turbulence and subsequent decay along the top. Subsequent levels show the corresponding
production <u′w′>∂U/∂z, buoyancy-flux <w′b′>, dissipation rate ε ∼ L2

ON3, change in fluctu-

ating available potential energy APE’ = L2
T N2/2 and change in background potential energy PE

[adapted from Sun et al., 1996].

Froude number δc = 1 corresponds to the shear layer having the same horizontal kinetic
energy HKE as the available potential energy APE of the stratification N while δc = 2
(Miles, 1961; Howard, 1961) corresponds to the vorticity of the shear |Vz|/2 being able to
overcome the stratification, |Vz|/2 > N . A δc = 1.7 (Ric = 0.33 ± 0.06) has been cited
(Thorpe, 1973) as the point when turbulence collapses. Laboratory data appear to support a
critical δc = 2 (Thorpe, 1971; Scotti and Corcos, 1972) but the geometry and history of the
shear and stratification profiles appear to be important for δc and the form of the instability.

Ocean observations find no relation between gradient Froude number δN and turbulent
dissipation rates ε unless δN is resolved on lengthscales small enough that unstable δN > δc

is resolved (Toole and Schmitt, 1987; Polzin, 1996). For typical ocean internal-wave fields,
these require resolutions of 1–2 m.

Turbulent patch thicknesses LP are often observed to be much thicker than both Ozmidov
LO and density overturn (Thorpe) LT lengthscales (e.g., Gregg et al., 1986; Toole et al.,
1997; Kunze et al., 2012). Thus, there are two potentially related spectral gaps between
internal waves that generate turbulence and within the turbulence itself: (i) that between the
spectral rolloff and the outer scales of turbulence (Fig. 1), and (ii) that between unstable
shear-layer thicknesses and the outer scales of turbulence. Alternative explanations are that
(i) the initial overturn scale is comparable to the patch thickness at the outset of instability
but diminishes over the course of the turbulence patch’s evolution as the turbulence decays
(for example, see Wijesekera and Dillon, 1997; Smyth and Moum, 2000), and (ii) by analogy
to surface-wave breaking, internal-wave breaking is associated with internal-wave packets
or groups which set the patch dimensions (Thorpe, 2010).
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Figure 3. Cartoon showing a synthetic unstable (δc > 2) shear layer of thickness Lδ = 1 m between
147- and 148-m depth.

Figure 4. Nine-day time-series of 1-m shear magnitude |Vz| (upper panel, solid line), buoyancy
frequency N (upper panel, dashed line) and gradient Froude number δN = |Vz|/N (lower panel)
from a neutrally-buoyant float deployed off the coast of California [adapted from Kunze et al.,
1990].

Here, a more fundamental dynamical relationship is suggested based on the mechanism
of shear instability at |Vz| > δcN (Miles, 1961; Howard, 1961) across an unstable shear
layer of thickness Lδ (Fig. 3). Kunze et al. (1990) reported that for 1-m first-differences of
velocity and density, δN ∼ 1 most of the time, jumping to values between 2 and 3 about
5% of the time (Fig. 4) and found no occurrences of δN > 2 on vertical scales of 2-m.
Polzin (1996) reported 0.28% of the total dissipation associated with 4-m δN > 2 and 43%
associated with 2-m δN > 2; he also found 81% of the total dissipation associated with
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4-m δN > 1 and 88% associated with 2-m δN > 1 He argued that gradient Froude number
δN > 2 occurs more frequently on smaller scales but cautioned that the lengthscale Lδ

over which one chose to estimate δN must exceed the largest turbulence lengthscales LO

so that a fixed Lδ cannot be applied; in this sense, distinguishing unstable finescale shear
from turbulence has similar issues to choosing an appropriate Thorpe density overturn
scale so cannot be accomplished without high-resolution vertical profiles of both shear
and stratification. Polzin (1996) argued that choosing Lδ such that <V 2

z > > 1.0<N2>

allowed the parameterization to be used where the averaging < · > in space or time would
be sufficient to produce a stable mean variance, typically 10–12 profiles or 10–12 buoyancy
periods. An iterative approach to finding Lδ might also be effective.

3. Theory

A parameterization for the turbulence production rate εp = 1.2ε was formulated by Kunze
et al. (1990) which has been validated by fine- and microstructure ocean observations (Peters
et al., 1995; Polzin, 1996). It depends on the available horizontal kinetic energy (HKE) in an
unstable shear layer of thickness Lδ, (V

2
z − δ2

cN
2)L2

δ/24 = N2L2
δ(δ

2
N − δ2

c)/24 (Thomson,
1980) and the Kelvin-Helmholtz growth rate σ = (|Vz| − δcN)/4 = (δN − δc)N/4 (Hazel,
1972). Note that there is zero available HKE and zero growth rate σ at critical gradient
Froude number δN = δc. The growth rate σ does not exceed N until δN > 4 + δc.

The turbulence production rate εp can then be expressed in terms of the gradient Froude
number δN = |Vz|/N = Ri−1/2

εp = (1 + γ)ε = L2
δN

3

(
δ2
N − δ2

c

)
(δN − δc)

96
H(δN − δc) (1)

(Kunze et al., 1990) where Lδ is the thickness of the unstable (δN > δc) shear layer which
is assumed to break down into turbulence, and H(·) is the Heaviside function. Likewise,
the patch-average dissipation rate <ε> has been expressed in terms of the Ozmidov (1965)
or overturning (Thorpe, 1977) lengthscales

ε = L2
ON3 = 0.64L2

T N3. (2)

Equating (1) and (2) for dissipation rate ε, the ratio of the Ozmidov lengthscale to unstable
shear-layer thickness is

LO

Lδ

= (δN − δc)
√

δN + δc

4
√

6
. (3)

For a critical Froude number δc = 2 (Fig. 5), the ratio is less than 1 for 2 < δN < 5.5
[corresponding to 0.03 < Ri < 0.25] and greater than 1 for δN > 5.5; choosing δc = 1,
leads to a ratio less than 1 for 1 < δN < 5 and greater than 1 for δN > 5. Thus, the existence
of a spectral gap between the smallest internal-wave (Lδ) and largest turbulent (LO, LT )

lengthscales is predicted to be a function of how unstable the shear layer is. For moderately
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Figure 5. Lengthscale ratio LO/Lδ as a function of gradient Froude number δN (3) for critical
gradient Froude number δc = 2 (thick solid) and 1 (dotted) where LO = (ε/N3)1/2 is the Ozmidov
lengthscale and Lδ the thickness of the unstable (δN > δc) shear layer. The ratio lies below one for
δN < 5.5 [corresponding to Ri < 0.03] with δc = 2 (thick solid curve) so that turbulent overturn
scales will be smaller than the patch thickness LP (= Lδ), and above one for δN > 5.5 so that the
unstable shear layer will entrain water from the neighboring fluid; for δc = 1, the ratio transition
occurs for δN = 5 (dotted curve). The turbulent patch thickness LP is expected to scale to the larger
of LO and Lδ. Taking into account that an overturn spanning L, which might be a more appropriate
measure of patch thickness, has an rms LT = L/6, yields the thin solid curve for which the patch
thickness is only thicker than the overturn length for δN < 2.7.

unstable gradient Froude number, overturns LO are smaller than the unstable shear layer
thickness Lδ. If a turbulence patch thickness LP corresponds to the unstable shear layer
thickness Lδ(LP = Lδ), then we also expect LO < LP . Gregg et al. (1986) reported patch
thicknesses of 0.5–8 m and Ozmidov scales O(0.1 m) consistent with lengthscale ratios of
0.02–0.1, and implying δN < 3 responsible for their patches if the arguments leading to
(3) hold. For higher gradient Froude numbers (δN > 5.5), predicted overturn lengthscales
are larger than the shear layer thickness and turbulence is expected to entrain water from
outside the unstable shear layer as has been reported in some lab experiments.

Note that other parameterizations also predict a spectral gap in vertical wavenumber
kz space between internal waves (Lr, Lδ) and turbulence (LO, LT ) (Fig. 1). Equating the
internal-wave cascade parameterization for turbulent dissipation rate

ε = ε0
N2

N2
0

E2

E2
GM

h(Rω)j

(
f

N

)
= ε0

N2

N2
0

L2
r

L2
GM

h(Rω)j

(
f

N

)
(4)
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(Henyey et al., 1986; Gregg, 1989; Polzin et al., 1995; Gregg et al., 2003) where ε0 =
7 × 10−10 W kg−1, N0 = 5.3 × 10−3 rad s−1, Rω is the shear/strain variance ratio and
LGM = 10 m/(2π), to the Ozmidov lengthscale relation (2),

L2
O

L2
r

= 4π2ε0

N2
0 NL2

GM

f (Rω)j

(
f

N

)
(5)

with variability only due to buoyancy frequency N , the shear/strain variance ratio Rω and
latitude (f ). As pointed out by D’Asaro and Lien (2000), the two lengthscales both depend
on E2 so will parallel each other as the internal-wave field rises and falls. For an oceanic
shear/strain variance ratio Rω = 7, f (Rω) = 0.5. For N = 10−4 − 10−1 rad s−1 and
f = 0 − 10−4 rad s−1, the lengthscale ratio LO/Lr < 0.06. Thus, (5) also predicts a
large spectral gap between the largest turbulence and smallest internal-wave lengthscales,
consistent with ocean observations (Fig. 1). It predicts that the gap will be wider for higher
N near the equator and narrower for lower N at high latitudes.

4. Summary

For a critical gradient Froude number δc = 2, unless the gradient Froude number δN

exceeds 5.5, the Ozmidov LO and overturning LT turbulent lengthscales will be smaller
than the unstable-shear-layer thickness Lδ (Fig. 5) or, equivalently, overturning scales will
be smaller than turbulent patch thicknesses LP , as often observed (Gregg et al., 1986;
Toole et al., 1997; Kunze et al., 2012). This satisfies the assumption of scale separation
between fine- and microscales for a Reynolds decomposition, and is consistent with the
shear spectrum (Fig. 1).

In the case where δN > 5.5 (Ri < 0.03), Ozmidov and overturn lengthscales are predicted
to be larger than the unstable layer so turbulence should entrain water from outside the
unstable shear layer and the patch thickness LP will grow. In this case, there would be
no scale separation between outer turbulence and the finescale internal-wave shear that
generates it. Thus, scale separation between internal waves and turbulence is predicted to
depend on whether unstable shear layer in the ocean are moderately (δN < 5.5; Ri > 0.03)
or strongly unstable.

We caution that other explanations are possible as already mentioned. As pointed out by
Thorpe (2010), for an overturn spanning a thickness L, the rms LT ∼ L/6 and it is this
rms LT that is comparable to LO on average. Taking this into account, patch thicknesses
only exceed L for δN < 2.7 (thin solid curve in Fig. 3). Stratified turbulent boundary layers
are often 1–2 orders of magnitude thicker than overturning or Ozmidov scales (Toole et
al., 1997; Kunze et al., 2012), much thicker than one would expect from the explanation
offered here. These likely arise from multiple superposed and overlapping unstable shear
layers being strongly forced by boundary processes such as near-critical internal wave
reflection. Even in the interior, the passage of wave groups may create turbulence patches
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thicker than overturning scales (Thorpe 2010). Thus, the explanation offered here is only
one of many.

Acknowledgments. This note was provoked by J. Nash’s skepticism that unstable shear layer thick-
ness Lδ in (1) had any physical significance. Valuable comments were supplied by Ken Brink, Steve
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