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Linear dynamics of a stably-neutrally stratified ocean

by Gregory M. Reznik1,2

ABSTRACT
Linear dynamics of stably-neutrally stratified fluid consisting of the stably stratified upper layer

and the homogeneous lower layer is studied with and without rotation. The density and other fields are
continuous at the interface between the layers. A special feature of this configuration is existence of
the wave mode related to the homogeneous layer. In non-rotating fluid this is the homogeneous layer
vortex mode characterized by a stationary three-dimensional velocity field confined to the lower layer.
In the presence of rotation, the mode turns into the gyroscopic waves. Besides the mode, the wave
spectrum contains internal waves and the zero frequency horizontal vortex mode with zero vertical
velocity. In non-rotating fluid, the vertical velocity consists of the dispersive internal waves and of a
steady component in the homogeneous layer. With increasing time the internal waves decay at a fixed
point because of dispersion, and the vertical velocity decays in the upper layer and becomes stationary
in the lower layer. A non-stationary boundary layer develops near the interface in the stratified layer
at large times.

In rotating fluid we examined the wave spectrum not using the traditional and hydrostatic approx-
imations, and found the spectrum consists of the super-inertial internal waves, the sub-inertial gyro-
scopic waves and the sub- and super-inertial internal inertio-gravity waves. In the case of strong
stratification f/N � 1(f is the inertial frequency and N is the stratified layer buoyancy frequency)
and for the long wave scales f 2/N2 � H/L � 1(H and L are the fluid depth and the horizontal
scale), the internal and the super-inertial inertio-gravity waves freely penetrate into the lower layer,
and the gyroscopic waves are localized in the lower layer and are close to the inertial oscillations. Any
long-wave field of the vertical velocity is split into the internal waves, and the inertial oscillations
(long gyroscopic waves) confined to the lower layer. With time, the internal waves decay because of
dispersion, and the vertical velocity goes to zero in the upper layer and in the lower layer only the
inertial oscillations remain.

1. Introduction

In this paper we consider a stably-neutrally stratified (SNS) fluid consisting of two layers.
The upper layer is continuously and stably stratified in density i.e. the buoyancy frequency
N(z) > 0, whereas the lower layer is homogeneous so that N(z) = 0 in this layer (z
is the vertical coordinate). Contrary to frequently used, two-layer models the density and
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Figure 1. Schematic representation of rotating stably-neutrally stratified fluid.

other fields are assumed to be continuous at the interface between the layers. The buoyancy
frequency N(z) is either continuous or it has a finite discontinuity at the interface. This
model is of interest for geophysical applications because it was recently shown that at least
in some places of the world ocean, the stratification is very weak in the near-bottom layer
several hundreds meters thick (e.g. van Haren and Millot 2005; Timmermans et al 2007).

The prime interest here was to study the internal waves (e.g. Miropol’sky 2001; Gerkema
and Exarchou 2008). But, as we will see, besides the internal waves, other important wave
modes exist in the SNS fluid: the homogeneous layer vortex mode in the case without
rotation and the gyroscopic waves (GW) in the presence of rotation. To study evolution of
arbitrary initial perturbation one has to take into account all the modes, not only the internal
ones. In the first part of the paper we discuss the non-rotating SNS fluid without using the
hydrostatic approximation.

The gyroscopic waves exist due to background rotation; in “pure” form they occur (e.g.
LeBlond and Mysak 1978) in rotating barotropic fluid layer of constant depth, bounded by
two rigid lids. The horizontal component of the Earth’s rotation plays an important role
in dynamics of the GWs. Under the traditional approximation (TA) when the horizontal
component of the Earth’s rotation is neglected, the GWs in the barotropic layer are sub-
inertial: their frequencies σ do not exceed the vertical component of the double angular
speed of rotation f = 2Ω sin ϕ (see Figure 1) i.e. σ ≤ f ; without TA both sub-inertial
and super-inertial waves with σ ≥ f are possible (e.g. Brekhovskikh and Goncharov 1994;
Kasahara 2003).

In stratified fluid under TA the sub-inertial GWs exist together with the super-inertial
internal waves only if the minimal buoyancy frequency Nmin is smaller than f, Nmin < f
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(e.g. Kamenkovich 1977). In the strongly stratified fluid, i.e. for Nmin > f , only the super-
inertial internal waves are possible. However, without TA the sub-inertial internal inertio-
gravity waves (IIGW) occur even in the strongly stratified fluid (Kasahara 2003; Gerkema
and Shrira 2005; Gerkema et al 2008). Like the GWs, these waves cannot exist without
rotation but the buoyancy effects play an important role in their dynamics.

One aim of this work is to study linear dynamics of a system in which the internal waves
co-exist with the gyroscopic ones. The SNS fluid is the simplest system of this kind. We will
see that without traditional and hydrostatic approximations, the wave spectrum of the SNS
fluid includes all three types of the waves: the internal, the GWs and the super- and sub-
inertial IIGWs. It will be shown also that the “non-traditional” terms due to the horizontal
component of the Earth’s rotation are of importance in weakly stratified domains of the
fluid.

The paper is organized as follows: in Section 2 the governing equations with boundary
and initial conditions for the SNS fluid are presented; a semi-qualitative analysis of the
non-traditional terms depending on the stratification and the horizontal scale of motion is
given. In Section 3 dynamics of the SNS fluid without rotation is discussed: the wave modes
and evolution of arbitrary initial perturbation are analyzed. The wave modes in rotating fluid
are examined in Section 4. Evolution of arbitrary initial perturbation in the rotating fluid in
the long-wave approximation is examined in Section 5. Section 6 contains discussion and
conclusions. Some details of calculations are given in Appendices A, B and C.

2. Governing equations and some approximations

In this Section we derive the equations governing dynamics of the SNS fluid and discuss
some approximations to clarify the role of non-traditional terms for different stratifications
and the motion scales. It is shown that the non-traditional terms cannot be neglected in
domains with weak stratification, especially if the horizontal scale of motion L does not
exceed the vertical scale H , i.e. L ≤ H . If L � H then the non-traditional terms cause a
dispersion of near-inertial oscillations.

2.1. Governing equations

We consider a fluid layer of constant depth H , bounded by two rigid lids and rotating as
a whole at a constant angular speed Ω which can be non-parallel to the gravity (z-axis, see
Figure 1). The fluid density ρ, being continuous, depends on the depth z in the upper layer
of depth h1 − η and is constant in the lower layer of depth h2 + η where h1, h2 = H − h1

are constant mean depths of the layers and η = η(x, y, t) is the perturbation of interface
between the layers. In the linear approximation the governing equations can be written in
the form:

ut − f v + fsw = −px/ρ0, vt + f u = −py/ρ0, (2.1a,b)

wt − fsu + gρ/ρ0 = −pz/ρ0, ρt − ρ0N
2w/g = 0, ux + vy + wz = 0 (2.1c,d,e)
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for 0 ≥ z ≥ −h1, and

ut − f v + fsw = −px/ρ0, vt + f u = −py/ρ0, (2.2a,b)

wt − fsu = −pz/ρ0, ux + vy + wz = 0 (2.2c,d)

for −h1 ≥ z ≥ −H . Here x- and y-axes are directed along the meridian and the parallel,
u, v, w are the velocity components along the x, y, z-axes, ρ and p are the deviations of
density and pressure from their hydrostatic values, N = N(z) is the buoyancy frequency,
f = 2Ω sin ϕ is the Coriolis parameter, fs = 2Ω cos ϕ is the double horizontal component
of the angular speed Ω and ρ0 is the constant density of the lower layer.

The velocity, pressure and density fields satisfy the initial conditions:

(u, v, w, ρ)t=0 = (uI , vI , wI , ρI )(x, y, z); wI = −
∫ z

−H

(∂xuI + ∂yvI )dz; (2.3a,b)

the no-flux conditions at the rigid surface and the bottom:

w|z=0,−H = 0, (2.3c)

and the continuity conditions at the interface:

[u, v, w, p]z=−h1 = 0, ρ|z=−h1 = ρ0

g
N2(−h1)η, (2.3d,e)

where [a]z=−h1 = a|z=−h1+0 − a|z=−h1−0. The interface z = −h1 + η is a material surface
therefore in the linear approximation the vertical velocity and the perturbation η are related
as follows:

w|z=−h1 = ηt . (2.4)

In (2.3a,b) and below the subscript I denotes initial value of corresponding quantity.
It is of convenience to reduce (2.1) and (2.2) to the equations for vertical velocity w (e.g.

Miropol’sky, 2001):

(∂tt + f 2)wzz + ∇2
hwtt + 2ffswyz + f 2

s wyy + N2∇2
hw = 0, 0 ≥ z ≥ −h1 (2.5a)

(∂tt + f 2)wzz + ∇2
hwtt + 2ffswyz + f 2

s wyy = 0, −h1 ≥ z ≥ −H, (2.5b)

where ∇2
h = ∂xx + ∂yy . The boundary and initial conditions for (2.5) simply follow from

(2.3):

w|z=0,−H = 0, [w]z=−h1 = [wz]z=−h1 = 0, w|t=0 = wI , wt |t=0 = ẇI . (2.6a,b,c,d)

The field ẇI can be expressed in terms of the initial fields uI , vI , ρI (see Appendices A
and C).
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2.2. Some approximations

Before proceeding to detail consideration of wave solutions, we examine different approx-
imations to the system (2.5) depending of the motion scales and relationship between N

and f . Special attention is paid to the role of the non-traditional terms in (2.5) which are
proportional to fs . The results are summarized in Table 1.

Let the stratification be weak i.e.

N ∼ f, (2.7)

and the horizontal scale L does not exceed the vertical scale H :

L ≤ H. (2.8)

It is readily seen that in this case all terms in (2.5) are of the same order and the non-traditional
terms cannot be neglected.

In the long wave approximation

L � H (2.9)

both the equations (2.5) are reduced to approximate equations

(∂tt + f 2)w±
zz = 0, (2.10)

which describe non-dispersive inertial oscillations ∝ sin f t, cos f t . Here and below the
superscripts+ and−denote the quantities related to the upper and lower layer. The neglected
terms induce a slow dispersion of the oscillations on typical times TD � Tw where Tw is a
characteristic wave time equal here f −1. The approximate solution to (2.5) can be written
in the form:

w = w(x, y, z, t∗, t∗D), t∗ = t/Tw = f t, t∗D = t/TD. (2.11)

The representation (2.11) means that to within small values

∂ttwzz = 1

T 2
w

∂t∗t∗wzz + 2

TwTD

∂t∗t∗
D
wzz. (2.12)

The dispersion time TD is determined from the condition that the second term in the r.h.s.
part of (2.12) is of the order of maximal neglected term. In our case this term is 2ffswyz

therefore the dispersion is induced by the non-traditional terms and characterized by the
dispersion time

TD = L

H
f −1 � f −1. (2.13)

Now we consider the case of strong stratification when

N � f, (2.14)
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and the scales satisfy (2.8). Neglect of small terms in (2.5) does not change (2.5b), whereas
(2.5a) takes the form:

∂ttw
+
zz + N2∇2

hw+ + ∂tt∇2
hw+ = 0. (2.15)

It is readily seen that two types of the wave motions can exist in the system (2.15) and
(2.5b): the internal waves with the timescale Tw ∼ N−1 and the gyroscopic waves with the
timescale Tw ∼ f −1. For internal wave two last terms and the term f 2wzz in (2.5b) are
small and the equation can be approximately written as

w−
zz + ∇2

hw− = 0. (2.16)

Thus for the strong stratification and moderate horizontal scales (2.8), the rotation is neg-
ligible for the internal waves and their dynamics is approximately described by equations
for non-rotating SNS fluid (see Section 3).

In the case of gyroscopic waves with Tw ∼ f −1 the equation (2.5a) degenerates into the
Laplace equation ∇2

hw+ = 0 hence we have

w+ = 0. (2.17)

Thus under the conditions (2.14) and (2.8), the gyroscopic waves are confined to the lower
homogeneous layer and are approximately described by the equation (2.5b) with no-flux
conditions at the bottom z = −H and the interface z = −h1. Obviously, the non-traditional
terms cannot be neglected in the lower layer.

The regimes of motion in the long wave range (2.9) depend on relationships between L

and the Rossby scale LR = HN/f � H . In the range

H � L � LR (2.18)

the internal waves have timescale

Tw ∼ L

H
N−1 = L

LR

f −1 � f −1, (2.19)

approximate equations for these waves are (2.15) and (2.16), in which the last terms are
omitted. Rotation does not affect the internal waves in the range (2.18). The gyroscopic
waves with the scale Tw ∼ f −1 are approximately described by the equation of inertial
oscillations (2.10) in the lower layer; the oscillations do not penetrate into the upper layer
where (2.17) is valid. Therefore, in the range (2.18), the non-traditional terms are negligible
in the upper layer and in the lower layer they produce a dispersion of the inertial oscillations
on times (2.13).

For practically interesting horizontal scales

H � L ∼ LR (2.20)
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the timescale of internal waves is Tw ∼ f −1, i.e. the rotation becomes of importance.
Approximate equations for these waves are as follows:

(∂tt + f 2)w+
zz + N2∇2

hw+ = 0, w−
zz = 0. (2.21)

Dynamics of the gyroscopic waves is the same as in the preceding case.
In the range of ultra long scales

L � LR (2.22)

both the internal and gyroscopic waves degenerates into the inertial oscillations with the
approximate equations (2.10). As this takes place, the typical dispersion time for the gyro-
scopic waves coincides with (2.13), and for the internal waves it depends on relationship
between the scales L and (N/f )LR � LR . If

LR � L � N

f
LR (2.23)

then dispersion spreading of the long internal waves with characteristic time

TD = L2

L2
R

f −1 (2.24)

dominates. In the case

L � N

f
LR (2.25)

the dispersion is determined by the non-traditional terms and the typical time TD is given
by (2.13). Finally, if

L ∼ N

f
LR (2.26)

then the times (2.13) and (2.24) coincide. The same estimates are also valid for the internal
waves in stably stratified fluid, therefore the theory of inertial oscillations developed by
Young, Ben Jelloul (1997) under TA, is valid in the scale range (2.23). The results of the
Subsection are summarized in Table 1.

3. Waves in the absence of rotation

In this Section we consider the case when the background rotation is absent i.e. f =
fs = 0. Subsection 3.1 is devoted to analysis of wave modes in the non-rotating SNS fluid.
We show that the wave spectrum consists of the internal waves with non-zero frequencies
and two zero frequency vortex modes—the horizontal one and the homogeneous layer one.
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The vortex modes are due to conservation of vorticity in the lower layer and the vertical
component of vorticity in the upper one.

In Subsection 3.2 we discuss the initial value problem (2.5) and (2.6) in the non-rotating
SNS fluid. For simplicity we restrict ourselves to the consideration of the vertical velocity
in which the horizontal vortex mode does not manifest itself. An important new element, in
comparison with stably stratified fluid, is a three-dimensional stationary vortical circulation
confined to the homogeneous lower layer. The resulting motion is a sum of the circulation
and internal waves. To prevent penetration of the stationary signal from the homogeneous
layer into the stratified one, a non-stationary boundary layer develops near the interface in
the upper layer at large times. The boundary layer is analyzed in Subsection 3.3.

3.1. Wave solutions

Without rotation the equations (2.5) are simplified:

∂tt∇2w+ + N2∇2
hw+ = 0, ∇2w− = ∇2w−

I , (3.1a,b)

where ∇2 = ∂xx + ∂yy + ∂zz. The boundary and initial conditions (2.6) remain unchanged.
Substituting the plane wave solution

w = W(z) exp[i(kx + ly − σt)] + c.c., (3.2)

into the homogeneous version of (3.1) and assuming the frequency σ 
= 0 one obtains the
following equation for the amplitude W :

Wzz − s2(κ, z, σ)W = 0, s2 =
{

κ2(σ2 − N2)/σ2, z ≥ −h1,

κ2, z ≤ −h1
(3.3a,b)

which should be solved under the conditions

W |z=0,−H = 0, [W ]z=−h1 = [Wz]z=−h1 = 0. (3.3c,d)

Here c.c. denotes the complex conjugate value and κ = √
k2 + l2.

Multiplying (3.3a) by the complex conjugate W ∗ and integrating the resulting equation
over z from – H to 0 taking (3.3c,d) into account, one finds that non-trivial solution to (3.3)
exists only if

0 < σ < Nmax. (3.4)

Obviously the modes are the internal waves existing due to stratification.
The lower layer solution W to within arbitrary constant amplitude is given by the formula:

W = W− = sinh[κ(z + H)]. (3.5)



262 Journal of Marine Research [71, 4

By virtue of (3.5) we have:

(W−
z − α(κ)W−)z=−h1 = 0, α = κ coth κh2, (3.6)

therefore the upper layer problem can be written as

W+
zz − κ2W+ = −λκ2N2W+, (3.7a)(

W+
z − α(κ)W+)

z=−h1
= 0, W+∣∣

z=0 = 0, (3.7b.c)

where λ = σ−2. The problem (3.7) is a classical Sturm-Liouville eigenvalue problem (e.g.
Korn & Korn, 1968). The spectrum of the eigenvalues λ = λμ, μ = 1, 2, . . . is discrete
and positive i.e. λμ > 0, and the corresponding eigenfunctions W+

μ comprise a complete
orthogonal basis. The amplitude function Wμ in (3.2) corresponding to the μ-th vertical
mode of internal waves can be represented as:

Wμ =
⎧⎨
⎩

W+
μ (z, κ), z ≥ −h1

W−
μ = sinh κ(z + H)

sinh κh2
, z ≤ −h1

, (3.8)

where W+
μ is properly normalized.

It is seen from (3.8) that the long internal waves with κh2 � 1 freely penetrate into the
homogeneous layer, the corresponding vertical (horizontal) velocities being approximately
linear in z (independent of z). In the same time, the short internal waves with κh2 � 1
are confined to the stratified layer since in this case W−

μ ∼ eκ(z+h1). The lower layer field
induced by the internal wave does not depend on the mode number μ and is determined only
by the horizontal wavenumber κ. Therefore, the total field induced by the internal waves in
the homogeneous layer can be represented in the form:

w−
u = 1

2π

∫
w̃+

u (k, l, −h1, t)
sinh κ(z + H)

sinh κh2
ei(kx+ly)dkdl, (3.9)

where w̃+
u = w̃+

u (k, l, z, t) is the Fourier-amplitude of the upper layer internal waves field
w+

u (x, y, z, t).
In the simple case N = const (see also Miropol’sky 2001) the dispersion relation and

the amplitude functions Wμ can be written as:

σμ = σμ(κ) = N√
1 + s2

μ(κ)/κ2h2
1

, μ = 1, 2, . . . (3.10a)

Wμ =

⎧⎪⎪⎨
⎪⎪⎩

− sin qμz

sin qμh1
, z ≥ −h1

sinh κ(z + H)

sinh κh2
, z ≤ −h1

. (3.10b)
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Figure 2. Dispersion curves in non-rotating fluid. The dispersion curve (3.10a) is shown for μ = 1;
the curves with μ > 1 have a similar form.

Here qμ = sμ(κ)/h1, where sμ is the μ-th root of the equation:

s cot s = −κh1 coth κh2. (3.10c)

Dispersion curve σ1(κ) is shown in Figure 2, the curves with μ > 1 have a similar form.
One can readily check that without rotation the equations (2.1) and (2.2) conserve vor-

ticity: the vertical component of vorticity in the upper layer,

Ω+
z = v+

x − u+
y = Ω+

zI , (3.11a)

and all three components in the lower one:

Ω−
z = v−

x − u−
y = Ω−

zI , Ω−
x = w−

y − v−
z = Ω−

xI , Ω−
y = u−

z − w−
x = Ω−

yI . (3.11b,c,d)

The internal waves considered above are characterized by the zero vorticity in the homo-
geneous layer and zero vertical component of vorticity in the stratified one i.e. in these
waves

Ω±
z = v±

x − u±
y = 0, Ω−

x = w−
y − v−

z = 0, Ω−
y = u−

z − w−
x = 0

Two zero-frequency vortex modes correspond to the non-zero vorticity components
Ω±

z , Ω−
x,y . One of these modes will be referred to as the horizontal vortex mode and is
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due to the conservation of the vertical component of vorticity Ω±
z . The mode is character-

ized by zero vertical velocity, density, pressure and an arbitrary non-divergent horizontal
velocity, i.e. in this mode

w = p = ρ = 0, ux + vy = 0. (3.12a)

Given Ω+
zI the velocities u, v of the horizontal vortex mode are determined from the conti-

nuity equation in (3.12a) and the vertical vorticity equation

vx − uy =
⎧⎨
⎩

Ω+
zI , z ≥ −h1

Ω+
zI

∣∣
z=−h1

, z ≤ −h1

. (3.12b)

Another mode will be referred to as the homogeneous layer vortex mode. In this mode
the upper layer fields and the lower layer pressure are zero:

u+ = v+ = w+ = p+ = ρ = p− = 0. (3.13a)

The lower layer vertical velocity w−(x, y, z) is a solution to equation following from
(3.11c,d):

∇2w− = ∂yΩ
−
xI − ∂xΩ

−
yI = ∇2w−

I , (3.13b)

satisfying the boundary conditions

w−∣∣
z=−h1,−H

= 0. (3.13c)

The lower layer horizontal velocities are related to the vertical one via the continuity equation
(2.2d). We assume that all fields decay at infinity as

√
x2 + y2 → ∞, in this case the

problem (3.13b,c) is well-defined and w−(x, y, z) can be readily calculated. Obviously, the
condition (3.13c) ensures continuity of the vertical velocity at the interface z = −h1, but
the derivative wz and, therefore, the horizontal velocity can be discontinuous at z = −h1.

Thus, without rotation, the wave spectrum of the stably-neutrally stratified fluid consists
of the internal waves with σ > 0 and two steady vortex modes. An important difference
from the case of stable stratification (when h1 = H ), is that in the stably stratified fluid
only the horizontal vortex mode with w = 0 exists.

3.2. Initial value problem

Now we consider the initial value problem (3.1) and (2.6). The solution is sought as a
sum

w = wa + wI , (3.14)
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where the auxiliary function wa obeys the following equations:

∂tt∇2w+
a + N2∇2

hw+
a = −N2∇2

hw+
I , ∇2w−

a = 0, (3.15a,b)

w+
a

∣∣
z=0 = 0, w−

a

∣∣
z=−H

= 0, (3.16a,b)

w+
a

∣∣
z=−h1

= w−
a

∣∣
z=−h1

, w+
az

∣∣
z=−h1

= w−
az

∣∣
z=−h1

, (3.16c,d)

w±
a |t=0 = 0, w+

at |t=0 = ẇI . (3.16e,f)

All functions in (3.15), (3.16) are represented in the form of Fourier integrals:

w = 1

2π

∫
w̃(k, l, z, t)ei(kx+ly)dkdl, (3.17)

here and below the tilde denotes the Fourier amplitude of the corresponding function. From
(3.15a,b) we have (

w̃+
azz − κ2w̃+

a

)
t t

− κ2N2w̃+
a = κ2N2w̃+

I , (3.18a)

w̃−
azz − κ2w̃−

a = 0. (3.18b)

The boundary and initial conditions for w̃±
a coincide with (3.16) in which the functions are

replaced by their Fourier amplitudes. Using (3.18b) and (3.16b) one obtains:

w̃−
a = A(k, l, t) sinh κ(z + H), (3.19)

where A(k, l, t) is as yet an unknown function. The solution (3.19) and the continuity
conditions (3.16c,d) give the following relationship at the interface z = −h1 (cf. (3.7b)):(

w̃±
az − α(κ)w̃±

a

)
z=−h1

= 0. (3.20)

The solution w̃+
a is determined from the equation (3.18a), boundary conditions (3.16a),

(3.20) and initial conditions (3.16e,f). Since the boundary condition (3.20) coincides with
(3.7b) and the basis W+

μ is complete and orthogonal, the solution w̃+
a is sought in the form

of the following expansion:

w̃+
a =

∞∑
μ=1

w̃+
aμ(k, l, t)W+

μ (k, l, z). (3.21)

Here and below the subscript μ denotes the μ-th coefficient of corresponding expansion.
The field w̃a is readily obtained and has the form:

w̃+
a = −w̃+

I + w̃+
u , (3.22a)

w̃+
u =

∞∑
μ=1

[w̃+
Iμ cos σμt + ( ˜̇w+

Iμ/σμ) sin σμt]W+
μ . (3.22b)

w̃−
a = −w̃I (k, l, −h1)

sinh κ(z + H)

sinh κh2
+ w̃+

u (k, l, −h1, t)
sinh κ(z + H)

sinh κh2
. (3.22c)
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The resulting solution to the initial value problem (3.1) and (2.6) can be written in the
form of Fourier integral (3.17) where the amplitude w̃ is a sum of the unsteady w̃u and
steady w̃st components:

w̃ = w̃u(k, l, z, t) + w̃st (k, l, z). (3.23a)

Here

w̃u =
{
w̃+

u , z ≥ −h1

w̃−
u , z < −h1

, w̃st =
{

0, z ≥ −h1

w̃−
st , z < −h1

; (3.23b,c)

and the functions w̃−
u , w̃−

st are given by the formulae:

w̃−
u = w̃+

u (k, l, −h1, t)
sinh κ(z + H)

sinh κh2
, (3.24)

w̃−
st = w̃−

I − w̃I (k, l, −h1)
sinh κ(z + H)

sinh κh2
. (3.25)

Thus the solution consists of the stationary field wst and the internal waves wu engendered
by the initial fields wI , ẇI . One can readily see that wst coincides with the homogeneous
layer vortex mode previously considered. The existence in the linear problem of three-
dimensional stationary circulation related to the vertical velocity wst is possible only due to
the presence of the homogeneous fluid layer. In stably stratified fluid, the time-independent
vertical velocity would result in unbounded growth of density by virtue of equation (2.1d).
Averaging (3.18) with respect to time and using (3.14) and (3.16b,c) one finds that the
component wst is the averaged in time vertical velocity w i.e.

wst = 〈w〉t = lim
T →∞

1

T

∫ T

0
wdt. (3.26)

It follows from (3.25) that

w̃−
st

∣∣
z=−h1

= 0, ∂zw̃
−
st

∣∣
z=−h1

= (∂zw̃I − α(κ)w̃I )z=−h1
. (3.27a,b)

In the special case when the initial field wI satisfies the condition

(∂zw̃I − α(κ)w̃I )z=−h1
= 0, (3.28)

we have

∂zw
−
st

∣∣
z=−h1

= 0, (3.29)

i.e. the horizontal velocity ust corresponding to the stationary component wst is continuous
at z = −h1. If in addition the initial field is sufficiently smooth, so that the contribution
of high harmonics with large numbers μ is small, then the solution remains smooth with
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time. If the initial field is localized in the horizontal plane, then the horizontal dispersion of
internal waves results in decay of the field wu and the solution w with increasing t tends to
the stationary field wst .

If (3.28) is not valid then the situation becomes more complicated since the vertical
derivative ∂zwst is discontinuous at the interface z = −h1 together with ust . This means
that even for smooth initial conditions, the internal wave field should contain a sufficient
number of low-frequency harmonics with large numbers μ to provide continuity of the
derivative wz, i.e. of the horizontal velocities, at the interface z = −h1. At large times the
joint impact of these high harmonics results in developing a non-stationary boundary layer
with large vertical gradients of the horizontal velocities in the stratified layer near z = −h1;
a similar process takes place for the forced Rossby waves in a bounded basin (Kamenkovich
and Kamenkovich 1993).

3.3. Near-interface boundary layer

To study the boundary layer we (following Kamenkovich and Kamenkovich 1993) intro-
duce a time averaged velocity w̄ instead of w:

w̄ = 1

t

∫ t

0
wdt. (3.30)

Knowing w̄ one can readily calculate w:

w = (tw̄)t . (3.31)

An important property of the new variable w̄ is that on large times contribution of the rapidly
oscillating part of the field w into w̄ tends to zero and only the slowly oscillating boundary
layer remains in w̄.

In terms of w̄ the problem (3.1) and (2.6) takes the form:

(
t∇2w̄+)

t t
+ t∇2

hw̄+ = ∇2ẇ+
I , (3.32a)

∇2w̄− = ∇2w−
I , (3.32b)

w̄+∣∣
z=0 = 0, w̄−∣∣

z=−1 = 0, (3.33a,b)

w̄+∣∣
z=−h1

= w̄−∣∣
z=−h1

, w̄+
z

∣∣
z=−h1

= w̄−
z

∣∣
z=−h1

. (3.33c,d)

Equations (3.32) and (3.33) are written in non-dimensional form using the length scale H

and the time scale 1/N ; for simplicity N is assumed to be constant and the notation for h1

remains unchanged.
In view of (3.22) and (3.26) at large times the solution w̄− is close to w−

st :

w̄− = w−
st + O(1/t). (3.34)
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In the boundary layer near z = −h1 in the domain z ≥ −h1 the function w̄+ should be
O(1/t) because of (3.27a), (3.34) but the derivative w̄+

z = O(1) to provide the continuity
of the horizontal velocity at the interface. The leading order solution in the boundary layer
is sought in the form (cf. Kamenkovich and Kamenkovich 1993):

w̄+ = 1

t
ŵ(x, y, ξ), ξ = (z + h1)t, (3.35)

where ξ is the boundary layer stretched coordinate. Substituting (3.35) into (3.32a) and
neglecting small terms one obtains for t � 1:

ξ2ŵξξξξ + 4ξŵξξξ + 2ŵξξ + ∇2
hŵ = ∇2ẇ+

I (x, y, −h1). (3.36)

Representing ŵ, ẇ+
I in the form of Fourier integral (3.17) we find from (3.36) the equation

for the Fourier amplitude ˜̂w:

ξ2 ˜̂wξξξξ + 4ξ ˜̂wξξξ + 2 ˜̂wξξ − κ2 ˜̂w = R̃ =
(
(∂zz − κ2) ˜̇w+

I

)
z=−h1

. (3.37)

A non-singular solution of (3.37) (Kamke 1976) is given by the formula ˜̂w = CJ0(2
√

κξ)−
R̃/κ2 hence we have

˜̄w+ = C

t
J0(2

√
κξ) − R̃

κ2t
. (3.38)

Here J0 is the Bessel function of zero order and the coefficient C = C(k, l) is determined
from the continuity of w̄z at z = −h1:

C = −1

κ
(∂zw̃I − α(κ)w̃I )z=−h1

. (3.39)

As seen from (3.35) and (3.38) the boundary layer vertical velocity is small, but the
corresponding horizontal velocity is of the order of unity and rapidly oscillates in z, its
vertical gradients growing proportionally to t . Thickness of the boundary layer decreases
with increasing t proportionally to 1/t . If a small viscosity is included into the consideration,
(not given here) then the non-stationary boundary layer becomes a narrow stationary one. In
the stationary boundary layer the time averaged horizontal velocity changes from some non-
zero value in the homogeneous layer to zero in the stratified one. Thus in either case, with
or without viscosity, the nearest vicinity of the interface is characterized by strong vertical
gradients of the horizontal velocity, which can result in strong mixing and instability in this
domain.

4. Waves in rotating fluid

In this Section the waves in rotating SNS fluid are considered without using the traditional
and hydrostatic approximations. The buoyancy frequency N in stratified layer is assumed
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to be constant. In Subsection 4.1 we obtain the vertical eigenfunctions of the wave modes
with non-zero frequencies and demonstrate existence of three different frequency ranges
depending on the parameters f, fs, N , and the wave vector (k, l).

In Subsection 4.2 the waves in barotropic and stably stratified fluids are discussed. In the
barotropic fluid the wave spectrum consists of super- and sub-inertial gyroscopic waves, in
the stably stratified one—of super-inertial internal waves and sub-inertial IIGWs.

Dispersion curves and structure of the vertical modes in the SNS fluid are examined in
Subsection 4.3. The wave spectrum consists of the sub-inertial gyroscopic waves oscillat-
ing (in the vertical) in the homogeneous layer and having no zeros in the stratified one,
super-inertial internal waves oscillating in the stratified layer and having no zeros in the
homogeneous one, and sub- and super-inertial IIGWs oscillating in both layers.

In Subsection 4.4 a case of long waves in the SNS fluid with strongly stratified (N � f )
upper layer is considered. All types of the waves are close to the inertial oscillations if their
horizontal scale L is sufficiently large in comparison with the fluid depth H . An important
point is that the gyroscopic waves become near-inertial if L � H , whereas the internal
waves and IIGWs are near-inertial only in the ultra long-wave limit L � LR = HN/f �
H .

Besides the modes with non-zero frequency, a zero frequency vortex mode exists in the
rotating SNS fluid. The mode is discussed in Subsection 4.5. It obeys geostrophic equations
and has a zero vertical velocity.

4.1. Dispersion relations

With rotation the amplitude W in the wave solution (3.2) obeys the following equations:

(f 2 − σ2)Wzz + 2iffslWz + [κ2(σ2 − N2) − f 2
s l2]W = 0, 0 ≥ z ≥ −h1 (4.1a)

(f 2 − σ2)Wzz + 2iffslWz + (κ2σ2 − f 2
s l2)W = 0, −h1 ≥ z ≥ −H. (4.1b)

and the boundary conditions (3.3c,d). One can readily show that for non-zero κ non-trivial
solutions W exist only if σ 
= f . For simplicity, we assume the buoyancy frequency N to
be constant. In this case the amplitude W is given by the following formula:

W =
{

A+(eλ+
1 z − eλ+

2 z), 0 ≥ z ≥ −h1

A−(eλ−
1 (z+H) − eλ−

2 (z+H)), −h1 ≥ z ≥ −H
, (4.2)

where A± are constant amplitudes and

λ+
1 = a + ib+, λ+

2 = a − ib+, λ−
1 = a + ib−, λ−

2 = a − ib−, (4.3a,b,c,d)

a = − iffsl

f 2 − σ2
, b− = σκ∣∣f 2 − σ2

∣∣
√

f 2 − σ2 + f̄ 2
s , f̄s = fs

|l|
κ

, (4.4a,b,c)
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b+ = κ∣∣f 2 − σ2
∣∣
√

(f 2 − σ2)(σ2 − N2) + f̄ 2
s σ2 = κ∣∣f 2 − σ2

∣∣
√

(σ̄2
1 − σ2)(σ2 − σ̄2

2),

(4.5a)

σ̄2
1,2 = 1

2
(f 2 + f̄ 2

s + N2) ±
√

1

4
(f 2 + f̄ 2

s + N2)2 − f 2N2; (4.5b)

in (4.5b) the subscript 1 (2) corresponds to + (−).
The parameters b± can be imaginary or real. Without loss of generality we set them to

be positive if they are real or their imaginary parts to be positive if they are imaginary. The
solution (4.2) satisfies the boundary conditions (3.3c,d) if:

A−

A+ = −e−aH eib+h1 − e−ib+h1

eib−h2 − e−ib−h2
, (4.6a)

b+ eib+h1 + e−ib+h1

eib+h1 − e−ib+h1
= −b− eib−h2 + e−ib−h2

eib−h2 − e−ib−h2
. (4.6b)

The equation (4.6b) can be satisfied if at least one of the parameters b± is real. Since

σ̄2
1 ≥ max(f 2 + f̄ 2

s , N2), σ̄2
2 ≤ f 2, (4.7a,b)

the waves with frequencies σ > σ̄1 do not exist.
Using (4.6b), (4.4a), (4.5) and (4.7) one obtains the ranges of allowable frequencies and

the corresponding dispersion relations:

σ ≤ σ̄2 =⇒ b+ -imaginary, b−-real, (4.8a)∣∣b+∣∣ coth
∣∣b+∣∣ h1 = −b− cot b−h2; (4.8b)

σ̄2 ≤ σ ≤ σ̄3 ⇒ b± -real, (4.9a)

b+ cot b+h1 = −b− cot b−h2; (4.9b)

σ̄3 ≤ σ ≤ σ̄1 ⇒ b+ -real, b−-imaginary, (4.10a)

b+ cot b+h1 = −|b−| coth |b−|h2. (4.10b)

Here

σ̄3 =
√

f 2 + f̄ 2
s (4.11)

and one assumes that f 2 + f̄ 2
s ≤ N2.

4.2. Dispersion curves in barotropic and stably stratified cases

In barotropic fluid N = 0 and σ̄1 = σ̄3, σ̄2 = 0 i.e. the branches (4.8) and (4.10)
disappear, and only the gyroscopic waves branch (4.9) remains. The parameters b− and b+
are equal to each other:

b+ = b− = b, (4.12)
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Figure 3. Dispersion curves in rotating fluid. Left: gyroscopic waves in the barotropic layer, right:
waves in the stably stratified layer, N = const; N/f = 2, f̄s/f = 1/

√
2.

and we have from (4.9b) that

bH = nπ, n = 1, 2, . . . , (4.13)

n is the number of vertical mode. The corresponding dispersion relation (e.g. Brekhovskikh
and Goncharov 1994; Kasahara 2003) follows from (4.4b) and (4.13):

σ2
n = 2f 2b̄2

n + f 2 + f̄ 2
s

2(1 + b̄2
n)

± 1

2(1 + b̄2
n)

√
(f 2 + f̄ 2

s )2 + 4f 2f̄ 2
s b̄2

n; (4.14)

here b̄n = nπ/κH and the signs + and – correspond to the super- and the sub-inertial
branches. The dispersion curves are represented in Figure 3. It is seen that the super-inertial
(sub-inertial) frequencies lie in the range [f, σ̄3]([0, f ]). In the long-wave limit one obtains
from (4.14):

σn = f

(
1 ± f̄s

2nπf
κH + O(κ2H 2)

)
, κH � 1. (4.15)

The stably stratified case when the near bottom homogeneous layer is absent, i.e. h1 = H ,
was examined in a number of papers (Brekhovskikh and Goncharov 1994; Kasahara 2003;
Gerkema and Shrira 2005). The solution is given by the “upper” line in (4.2) and should
satisfy only the boundary conditions (3.3c) whence one obtains that

b+ = nπ/H, n = 1, 2, . . . (4.16)
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Since b+ is real we have from (4.5a) that

σ̄2 ≤ σ ≤ σ̄1, (4.17)

i.e. the frequencies σ̄1 and σ̄2 given by (4.5b) are the super- and the sub-inertial boundaries
of the frequency range. The dispersion relation follows from (4.5a) and (4.16):

σ2
n = 2f 2b̄2

n + f 2 + f̄ 2
s + N2

2(1 + b̄2
n)

± 1

2(1 + b̄2
n)

√
(f 2 + f̄ 2

s + N2)2 − 4f 2N2 + 4f 2f̄ 2
s b̄2

n

(4.18)

and is shown in Figure 3. It is seen that the boundary frequencies σ̄1 and σ̄2 are approached
at the short-wave limit κH → ∞. The long-wave asymptotics (4.15) remains valid in the
stratified case under the condition

κH � nπf/N, (4.19)

i.e. when the horizontal scale greatly exceeds the corresponding Rossby scale NH/nπf .
The super-inertial branch f ≤ σ ≤ σ̄1 corresponds to the internal-gravity waves. The

sub-inertial branch σ̄2 ≤ σ ≤ f exists only if N 
= 0 and both components of the angular
speed Ω are taken into account (i.e. f 
= 0, fs 
= 0); the waves on this branch are termed
internal inertio-gravity waves (Gerkema et al 2008). In the case f/N � 1 the frequencies
σ̄1,2 can be written as

σ̄1 = N

(
1 + f̄ 2

s

2N2
+ O

(
f 4

N4

))
, σ̄2 = f

(
1 − f̄ 2

s

2N2
+ O

(
f 4

N4

))
, (4.20a,b)

i.e. the sub-inertial branch is very close to the inertial frequency f for all wavenumbers k, l.
One can readily see that on the sub-inertial branch |a|H ∼ (N2/f 2)κH , therefore vertical
scales of the sub-inertial waves are very small for κH � f 2/N2, i.e. almost everywhere
excluding a narrow vicinity near κH = 0 by width O(f 2/N2). If initial fields are smooth
in depth, then only a small part of energy transfers to the sub-inertial waves while the main
part of the energy comes to the super-inertial waves in the frequency range f ≤ σ ≤ σ̄1,
which are free of the limitations on vertical scale. We note that the super-inertial waves are
close to the inertial oscillations for κH � f/N , in the case κH ∼ f/N the frequency of
super-inertial wave differs from f by the value of the order of f .

4.3. General case

Dispersion curves for the general case are represented in Figure 4. Like the preceding
particular cases, each curve consists of sub-inertial and super-inertial branches given number
n of the vertical mode. The sub-inertial frequencies lie in the range [0, f ], and as seen
from Figures 3 and 4 the sub-inertial branch is similar to that in the barotropic case. In
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Figure 4. Dispersion curves in stably-neutrally stratified fluid. Left: general view, right: long waves
domain; N/f = 3, fs/f = 1/

√
2, h1 = 0.5.

turn, the super-inertial branch is similar to that in the stably stratified case, and the super-
inertial frequencies lie in the range [f, σ̄1]. The frequencies σ̄2 and σ̄3 here are “separating”
frequencies: the frequency σ̄2 divides the sub-inertial waves into the sub-inertial IIGWs
with frequencies from the sub-range [f, σ̄2] and the gyroscopic waves from the sub-range
[0, σ̄2]. Analogously, the frequency ranges [f, σ̄3] and [σ̄3, σ̄1] at the super-inertial branch
correspond to the super-inertial IIGWs and the internal waves.

The above classification is based on behavior of the eigenfunction (4.2). Using (4.3) and
(4.6a) one can represent (4.2) as:

W = eaz

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eib+z − e−ib+z

eib+h1 − e−ib+h1
, 0 ≥ z ≥ −h1

−eib−(z+H) − e−ib−(z+H)

eib−h2 − e−ib−h2
, −h1 ≥ z ≥ −H,

(4.21)

In the range of gyroscopic waves σ ≤ σ̄2 the parameter b+ is imaginary and b− is real.
Therefore here

W = eaz

{
sinh

∣∣b+∣∣ z/sinh
∣∣b+∣∣ h1, 0 ≥ z ≥ −h1

−sin b−(z + H)
/

sin b−h2, −h1 ≥ z ≥ −H
. (4.22)



274 Journal of Marine Research [71, 4

In the range of sub- and super-inertial IIGWs σ̄2 ≤ σ ≤ σ̄3 both the parameters b± are
real and the eigenfunction (4.21) oscillates in both layers:

W = eaz

{
sin b+z

/
sin b+h1, 0 ≥ z ≥ −h1

−sin b−(z + H)
/

sin b−h2, −h1 ≥ z ≥ −H
. (4.23)

Finally, in the range of internal waves σ̄3 ≤ σ ≤ σ̄1 the parameter b+ is real and b− is
imaginary i.e.

W = eaz

{
sin b+z

/
sin b+h1, 0 ≥ z ≥ −h1

−sinh
∣∣b−∣∣ (z + H)

/
sinh

∣∣b−∣∣ h2, −h1 ≥ z ≥ −H
. (4.24)

When σ → 0 the wavenumber κH → ∞ and the parameter |b+| → ∞, therefore it
follows from (4.22) that for sufficiently short gyroscopic waves:

W ∼= eaz

{
e−|b+|(z+h1), 0 ≥ z ≥ −h1

−sin b−(z + H)
/

sin b−h2, −h1 ≥ z ≥ −H
, (4.25)

i.e. the waves are confined to the near-bottom homogeneous layer. Analysis of the branch
(4.8) gives that the dispersion relation for the short gyroscopic waves can be approximately
written as

σ = f 2√
f 2 + f̄ 2

s

nπ

κh2
, κH � 1, (4.26)

that, as follows from (4.14), coincides with the corresponding asymptotics for the sub-
inertial gyroscopic waves in barotropic layer of depth h2.

As σ → σ̄2 the parameter b+ → 0 (see (4.5a)) and we have:

W = eaz

{
z/h1, 0 ≥ z ≥ −h1

−sin b−(z + H)/sin b−h2, −h1 ≥ z ≥ −H
, (4.27)

i.e. the eigenfunction (if not to take into account the oscillating term eaz) linearly depends
on z in the upper layer and oscillates in the lower one.

Similarly, as σ → σ̄3 the parameter b− → 0 and using (4.23) and (4.24) one obtains that

W = eaz

{
sin b+z

/
sin b+h1, 0 ≥ z ≥ −h1

−(z + H)
/
h2, −h1 ≥ z ≥ −H

, (4.28)

i.e. the eigenfunction is linear in z in the lower layer and oscillates in the upper one.
In the range of short internal waves the frequency σ is close to σ̄1, the non-dimensional

wavenumber κH � 1 and |b−|h2 � 1, therefore

W = eaz

{
sin b+z

/
sin b+h1, 0 ≥ z ≥ −h1

−e|b−|(z+h1), −h1 ≥ z ≥ −H
; (4.29)

we see that the short internal wave is confined to the upper stratified layer.
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Finally, as σ → f we have κH → 0, b− ∼= b+ ∼= nπ/H and in view of (4.23):

W = eaz sin nπz/H

sin nπh1/H
, (4.30)

i.e. sufficiently long waves in the close vicinity of inertial frequency do not feel stratification.
We note, however, that this is valid only if f̄s 
= 0.

4.4. The case f/N � 1 and the long-wave approximation

In the strongly stratified case f/N � 1 the frequencies σ̄1,2 take the form (4.20) i.e. the
range σ̄2 ≤ σ ≤ f corresponding to the sub-inertial IIGWs strongly contracts, while the
range of super-inertial IIGWs remains wide (Figure 4). In Appendix B we examine the long
waves with

κH � 1 (4.31)

and show that frequencies of these waves are given by the formulae

σ = f (1 + O(κH)) (4.32)

in the range σ ≤ f of sub-inertial IIGWs and gyroscopic waves, and

σ = f (1 + O(κ2H 2N2/f 2)) (4.33)

in the range σ ≥ f of super-inertial IIGWs and internal waves.
Moreover, in the range

f 2/N2 � κH � 1 (4.34)

the following approximate dispersion relations are valid:

σ ∼= f − f̄s

2nπ
κh2, n = 1, 2, . . . , σ ≤ f ; (4.35a)

σ ∼= f

√
1 + κ2h2

1N
2/s2

nf
2, n = 1, 2, . . . , σ > f. (4.35b)

Here sn is the n-th root of the equation

s cot s = −h1/h2. (4.36)

As for the eigenfunctions (4.21), in the range (4.34) the sub-inertial modes are confined
to the lower homogeneous layer and exponentially decay in the upper one, and the super-
inertial modes oscillate in the stratified layer and depend linearly on z in the lower one.
One can say that the long waves in the range (4.34) behave like the waves without rotation
discussed in Section 3, only the zero frequency homogeneous layer vortex mode is replaced



276 Journal of Marine Research [71, 4

by the sub-inertial inertial oscillations. An important point is that in accordance with (4.33)
and (4.34) the sub-inertial gyroscopic waves (the super-inertial modes) become close to the
inertial oscillations if L � H(L � LR = HN/f ) where L is typical horizontal scale of
wave and LR is the Rossby scale. In the case f/N � 1 the Rossby scale greatly exceeds the
depth H i.e. the sub-inertial gyroscopic waves make possible inertial oscillations, which are
shorter than the “traditional” inertial oscillations related to the long super-inertial internal
modes. One can assume that namely this fact explains the large values of vertical velocities
observed in the inertial oscillations in the nearly barotropic deep Western Mediterranean
(van Haren and Millot 2005).

4.5. Vortex mode

In addition to the previously mentioned wave modes with nonzero σ, there exists a steady
vortex mode which obeys the following equations:

−f v+ = −p+
x /ρ0, f u+ = −p+

y /ρ0, w+ = 0, (4.37a,b,c)

−fsu
+ + gρ/ρ0 = −p+

z /ρ0, u+
x + v+

y = 0; (4.37d,e)

−f v− + fsw
− = −p−

x /ρ0, f u− = −p−
y /ρ0, (4.38a,b)

fsu
− = p−

z /ρ0, u−
x + v−

y + w−
z = 0. (4.38c,d)

It readily follows from (4.38b,c) that the velocity u− can be written in the form:

u− = u−(x, fy − fsz); (4.39)

using (4.39) and (4.38a,d) one can show that the same is valid for other fields. Because of
the no-flux condition on the bottom the vertical velocity w− is zero, and the lower layer field
is geostrophic like the upper layer one. An important property is that in the homogeneous
layer given x all variables are constant at the planes fy − fsz = const , which are parallel
to the rotation speed Ω. The effect takes place only in the barotropic flow, the structure
of the baroclinic steady flow depends on the density distribution (compare (4.37d) with
(4.38c)). In the case f = fs = 0 the geostrophic mode (4.37) and (4.38) transforms into
the horizontal vortex mode considered in the Section 3. The gyroscopic waves are analog
of the homogeneous layer vortex mode in non-rotating fluid.

5. Long-wave dynamics

In this Section we consider the initial value problem (2.5) and (2.6) in the case when the
upper layer is strongly stratified, i.e. f/N � 1, and the horizontal scale of motion L is
much greater than the fluid depth H , but does not exceed the Rossby scale LR = HN/f

in the order of magnitude: H � L ≤ LR . The zero frequency geostrophic mode does not
manifest itself in the vertical velocity, therefore the solution is a sum of gyroscopic waves,
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which are close to inertial oscillations in this approximation, and of dispersive internal
waves (see above Subsection 4.4).

Neglecting small terms in (2.5a,b) one obtains:

(∂tt + f 2)wzz + N2∇2
hw = 0, 0 ≥ z ≥ −h1 (5.1a)

(∂tt + f 2)wzz = 0, −h1 ≥ z ≥ −H. (5.1b)

The equations (5.1a,b) should be solved under conditions (2.6); the initial condition for wt

is derived in Appendix C.
The solution is represented in the form (cf. (3.14)):

w = wa + wI cos f t + 1

f
ẇI sin f t, (5.2)

for wa we have a forced problem with homogeneous boundary and initial conditions:

(∂tt + f 2)w+
azz + N2∇2

hw+
a = −N2∇2

h[w+
I cos f t + (1/f )ẇ+

I sin f t], (5.3a)

(∂tt + f 2)w−
azz = 0; (5.3b)

wa|z=0,−H = 0, [wa]z=−h1 = [waz]z=−h1 = 0, (5.4a,b)

wa|t=0 = 0, wat |t=0 = 0. (5.4c,d)

The solution to (5.3b) obeying (5.4a,c,d) is readily obtained:

w−
a = (z + H)[A(x, y, t) − (1/f )At (x, y, 0) sin f t − A(x, y, 0) cos f t], (5.5)

here A(x, y, t) is an arbitrary differentiable function. It follows from (5.5) that at the inter-
face z = −h1: (

w−
az − 1

h2
w−

a

)
z=−h1

= 0, (5.6)

therefore, in view of (5.4b), the equation (5.3a) should be solved under the condition(
w+

az − 1

h2
w+

a

)
z=−h1

= 0, (5.7)

and the conditions (5.4a,c,d).
Similarly to Section 3, the solution is sought as a superposition of the wave modes

w+
μ = W+

μ (z) exp[i(kx + ly − σμt)], μ = 1, 2, . . . (5.8)

where each the mode (5.8) is a solution of the homogeneous problem (5.3a), (5.4a), (5.7).
The amplitude W+

μ (z) is eigenfunction of the eigenvalue problem (cf. (3.7)):

W+
zz = −λN2W+, (5.9a)

[W+
z − (1/h2)W

+]z=−h1 = 0, W+∣∣
z=0 = 0, (5.9b,c)
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where λ is the eigenvalue. Like (3.7) the spectrum of the eigenvalues λ = λμ, μ = 1, 2, . . .

is discrete and positive and the corresponding eigenfunctions W+
μ comprise a complete

orthogonal basis. The frequencies σμ are related to λμ in the following way:

σμ =
√

f 2 + κ2/λμ. (5.10)

Obviously, these waves are super-inertial and lie on the branch (4.10). In the case N = const

we have (cf. (3.10)):

W+
μ = sin qμz, qμ = sμ/h1 = N

√
λμ, σμ =

√
f 2 + κ2N2/q2

μ (5.11a,b,c)

where sμ is the μ-th root of equation

s cot s = −h1/h2. (5.11d)

We now represent all functions in (5.3a) in the form of Fourier integrals (3.17), write
the Fourier amplitudes as expansions in the form (3.21) and calculate the coefficients
w̃+

aμ(k, l, t). As a result we have

w̃+
a =

∞∑
μ=1

[w̃+
Iμ cos σμt + ( ˜̇w+

Iμ/σμ) sin σμt]W+
μ − w̃+

I cos f t − 1

f
˜̇w+
I sin f t, (5.12)

and using (5.2)

w̃+ =
∞∑

μ=1

[w̃+
Iμ cos σμt + ( ˜̇w+

Iμ/σμ) sin σμt]W+
μ . (5.13)

Knowing w+ one can determine the function A(x, y, t) in (5.5). In view of (5.2) the solution
in the lower layer can be written as

w− = A(x, y, t)(z + H) + [w−
I − A(x, y, 0)(z + H)] cos f t

+ 1

f
[ẇ−

I − At(x, y, 0)(z + H)] sin f t. (5.14)

The solution w+ is orthogonal to the inertial harmonics sin f t, cos f t , as it is seen from
(5.13) and (5.10) and can be obtained directly from (5.1a). Thus the continuity conditions
(5.4b) require that

A(x, y, t) = 1

h2
w+(x, y, −h1, t) (5.15)

and the resulting solution in the lower layer can be represented as a sum (cf. (3.23)):

w− = w−
w + w−

osc, (5.16)
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where

w−
w = w+(x, y, −h1, t)

z + H

h2
, (5.17)

w−
osc =

[
w−

I − wI |z=−h1

z + H

h2

]
cos f t + 1

f

[
ẇ−

I − ẇI |z=−h1

z + H

h2

]
sin f t. (5.18)

The structure of the solution is similar to that obtained in Section 3. As seen from (5.13),
the upper layer field consists of the super-inertial internal waves. In the lower layer the term
w−

w describes the field induced by the internal waves, and it does not contain the inertial
oscillations sin f t, cos f t . On the contrary, the term w−

osc consists of the inertial oscillations
which represent the long gyroscopic waves. At the interface z = −h1 the term w−

osc is zero
and ∂zw

−
osc is equal to

∂zw
−
osc

∣∣
z=−h1

=
[(

wIz − 1

h2
wI

)
cos f t + 1

f

(
ẇIz − 1

h2
ẇI

)
sin f t

]
z=−h1

. (5.19)

The equation (5.19) means that the behavior of the solution qualitatively depends on the
initial fields. By virtue of (5.2), (5.7) and (5.19) we have(

w+
z − 1

h2
w+

)
z=−h1

= ∂zw
−
osc

∣∣
z=−h1

. (5.20)

If the initial fields wI , ẇI satisfy the conditions (cf. (3.28)):(
wIz − 1

h2
wI

)
z=−h1

=
(

ẇIz − 1

h2
ẇI

)
z=−h1

= 0, (5.21)

then any partial sum of the series (5.13) satisfies (5.20) and a smooth initial field (character-
ized by a small contribution of high harmonics with large numbers μ) results in a smooth
solution. But if (5.21) is not valid, then the inertial signal in w−

z (i.e. in the lower layer
horizontal velocity) proportional to sin f t, cos f t is not zero at the interface. To prevent
its penetration into the stratified layer a non-stationary boundary layer should arise in the
interface vicinity z ≥ −h1 at large times as it was discussed at the end of Section 3. The
boundary layer is a result of joint impact of high harmonics (5.8), which tend to the inertial
oscillations as μ → ∞.

6. Summary and conclusions

A special feature of the stably-neutrally stratified fluid is the wave mode related to the
homogeneous layer. In the non-rotating fluid this is the zero frequency homogeneous layer
vortex mode in which a three-dimensional velocity field is confined to the homogeneous
layer, the vertical velocity is zero at the interface and the horizontal velocity can be discon-
tinuous at z = −h1. Besides the mode, the wave spectrum contains internal waves and the
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zero frequency horizontal vortex modes with zero vertical velocity. Short internal waves
with large horizontal wavenumbers κ, κh2 � 1, are confined to the upper stratified layer
and decay exponentially with depth in the lower one. At the same time, the internal modes
with large or moderate length, κh2 ≤ 1, penetrates down to the bottom, long waves with
κh2 � 1 inducing in the bottom layer the velocity field in which the vertical velocity is
approximately linear in depth and the horizontal one does not depend on the depth.

Arbitrary vertical velocity field consists of the dispersive internal waves and a stationary
part confined to the lower layer—homogeneous layer vortex mode. If the horizontal velocity
in this mode is discontinuous at z = −h1, then a non-stationary boundary layer develops at
large times near the interface between layers to prevent penetration of stationary signal into
the upper stratified layer. If the initial state is horizontally localized then at a fixed point the
internal waves decay with increasing time because of dispersion and the vertical velocity
tends to the lower layer stationary component, i.e. it decays in the upper layer and becomes
stationary in the lower one.

This process can be called the wave adjustment by analogy with the well-known
geostrophic adjustment (e.g. Reznik et al. 2001; Zeitlin et al. 2003). Two key elements
are needed for the wave adjustment to exist in a linear system: linear invariants and linear
waves harmonically depending on time. The invariants are determined by initial conditions
and are not influenced by the waves, which are characterized by the zero linear invari-
ants. Evolution of such a system can be represented in natural way as a sum of stationary
component with non-zero invariants and a non-steady wave part with zero invariants. A
nice example of the wave adjustment was presented by Lighthill (1996) for non-rotating
uniformly stratified fluid, where the invariant is the vertical component of vorticity. In the
non-rotating SNS fluid, the invariants are the vertical component of vorticity in the strat-
ified layer and the vorticity vector in the homogeneous one. The waves in both cases are
the internal waves having the zero invariants and propagating away from the initial per-
turbation domain. The stationary component, determined by the invariants, coincides with
the residual motion that is left behind after the wave propagation. We note that the concept
of wave adjustment can be applied to any linear system (not necessarily a hydrodynamic
one) in which linear conserving quantities and the waves occur. From this point of view, the
geostrophic adjustment can be treated as a particular case of the wave adjustment in rotating
fluid. A paper with detail presentation of the wave adjustment concept is in preparation.

In rotating fluid, the horizontal and the homogeneous layer vortex modes turn into the
geostrophic mode and the gyroscopic waves. We explored the wave spectrum of this system
taking into account the horizontal component of the angular speed of the Earth’s rota-
tion i.e. without the traditional and hydrostatic approximations. The spectrum combines
the sub-inertial gyroscopic waves in homogeneous fluid (e.g. Le Blond and Mysak 1978;
Brekhovskikh and Goncharov 1994 ) and the internal waves in stably stratified fluid (Badulin
et al 1991; Kasahara 2003; Gerkema and Shrira 2005; Gerkema et al 2008). Each dispersion
curve σ(k, l) in the spectrum consists of super-inertial and sub-inertial branches correspond-
ing to σ > f and σ < f . Both the branches start at the inertial frequency f for infinitely



2013] Reznik: Linear dynamics of a stably-neutrally stratified ocean 281

long waves with κH = 0. Very long waves are near-inertial oscillations with σ ∼= f and
are not affected by stratification. With increasing κH one arrives at the ranges of the super-
and the sub-inertial internal inertio-gravity waves oscillating in both layers. Greater κH

correspond to the range of internal waves at the super-inertial branch and to the range of
gyroscopic waves at the sub-inertial branch. The internal modes oscillate in the vertical in
the upper layer and have no zeros in the lower one; the short internal waves with κH � 1
do not penetrate into the lower layer. By contrast, the gyroscopic waves oscillate in the
homogeneous layer and do not oscillate in the stratified one. The short gyroscopic waves
with κH � 1 decay exponentially in the upper layer with increasing distance from the
interface.

In important case of the strong stratification when f/N � 1, the range of sub-inertial
IIGWs almost disappears, the range of gyroscopic waves enlarges almost up to the inertial
frequency, and the ranges of super-inertial IIGWs and internal waves almost do not change.
In interesting range of long wave scales f 2/N2 � κH � 1 the internal and the super-
inertial internal inertio-gravity waves freely penetrate into the lower layer, whereas the
gyroscopic waves are localized in the lower layer and are close to the inertial oscillations.
An important point is that the gyroscopic waves are close to the inertial oscillations if
L � H , whereas the super-inertial modes – if L � LR = HN/f , where L is the
typical horizontal scale of wave. Thus the gyroscopic waves provide existence of inertial
oscillations, which are shorter than the “traditional” inertial oscillations related to the long
internal modes. This fact can explain the large values of vertical velocities observed in
inertial oscillations in the nearly barotropic deep Western Mediterranean (van Haren and
Millot 2005).

There are some important differences between the sub-inertial IIGWs in stably stratified
fluid (Badulin et al 1991; Kasahara 2003; Gerkema and Shrira 2005; Gerkema et al 2008)
and the GWs in the SNS fluid, especially in the case of strong stratification f/N � 1.
Firstly, the IIGWs exist only if the horizontal component of the Earth’s rotation is non-
zero while the GWs occur under TA. Secondly, the sub-inertial IIGW frequencies lie in
the range [σ̄2, f ], which is very narrow if f/N � 1; the frequencies of the GWs are in a
much wider range [0, σ̄2]. Thirdly, the IIGWs are characterized by a very small aspect ratio
H/L ∼ f 2/N2 while the aspect ratio of the GW can be an arbitrary one.

Analysis of an arbitrary long wave initial perturbation demonstrates that in the course of
time the motion is split into the internal waves “filling” the upper layer and penetrating into
the lower one, and the inertial oscillations (long gyroscopic waves) confined to the lower
layer. If the initial fields are localized in the horizontal plane, then the internal waves decay
because of dispersion and the system tends to the state when the upper layer is motionless
and in the lower layer only the inertial oscillations remain. Note that we restrict ourselves
to the analysis of the vertical velocity field and do not consider the geostrophic component,
which in the linear approximation does not affect the vertical velocity. A complete analysis
will be given in a future work on the nonlinear geostrophic adjustment in the stably-neutrally
stratified fluid.
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In addition to the study of waves, we also performed a semi-qualitative analysis of gov-
erning equations for rotating SNS fluid to examine the role of non-traditional terms related
to the horizontal component of the Earth’s rotation. In weakly stratified domains (i.e. in the
homogeneous layer if N � f or in both layers if N ∼ f ) the terms are of importance,
especially for moderate horizontal scales L ≤ H . In the long wave approximation L � H

the non-traditional terms determine a dispersion of near-inertial oscillations. Analogous
role the terms play in strongly stratified domains for ultra-long horizontal scales L ≥ N

f
LR .
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APPENDIX A

Calculation of the initial field ẇI in the case of non-rotating fluid

In the case f = fs = 0 the field ẇI = wt |t=0 can be determined from (2.1c) knowing
initial density and pressure fields ρI and pI . To calculate pI we use the equations which
readily follow from (2.1a,b,c,e) and (2.2):

∇2p+ = −gρz, ∇2p− = 0. (A1a,b)

Boundary conditions for p at z = 0, −H are obtained from (2.3a,c), (2.1c,d) and (2.2c):

p+
z

∣∣
z=0 = − gρI |z=0 , p−

z

∣∣
z=−H

= 0. (A2a,b)

At the interface z = −h1 the pressure is continuous:

p+∣∣
z=−h1

= p−∣∣
z=−h1

(A3a)

and by virtue of (2.1c), (2.2c) and the continuity of wt , the vertical gradients of pressure
are related as follows:

(p+
z − p−

z )z=−h1 = − gρ|z=−h1
. (A3b)

Knowing density ρ one can obtain the pressures p± from (A.1) – (A.3). We represent p+
as

p+ = p+
a − g

∫ z

−h1

ρdz; (A4)
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in this case the system (A.1) – (A.3) takes the form:

∇2p+
a = g∇2

h

∫ z

−h1

ρdz, ∇2p− = 0 (A5a,b)

p+
az

∣∣
z=0 = 0, p−

z

∣∣
z=−H

= 0. (A6a,b)

p+
a

∣∣
z=−h1

= p−∣∣
z=−h1

, (A7a)

(p+
az − p−

z )z=−h1 = 0. (A7b)

The solution to the problem (A5)–(A7) is sought in the form of the Fourier integral (3.17);
the Fourier amplitudes obey the equations:

∂zzp̃
+
a − κ2p̃+

a = −gκ2
∫ z

−h1

ρ̃dz, ∂zzp̃
− − κ2p̃− = 0. (A8a,b)

p̃+
az

∣∣
z=0 = 0, p̃−

z

∣∣
z=−H

= 0. (A9a,b)

p̃+
a

∣∣
z=−h1

= p̃−∣∣
z=−h1

, (A10a)(
p̃+

az − p̃−
z

)
z=−h1

= 0. (A10b)

The function p̃− is found from (A8b) and (A9b):

p̃− = A− cosh κ(z + H), (A11)

where A− is a constant amplitude. It follows from (A11) that(
p̃−

z − β(κ)p̃−)
z=−h1

= 0, β(κ) = κ tanh κh2, (A12)

therefore in view of (A10) (
p̃+

az − β(κ)p̃+
a

)
z=−h1

= 0. (A13)

Solving (A8a) with boundary conditions (A9a) and (A13) one expresses the function p+
a in

terms of the density ρ. Setting ρ = ρI in the obtained solution gives the initial field p+
aI and,

therefore, the function p+
I by (A4). The resulting field ẇI = wt |t=0 is found from (2.1c):

ẇ = − 1

ρ0
∂zp

+
aI . (A14)

APPENDIX B

Analysis of long waves in rotating fluid

First we consider the range of gyroscopic waves (4.8a) σ ≤ σ̄2. The lowest root of the
dispersion relation (4.8b) satisfies the inequality

π

2
≤ b−h2 ≤ π. (B1)
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By virtue of (4.4b) and (4.31) in the range σ ≤ σ̄2 ≤ f the inequalities (B1) are possible
only for σ ∼= f ; in this case we have

b− ∼= f̄sκ

2(f − σ)
. (B2)

It follows from (B1) and (B2) that

f − f̄s

π
κh2 ≤ σ ≤ f − f̄s

2π
κh2, (B3)

therefore (4.32) is valid here. If we impose an additional restriction on the wave vector:

f 2/N2 � κH � 1, (B4)

then one obtains from (B3), (4.5a) and (B2) that

σ̄2 − σ

f
� f 2

N2
⇒

∣∣b+∣∣
b−

∼=
√

2
N

f̄s

√
σ̄2 − σ

f
� 1. (B5)

Using (B5) and (4.8b) we find that in the range (B4) b−h2
∼= π i.e. in view of (B2) we

arrive at (4.35a) for n = 1:

σ ∼= f − f̄s

2π
κh2. (B6)

The dispersion relation (B6) is valid for

κH ∼ f/N � 1. (B7)

The range (B1) corresponds to the lowest root b−h2 of the equation (4.8b); other roots
are analyzed in the same manner if we replace in (B1) the limits π/2, π by the limits
nπ − π/2, nπ, n = 1, 2 . . .. The dispersion relation (4.35a) is fulfilled in this case.

IIGWs from the range σ̄2 ≤ σ ≤ f obey the dispersion relation (4.9b). In view of (4.20b)
(σ − σ̄2)/f ≤ f 2/N2, therefore (B2) remains valid and by virtue of (4.5a) we have:

b+ = g(σ)b−, g(σ) ∼=
√

2N

f̄s

√
f

√
σ − σ̄2 ∼ 1. (B8)

We now rewrite (4.9b) in the form

g cot αgx = − cot x, (B9)

where α = h1/h2, x = b−h2. A simple graphic analysis of (B9) gives the lowest root x

lying in the range

0 ≤ x = b−h2 ≤ π. (B10)
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It follows from (B2), (B10) and (σ − σ̄2)/f ≤ f 2/N2 that

κH ≤ f 2/N2, (B11)

i.e. (4.32) is valid for the sub-inertial inertio-gravity waves too.
Now we proceed to the super-inertial range σ ≥ f . In the sub-range of the IIGWs

f ≤ σ ≤ σ̄3 (4.9b) is valid and here

b− = σκ

σ2 − f 2

√
f 2 − σ2 + f̄ 2

s , b+ ∼= κN
√

σ + σ̄2

σ2 − f 2

√
σ − σ̄2. (B12a,b)

It follows from (B12) that:

b+

b−
∼= N

√
σ + σ̄2

√
σ − σ̄2

σ

√
f 2 + f̄ 2

s − σ2
≥ N

√
σ + σ̄2

√
σ − σ̄2√

f 2 + f̄ 2
s

√
f 2 + f̄ 2

s − σ2
>

N
√

σ̄2
√

σ − σ̄2

f 2 + f̄ 2
s

∼= f 2

f 2 + f̄ 2
s

N

f

√
σ − σ̄2√

f
. (B13)

For (σ − σ̄2)/f ≤ f 2/N2 the problem coincides with that considered in the previous
paragraph, i.e. (B11) and (4.32) are valid. In the case (σ − σ̄2)/f � f 2/N2 we have from
(B13):

b− = g1(σ)b+, g1(σ) � 1. (B14)

Graphic analysis of the equation (4.9b) under the conditions (B14) gives that

0 ≤ b+h1 ≤ π (B15)

i.e.

b−h2 � 1, (B16)

and (4.9b) takes the following approximate form:

b+h1 cot b+h1
∼= −h1/h2. (B17)

From (B12b) and (B17) we find the approximate dispersion relation (4.35b) for the lowest
mode:

σ ∼= f

√
1 + κ2h2

1N
2/s2f 2, (B18a)

where s is the root of the equation (cf. (4.36))

s cot s = −h1/h2, π/2 ≤ s ≤ π. (B18b)
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The validity of (4.35b) and (4.36) for higher modes (when nπ ≤ b+h1 ≤ (n + 1)π, n =
1, 2, . . . is fulfilled instead of (B15)) is demonstrated in the same manner. The dispersion
relation (4.35b) remains valid under the condition (B7). In the range of internal wave
σ̄3 ≤ σ ≤ σ̄1 (4.10b) is fulfilled and the waves with frequencies σ ∼ f are the long waves
from the range (B4); the approximate dispersion relation (4.35b) remains valid in this case
too.

APPENDIX C

Calculation of the initial field ẇI in the case of rotating fluid

The equations (5.1) are derived under the long-wave approximation when the system
(2.1) and (2.2) takes the form:

ut − f v = −px/ρ0, vt + f u = −py/ρ0, gρ = −pz, (C1a,b,c)

ρt − ρ0N
2w/g = 0, ux + vy + wz = 0 (C1d,e)

for 0 ≥ z ≥ −h1, and

ut − f v = −px/ρ0, vt + f u = −py/ρ0, pz = 0, ux + vy + wz = 0 (C2a,b,c,d)

for −h1 ≥ z ≥ −H .
From (C1a,b,e) and (C2a,b,d) we have:

w±
zt = −f ζ± + 1

ρ0
∇2

hp±, ς = vx − uy, (C3)

hence using (C1c) and (C2c) one obtains that:

w+
zzt = −f ζ+

z − g

ρ0
∇2

hρ, w−
zzt = −f ζ−

z . (C4a,b)

Integrating (C4a) twice over z from z = −h1 to z and (C4b)—from z to z = −h1, we arrive
at the following equations:

w+
t = K + (z + h1)M − f

∫ z

−h1

ζ+dz + f (z + h1) ζ+∣∣
z=−h1

− g

ρ0
∇2

h

∫ z

−h1

dz′
∫ z′

−h1

ρdz′′,

(C5a)

w−
t = K + (z + h1)M + f

[∫ −h1

z

ζ−dz + (z + h1) ζ+∣∣
z=−h1

]
, (C5b)

where

K = w±
t

∣∣
z=−h1

, M = w±
zt

∣∣
z=−h1

. (C6a,b)
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Using the boundary conditions (2.3c) one obtains two equations for K and M:

K + h1M = f

∫ 0

−h1

ζ+dz − f h1 ζ+∣∣
z=−h1

+ g

ρ0
∇2

h

∫ 0

−h1

dz

∫ z

−h1

ρdz′, (C7a)

K − h2M = −f

∫ −h1

−H

ζ−dz + f h2 ζ−∣∣
z=−h1

. (C7b)

Solving (C7) with respect to K and M and substituting the resulting expressions to (C5)
we find the initial field ẇI :

ẇ+
I = f

∫ 0

z

ζI dz + g

ρ0
∇2

h

∫ 0

z

dz′
∫ z′

−h1

ρI dz′′

+ z

H

[
f

∫ 0

−H

ζI dz + g

ρ0
∇2

h

∫ 0

−h1

dz

∫ z

−h1

ρI dz′
]

, (C8a)

ẇ−
I = f

∫ 0

z

ζI dz + g

ρ0
∇2

h

∫ 0

−h1

dz

∫ z

−h1

ρI dz′

+ z

H

[
f

∫ 0

−H

ζI dz + g

ρ0
∇2

h

∫ 0

−h1

dz

∫ z

−h1

ρI dz′
]

. (C8b)
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