YALE
 PEABODY MUSEUM

P.O. BOX 208118 | NEW HAVEN CT 06520-8118 USA | PEABODY.YALE. EDU

Journal of Marine Research

The Journal of Marine Research, one of the oldest journals in American marine science, published important peer-reviewed original research on a broad array of topics in physical, biological, and chemical oceanography vital to the academic oceanographic community in the long and rich tradition of the Sears Foundation for Marine Research at Yale University.

An archive of all issues from 1937 to 2021 (Volume 1-79) are available through EliScholar, a digital platform for scholarly publishing provided by Yale University Library at https://elischolar.library.yale.edu/.

Requests for permission to clear rights for use of this content should be directed to the authors, their estates, or other representatives. The Journal of Marine Research has no contact information beyond the affiliations listed in the published articles. We ask that you provide attribution to the Journal of Marine Research.

Yale University provides access to these materials for educational and research purposes only. Copyright or other proprietary rights to content contained in this document may be held by individuals or entities other than, or in addition to, Yale University. You are solely responsible for determining the ownership of the copyright, and for obtaining permission for your intended use. Yale University makes no warranty that your distribution, reproduction, or other use of these materials will not infringe the rights of third parties.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/

Effective population sizes of eastern oyster Crassostrea virginica (Gmelin) populations in Delaware Bay, USA

by Yan He ${ }^{1,2}$, Susan E. Ford ${ }^{1}$, David Bushek ${ }^{1}$, Eric N. Powell ${ }^{1}$, Zhenmin Bao ${ }^{2}$ and Ximing Guo ${ }^{1,3}$

Abstract

Effective population size (N_{e}) is an important concept in population genetics as it dictates the rate of genetic change caused by drift. N_{e} estimates for many marine populations are small relative to the census population size. Small N_{e} in a large population may indicate high reproductive variance or sweepstakes reproductive success (SRS). The eastern oyster (Crassostrea virginica) may be prone to SRS due to its high fecundity and high larval mortality. To examine if SRS occurs in the eastern oyster, we studied N_{e} and genetic variation of oyster populations in Delaware Bay. Adult and spat oysters were collected from five locations in different years and genotyped with seven microsatellite markers. Slight genetic differences were revealed by Fst statistics between the adult populations and spat recruits, while the adult populations are spatially homogeneous and temporally stable. Comparisons of genetic diversity and relatedness among adult and spat samples failed to provide convincing evidence for strong SRS. N_{e} estimates obtained with five different methods were variable, small and often without upper confidence limits. For single sample collections, N_{e} estimates for spat (140-440) were consistently smaller than that for adults (589-2,779). Analysis of pooled adult samples across all sites suggests that N_{e} for the whole bay may be very large, as indicated by the large point estimates and the lack of upper confidence limits. These results suggest that N_{e} may be small for a given spat fall, but the entire adult population may have large N_{e} and is temporally stable as it is the accumulation of many spat falls per year over many years.

1. Introduction

Effective population size $\left(N_{e}\right)$ or the number of breeding individuals in an idealized Wright-Fisher population (Wright, 1931) is an important concept in population genetics. It determines the rate of genetic change caused by random drift in a finite population. As genetic drift is a major evolutionary force, N_{e} is critical to our understanding of the evolutionary history, genetic variability and population structure of a species (Charlesworth,

[^0]2009). N_{e} is also important to conservation biology and resource management as it predicts the rate of inbreeding in small populations (Berthier et al., 2002; Kalinowski and Waples, 2002).

Many marine organisms have large and weakly differentiated populations. Interestingly, N_{e} estimates in most marine organisms studied so far are much smaller than the census population size (N). In a survey of 15 marine organisms, the N_{e} / N ratio was mostly below 0.0001 (Hauser and Carvalho, 2008), suggesting that only a small fraction of individuals may function as breeders. It has been suggested that the small N_{e} / N ratio may be a reflection of sweepstake reproductive success (SRS) resulting from high fecundity and type III survivorship (heavy larval mortality) that are characteristic of many marine organisms (Hedgecock, 1994; Hedgecock and Pudovkin, 2011). While SRS is supported by small N_{e} estimates in some studies, the prevalence and evolutionary significance of SRS are poorly understood. Most N_{e} estimates were obtained for a single cohort and at one time, and it is not clear if it has any meaningful impact on the genetic variation of a whole population over time (Buston et al., 2009). Studies on temporal and spatial variations in N_{e} and its effects on population genetic structure should improve our understanding of the significance of SRS.

While the definition of N_{e} is simple, its estimation is notoriously difficult. As it is not possible to directly count the number of breeding individuals in a natural population over a lifetime, N_{e} must be inferred from genetic variation observed from genetic markers. The increasing availability of polymorphic genetic markers has made estimating N_{e} possible, and several estimation methods have been developed (Luikart et al., 2010). N_{e} estimation methods can be divided into two main categories: one using a single sample and the other using two temporal samples. Single-sample estimators include the linkage disequilibrium (LD) method (Hill, 1981; Waples and Do, 2008), heterozygote excess method (Pudovkin et al., 1996), sibship method (Wang and Santure, 2009), Bayesian partial likelihood method implemented in ONeSAMP (Tallmon et al., 2008), and the rarefaction of alleles method (Hedgecock et al., 2007). The LD method determines N_{e} based on linkage disequilibrium, which may produce biased results when the sample size is smaller than the estimate N_{e} (England et al., 2006), but protocols have been developed to correct such bias (Waples, 2006). The heterozygote excess method exploits the excess of heterozygotes arising in a cohort of progeny produced by a limited number of parents, but it is not widely useful because it is not accurate unless the N_{e} is less than 30 (Zhdanova and Pudovkin, 2008). ONeSAMP has the greatest potential to provide improved precision because it calculates eight summary statistics that have relationship with N_{e} and thus uses more information from the data. The two-sample methods rely on temporal changes in allele frequency to estimate N_{e} based on the principal that the degree of allele frequency change from genetic drift is proportional to effective population size. The standard moment-based method follows the classical theory of the increase over time of the F-statistic due to genetic drift (Krimbas and Tsakas, 1971; Waples, 1989). Later, the maximum likelihood-based method (Tallmon et al., 2004) and pseudo-likelihood method (Wang, 2001; Wang and Whitlock, 2003) were developed based on hidden Markov-chain model to measure temporal changes
in allele frequencies (Palstra and Ruzzante, 2008). Most methods assume one isolated population when estimating N_{e}. It is possible to accommodate several connected populations and estimate both N_{e} and temporal gene flow or migration rate simultaneously (Beerli and Felsenstein, 2001; Wang and Whitlock, 2003; Wilson and Rannala, 2003; Leberg, 2005).

The eastern oyster, Crassostrea virginica (Gmelin), is a marine bivalve widely distributed along the Atlantic Coast of North America, the Gulf of Mexico and Caribbean Sea. It is a keystone estuarine species that plays important roles in the ecology of estuaries such as Delaware Bay. Because of its abundance, high fecundity and typical type III survivorship, the eastern oyster provides a good model species to study N_{e} variation and SRS. Small N_{e} s have been reported for the eastern oyster. Using 4-6 allozyme loci, Hedgecock et al. (1992) estimated N_{e} in four populations of the eastern oyster. For the three populations that produced confident estimates, N_{e}, ranged from 14.9 in upper Chesapeake Bay, 30 in James River to 33.8 in Delaware Bay. These surprisingly low estimates were cited as supporting evidence for SRS. In another study using eight microsatellites, Rose et al. (2006) obtained a likely N_{e} of 1,517 for the James River, which is about 500 times that estimated for the same population by Hedgecock et al. (1992). Further, contrary to SRS predictions, no differences in allelic richness or gene diversity were observed between different age classes by Rose et al. (2006). These rather conflicting results suggest that N_{e} may vary depending on sampling time and study methods, and further studies are needed in determining whether SRS exists as a major phenomenon in oysters.

Both previous studies in the eastern oyster assumed that samples were from a single isolated population, namely no migration. The eastern oyster, like most marine invertebrates, has a lengthy pelagic larval stage that can disperse over long distances. If genetic heterogeneity is detected in a near-by population, it may be necessary to incorporate larval migration from connected populations when estimating N_{e}.

To improve our understanding of temporal and spatial variation in N_{e} and possible SRS in oysters, we conducted a genetic analysis of eastern oyster populations in Delaware Bay, a well-flushed estuary system and a major oyster habitat, with microsatellite markers. We collected adults and spat from five locations in Delaware Bay in 2006 and 2009, genotyped them with seven putatively neutral microsatellite markers and estimated N_{e} with five different methods. Our objective was to test the hypothesis that significant SRS exists in eastern oyster populations in Delaware Bay causing small N_{e} s and significant temporal and spatial genetic changes.

2. Materials and methods

a. Samples

Adult eastern oysters were collected from five locations in Delaware Bay (from upper to lower bay): Hope Creek (HC), Round Island (RI); Shell Rock (SR), Beadons (BD); Cape Shore (CS) in 2006 and again in 2009, except for Hope Creek where adult samples were

Table 1. Sampling site, sample size and date for eastern oyster collections used in this study.

Sample	Description	Sample size	Date collected	Latitude, longitude
HC07a	Hope Creek, adult	48	Sep 25, 2007	$39^{\circ} 26.7^{\prime}, 75^{\circ} 31.1^{\prime}$
HC09a	Hope Creek, adult	48	July 20, 2009	$39^{\circ} 26.7^{\prime}, 75^{\circ} 31.1^{\prime}$
HC09s	Hope Creek, spat	48	Oct 30, 2009	$39^{\circ} 26.7^{\prime}, 75^{\circ} 31.1^{\prime}$
RI06a	Round Island, adult	48	Nov 29, 2006	$39^{\circ} 24.0^{\prime}, 75^{\circ} 28.0^{\prime}$
RI06s	Round Island, spat	48	Nov 29, 2006	$39^{\circ} 24.0^{\prime}, 75^{\circ} 28.0^{\prime}$
RI09a	Round Island, adult	48	July 20, 2009	$39^{\circ} 24.0^{\prime}, 75^{\circ} 28.0^{\prime}$
RI09s	Round Island, spat	48	Oct 30,2009	$39^{\circ} 24.0^{\prime}, 75^{\circ} 28.0^{\prime}$
SR06a	Shell Rock, adult	48	Nov 29, 2006	$39^{\circ} 17.5^{\prime}, 75^{\circ} 20.7^{\prime}$
SR09a	Shell Rock, adult	48	July 20, 2009	$39^{\circ} 17.5^{\prime}, 75^{\circ} 20.7^{\prime}$
BD06a	Beadons, adult	48	Nov 21, 2006	$39^{\circ} 17.5^{\prime}, 75^{\circ} 20.7^{\prime}$
BD09a	Beadons, adult	48	July 20, 2009	$39^{\circ} 17.5^{\prime}, 75^{\circ} 20.7^{\prime}$
BD09s	Beadons, spat	48	Oct 30, 2009	$39^{\circ} 17.5^{\prime}, 75^{\circ} 20.7^{\prime}$
CS06a	Cape Shore, adult	48	Dec12,2006	$39^{\circ} 04.4^{\prime}, 74^{\circ} 55.0^{\prime}$
CS06s	Cape Shore, spat	48	Dec 8,2006	$39^{\circ} 04.4^{\prime}, 74^{\circ} 55.0^{\prime}$
CS09a	Cape Shore, adult	48	July 20, 2009	$39^{\circ} 04.4^{\prime}, 74^{\circ} 55.0^{\prime}$
CS09s	Cape Shore, spat	48	Oct 30,2009	$39^{\circ} 04.4^{\prime}, 74^{\circ} 55.0^{\prime}$

collected in 2007 instead of 2006 (Table 1; Fig. 1). Spat were collected from two locations (RI and CS) in 2006 ($18.5 \pm 5.5 \mathrm{~mm}$ in size) and four locations (HC, RI, BD and CS) in 2009 ($15.6 \pm 4.3 \mathrm{~mm}$ in size) (Table 1). Each sampling site contained 48 randomly selected oysters or spat. The total number of the samples analyzed was 768. All oysters were refrigerated until the adductor muscles or the whole spat were preserved in 95% ethanol.

b. DNA extraction, PCR amplification and genotyping

Genomic DNA was extracted with the Omega Bio-Tek Inc. E.Z.N.A. ${ }^{\text {TM }}$ Mollusk DNA extraction kit according to supplied protocols. Oysters were genotyped at seven microsatellite markers, RUCV046, RUCV063 and RUCV091 from Wang and Guo (2007), RUCV176 and RUCV227 from Wang et al. (2009), Cvi1248 from Carlsson and Reece (2007), Cvi9 from Brown et al. (2000). The seven markers did not show significant changes in genotype frequency after disease-caused mortalities and were considered as putatively neutral (Guo et al. unpublished data). The forward primers of RUCV063, Cvi1248, and Cvi9 were directly labeled with fluorescence dyes, FAM, VIC and FAM, respectively. For these three markers, multiplex PCR (Polymerase Chain Reaction) was carried out in $10 \mu 1$ with $1 \times$ PCR buffer, $1.5 \mathrm{mM} \mathrm{MgCl} 2,1.0 \mathrm{mg} / \mathrm{ml} \mathrm{BSA}, 0.2 \mathrm{mM}$ dNTP, $0.2 \mu \mathrm{M}$ of every primer, 0.08 U of Taq DNA polymerase (Promega GoTaq® DNA polymerase), and $20-50 \mathrm{ng}$ of oyster genomic DNA. RUCV046, RUCV091, RUCV227 and RUCV176 were indirectly labeled by adding a M13 tail (Schuelke, 2000) to the forward primer and separately amplified with the inclusion of $0.2 \mu \mathrm{M}$ of FAM, VIC, PET and NED-labeled M13 primers, respectively, in the same reagent mixture described above. For multiplex PCR of directly labeled primers,

Figure 1. A map of Delaware Bay showing sampling sites.
the program was set as: initial denaturing at $95^{\circ} \mathrm{C}$ for 5 min ; 35 cycles of $95^{\circ} \mathrm{C}$ for 45 s , $57^{\circ} \mathrm{C}$ for $45 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 45 s and ending with $72^{\circ} \mathrm{C}$ for 5 min . The M13-tailed markers were amplified using the following PCR profile (Schuelke, 2000): an initial denature for 5 min at $95^{\circ} \mathrm{C}$, followed by 35 cycles of $95^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 55^{\circ} \mathrm{C}$ (RUCV091 and RUCV176) or $60^{\circ} \mathrm{C}$ (RUCV046 and RUCV227) for 30 s , and $72^{\circ} \mathrm{C}$ for $30 \mathrm{~s} ; 19$ cycles of: $95^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 53^{\circ} \mathrm{C}$ for 30 s , and $72^{\circ} \mathrm{C}$ for 30 s ; ending with a final extension at $72^{\circ} \mathrm{C}$ for 10 min . PCR amplification was conducted on either a GeneAmp 9700 thermocycler (Perkin Elmer, Weiterstadt, CA) or an iCycler thermocycler (Bio-Rad, Hercules, CA).

Following amplification, PCR products from M13-tailed markers were mixed together. The mixed or multiplex PCR products were diluted three fold, and $0.5 \mu 1$ of the diluted products were mixed with $12 \mu \mathrm{l}$ of deionized formamide (Sigma) and $0.5 \mu \mathrm{l}$ of GS-600LIZ size standard (Applied Biosystems). The mixture was electrophoresed with an ABI 3130x1 Prism Genetic Analyzer. Allele scoring was performed with GeneMapper v4.0 (Applied Biosystems).

c. Statistical analyses

MICRO-CHECKER 2.2.3 was used to examine evidence of scoring error, large allele drop out (Wattier et al., 1998), stuttering (Shinde et al., 2003), and frequency of null allele assuming a single null allele based on Brookfield's approach (1996). Standard genetic indices, including the number of alleles (N), the observed heterozygosity $\left(\mathrm{H}_{\mathrm{o}}\right)$ and the expected heterozygosity $\left(\mathrm{H}_{\mathrm{e}}\right)$ were calculated using GENEPOP 4.0 (Raymond and Rousset, 1995) online version (http://genepop.curtin.edu.au/). Allelic richness (A_{r}) was estimated using FSTAT version 2.9.3.2 (Goudet, 1995). Deviation from Hardy-Weinberg equilibrium (HWE) was tested using the online version of the program GENEPOP employing a Markov chain method (Guo and Thompson, 1992). Significance criteria were adjusted for the number of simultaneous tests using sequential Bonferroni corrections (Rice, 1989). To assess genetic similarities among individuals in a population, mean pairwise relatedness (r) was calculated for each population using a maximum-likelihood relatedness estimator (Konovalov and Heg, 2008) implemented in software Kingroup version 2 (Konovalov et al., 2004).

d. Temporal N_{e} estimators

Three temporal methods were used to estimate N_{e} for each population. The first method is the moment-based temporal estimator (Waples, 1989) implemented in NeEstimator version 1.3 (Peel et al., 2004). The second method is MLNE 2.0, which implements the pseudolikelihood method by assuming isolated populations (Wang, 2001). These two methods both assume that populations are closed, ignoring the role of migration on changing population allelic frequencies. To account for possible population heterogeneity and gene flow, we employed another method that relaxes the assumption of no migration by estimating N_{e} ($N_{\text {eopen }}$) and migration rate (m) jointly (Wang and Whitlock, 2003). This method is also implemented in MLNE 2.0. The maximum N_{e} was preset at 10,000 for the latter two methods as dictated by the software.

For temporal analysis, two temporally separated samples are needed. Eastern oysters may produce some gametes at one-year old, but most reach full maturation at two years of age and continue to spawn every year (Galtsoff, 1964). For the purpose of this study, we set generation time at two years. For the samples collected, we designated three different temporal sets as follows. Adult spawned in summer and spat were collected in fall, so adult-spat of the same year was one generation. The 2009 adults could be the F1 generation spawned by 2006 adults and the 2009 adults produced 2009 spat, so 2006 adult-2009 spat
Table 2. A Summary of N_{e} estimators used in this study.

Program	Description	Key assumptions	Comments	Reference
LDNe	One sample, based on linkage	LD signal only arises from	Strongly biased by age structure	Waples and Do
	disequilibrium	genetic drift	and small samples	(2008)
ONeSAMP	One sample, uses approximate	LD signal is only from genetic	User defined the prior N_{e}, after	Tallmon et al. (2008)
	Bayesian computation	drift	50,000 simulated populations	
			based on user data, summary	
			statistics close to observed data	
		delineates accepted range of N_{e}		
NeEstimator	Two samples, moment-based	Allele frequency change is only	Variance effective size estimator	Pell et al. (2004)
	method	from drift, no selection or	based on the allele frequency	
		chmigration	changes over temporal samples	
MLNE	Two samples, pseudo-likelihood	Allele frequency change is from	Allows to estimate N_{e} alone or	Wang and Whitlock
	temporal method	drift or immigration	estimate N_{e} and m jointly	(2003)

Table 3. Allele number (N), allelic richness (A_{r}), observed and expected heterozygosities (H_{o} and H_{e}) for each microsatellite marker and populations. H_{0} in bold represents significant departures from Hardy-Weinberg equilibrium after Bonferroni correction.

	population															
	HC07a	HC09a	HC09s	RI06a	RI06s	RI09a	RI09s	SR06a	SR09a	BD06a	BD09a	BD09s	CS06a	CS06s	CS09a	CS09s
RUCV046																
N	23	18	20	21	20	23	17	19	19	20	21	19	23	18	19	25
A_{r}	22.833	17.938	19.916	20.937	19.916	22.854	16.916	19.000	18.895	19.958	21.000	18.917	22.895	17.916	18.937	25.000
H_{0}	0.792	0.646	0.438	0.667	0.708	0.688	0.708	0.681	0.667	0.792	0.681	0.500	0.667	0.646	0.750	0.809
H_{e}	0.940	0.937	0.932	0.949	0.926	0.935	0.910	0.921	0.929	0.942	0.933	0.933	0.946	0.920	0.938	0.946
RUCV063																
N	22	24	23	24	24	28	23	26	25	25	26	22	26	21	28	25
A_{r}	21.957	23.916	22.998	23.957	23.916	27.832	22.916	26.000	24.916	24.833	26.000	21.916	25.853	20.958	27.832	25.000
H_{o}	0.708	0.688	0.646	0.813	0.583	0.875	0.646	0.766	0.813	0.771	0.723	0.667	0.667	0.563	0.813	0.596
H_{e}	0.942	0.953	0.958	0.958	0.947	0.953	0.940	0.952	0.952	0.945	0.957	0.948	0.957	0.948	0.959	0.945
RUCV091																
N	13	13	13	12	14	11	16	12	10	15	11	10	12	13	13	14
A_{r}	12.937	12.916	12.937	11.937	13.875	10.937	15.833	12.000	9.938	14.937	11.000	9.937	11.916	12.958	12.916	14.000
H_{0}	0.604	0.708	0.708	0.750	0.688	0.792	0.688	0.830	0.792	0.813	0.766	0.771	0.667	0.708	0.813	0.809
H_{e}	0.834	0.823	0.824	0.832	0.824	0.809	0.782	0.804	0.809	0.857	0.787	0.790	0.793	0.808	0.822	0.848
RUCV227																
N	13	13	8	13	13	9	13	10	11	13	10	13	12	14	11	12
A_{r}	12.937	12.958	8.000	12.958	12.937	9.000	12.875	10.000	10.979	12.958	10.000	12.958	11.979	13.916	11.000	12.000
H_{0}	0.563	0.708	0.458	0.583	0.563	0.333	0.521	0.468	0.500	0.521	0.489	0.625	0.521	0.500	0.417	0.511
H_{e}	0.836	0.832	0.817	0.789	0.860	0.764	0.811	0.748	0.774	0.846	0.755	0.833	0.798	0.854	0.698	0.798

Table 3. (Continued)

	population															
	HC07a	HC09a	HC09s	RI06a	RI06s	RI09a	RI09s	SR06a	SR09a	BD06a	BD09a	BD09s	CS06a	CS06s	CS09a	CS09s
RUCV176																
N	5	4	4	3	4	5	5	6	4	3	6	5	5	5	3	4
A_{r}	4.979	4.000	4.000	3.000	4.000	4.958	4.979	6.000	3.979	3.000	6.000	5.000	4.938	4.979	3.000	4.000
H_{0}	0.667	0.292	0.208	0.146	0.229	0.146	0.313	0.255	0.208	0.229	0.277	0.292	0.146	0.250	0.146	0.277
H_{e}	0.939	0.297	0.431	0.176	0.375	0.196	0.532	0.323	0.263	0.261	0.372	0.405	0.194	0.363	0.192	0.523
Cvi1248																
N	26	32	27	29	28	26	22	25	28	30	25	26	24	29	27	27
A_{r}	25.894	31.831	26.874	28.749	27.811	25.853	21.915	25.000	27.811	29.769	25.000	25.853	23.873	28.729	26.832	27.000
H_{0}	0.854	0.563	0.646	0.479	0.708	0.542	0.625	0.596	0.500	0.646	0.532	0.646	0.479	0.646	0.625	0.638
H_{e}	0.890	0.932	0.918	0.935	0.929	0.917	0.885	0.872	0.918	0.901	0.845	0.923	0.845	0.887	0.916	0.909
CVi9																
N	14	17	15	16	13	14	17	15	14	18	16	15	15	16	14	16
A_{r}	13.937	16.916	14.917	15.958	12.958	13.958	16.875	15.000	13.937	17.896	16.000	14.979	14.916	15.916	13.979	16.000
H_{0}	0.854	0.813	0.750	0.750	0.833	0.729	0.792	0.851	0.875	0.854	0.83	0.813	0.792	0.854	0.667	0.915
H_{e}	0.911	0.907	0.903	0.916	0.896	0.888	0.91	0.897	0.906	0.922	0.913	0.915	0.905	0.911	0.892	0.901
Average																
N	16.571	17.286	15.714	16.857	16.571	16.571	16.143	16.143	15.857	17.714	16.429	15.714	16.714	16.571	16.429	17.571
A_{r}	16.496	17.211	15.663	16.785	16.488	16.485	16.044	16.143	15.779	17.622	16.429	15.651	16.624	16.482	16.357	17.571
H_{0}	0.720	0.631	0.551	0.598	0.616	0.586	0.613	0.635	0.622	0.661	0.614	0.616	0.563	0.595	0.604	0.651
H_{e}	0.899	0.812	0.826	0.794	0.822	0.780	0.824	0.788	0.793	0.811	0.795	0.821	0.777	0.813	0.774	0.839

were considered as two generations apart. To estimate N_{e} with temporal methods, it is necessary to define the source (first sample) and derived (second) populations. With little knowledge of population structure and actual larval movement, we estimated N_{e} using three types of sample pairings: (1) Adults from each population (or location) as the first sample, and spat collected from the same location as the second sample; (2) Pooling all the adult populations in the same year as the first sample, and the spat from each location as the second sample; (3) Pooling all the adult populations in the same year as the first sample and all the spat populations in the same year as the second sample. Additionally, the temporal method with migration requires the allele frequency data from the source population. As we do not know where the immigrants to each of the five populations are from, we pooled allele frequencies from all other four populations collected in the same year to represent the source population for the targeted focal population.

e. Single-sample N_{e} estimators

Two single-sample estimators, LDNe (Waples and Do, 2008) and ONeSAMP (Tallmon et al., 2008) were used in this study. LDNe uses information on linkage disequilibrium and corrects biases due to small sample sizes (England et al., 2006; Waples, 2006). Low frequency microsatellite alleles can also bias results, so we estimated N_{e} after removing alleles with frequencies lower than 0.02 , as suggested by Waples and Do (2010). ONeSAMP implements multiple summary statistical methods using approximate Bayesian computation. This method calls for user-defined N_{e} priors (Tallmon et al., 2008). We set 20-10,000 as the lower and upper bounds of N_{e} priors to get N_{e} estimation along with 95% confidence intervals (CIs). All of the 16 adult and spat samples collected in different locations and different years, were used for N_{e} estimation with the two single-sample estimators. A summary of N_{e} estimation programs used in this study is given in Table 2.

3. Results

a. Genetic diversity within populations

A total of 768 oysters, 48 from each of the 16 collections, were genotyped at seven microsatellite loci. No evidence of scoring error due to artifact peaks or large-allele drop out was detected at any loci by MICRO-CHECKER 2.2.3. Null alleles were suggested at RUCV046, RUCV063, RUCV227 and Cvi1248. Null allele frequencies did not vary significantly among samples or populations (paired two-sample t-test, $p>0.05$ after Bonferroni's correction). Loci exhibited moderate or high gene diversity in populations. Numbers of alleles per locus ranged from 3 to 30 , and allelic richness $\left(\mathrm{A}_{\mathrm{r}}\right)$ ranged from 3.0 to 29.8 (Table 3). Averaged over all loci, allelic richness ranged from 15.7 to 17.6 without noticeable differences among populations. As a group, the adult populations had an allelic richness of 16.6 , which is not different from the 16.3 observed for spat ($p=0.3863$, two-sample t-test). Observed heterozygosity $\left(\mathrm{H}_{\mathrm{o}}\right)$ didn't differ markedly among adult populations (mean $\mathrm{H}_{\mathrm{o}}=0.62$) and spat recruits (mean $\left.\mathrm{H}_{\mathrm{o}}=0.61\right)(\mathrm{p}=0.4416$, two-sample t-test) either.

Per locus test for HWE within individual populations showed that 70 out of the 112 cases had significant deviations after sequential Bonferroni corrections. Further, loci RUCV046, RUCV063, RUCV227 and Cvi1248 had a particularly high number of locations showing HWE deviation (Table 3). Most of the deviated cases showed a significant heterozygote deficiency (Table 3), suggesting the possible presence of null alleles, which were detected by MICRO-CHECKER.

To determine if population structure exists in Delaware Bay, we obtained Fst statistics (a measurement of population differentiation) for all population pairs. Fst estimates were small, ranging from -0.0047 to 0.0133 (Table A1), and none was significant after Bonferroni correction, suggesting that there is no significant genetic differentiation among any of the population or sample collections. Before Bonferroni corrections, only one of 45 adult population pairs had a significant $F s t$ value $(0.0045, \mathrm{p}=0.0208)$, suggesting that the adult populations in Delaware Bay is genetically homogenous and temporally stable. Two of the 15 spat-spat sample pairs had significant Fst values, and they were between 2006 and 2009 spat collections only. No significant $F s t$ was observed among spat samples collected during the same year. However, 24 of the 60 adult-spat pairs had significant (p <0.05) Fst values (before Bonferroni corrections) (Table A1), which suggest that minor genetic differences exist between adult populations and spat collections.

Mean pairwise relatedness value (r), a measure of genetic similarity among individuals relative to the population mean, ranged from -0.81 ± 0.36 (HC09s) to -0.55 ± 0.31 (SR06a) across all populations (Fig. A1). These negative r values suggest that individuals within populations are unrelated.

b. N_{e} Estimates from temporal methods

N_{e} estimates based on three temporal methods are presented in Table 4. For all temporal sample pairs and estimated by all three methods, N_{e} estimates were surprisingly small, although many had no upper confidence limits. The lack of upper confidence limits put the N_{e} point estimates into question and may suggest the N_{e} is very large or cannot be resolved with available data. For temporal sample pairs within each site, N_{e} estimates ranged from 37 to 611 . NeEstimator yielded slightly but consistently lower N_{e} point estimates than MLNE without migration except for the 2006-2009 CS adult sample pair. Considering gene flow in the pseudo-likelihood method (Wang and Whitlock, 2003), N_{e} estimates became lower in all cases, and migration rate (m, ranging from 0 to 1) ranged from 0.31 to 0.78 . Migration rate was lower at the middle bay sites (SR and BD) than that of the upper (HC and RI) and lower bay (CS) sites (Table 4).

Within each site, N_{e} for a given sample estimated with different base populations and different methods varied considerably. In most cases, the 2009 adults had higher N_{e} estimates than 2009 spat. To estimate N_{e} for all oysters in Delaware Bay assuming they are from a homogenous population (which is confirmed by Fst statistics), we pooled all samples

Table 4. Effective population size $\left(N_{e}\right)$ and 95% confidence intervals of eastern oyster populations in Delaware Bay estimated using temporal methods and different source population.

	Generation	NeEstimator	MLNE (Wang, 2001)	MLNE (Wang and Whitlock, 2003)	
				N_{e}	m
Hope Creek					
07a/09s	2	190 (76-m)	229 (101-10000)	NA*	NA
09a/09s	1	86 (31-293)	112 (58-771)	91 (69-128)	0.72 (0.40-1)
09a all/09s	1	151 (68-1180)	273 (151-1186)	NA	NA
07a/09a	1	232 (57-m)	99 (87-10000)	NA	NA
Round Island					
06a/09s	2	111 (56-348)	135 (80-344)	87 (63-136)	0.72 (0.46-1)
06a all/09s	2	126 (74-253)	181 (121-325)	NA	NA
06a/06s	1	74 (33-457)	194 (78-10000)	81 (62-111)	0.76 (0.42-1)
06a all/06s	1	111 (55-429)	381 (189-306)	NA	NA
09a/09s	1	37 (21-80)	101 (58-309)	73 (55-109)	0.49 (0.27-0.80)
09a all/09s	1	62 (37-117)	174 (117-332)	NA	NA
06a/09a	1	127 (44-m)	254 (86-10000)	100 (74-152)	0.77 (0.37-1)
06a all/09a	1	232 (82-m)	375 (156-10000)	NA	NA
Shell Rock					
06a/09a	1	84 (35-1169)	250 (89-10000)	119 (68-653)	0.31 (0.47-0.68)
06a all/09a	1	125 (58-686)	287 (135-10000)	NA	NA
Beadons					
06a/09s	2	102 (53-289)	109 (66-241)	121 (83-221)	0.49 (0.22-1)
06a all/09s	2	263 (120-1075)	228 (135-581)	NA	NA
09a/09s	1	67 (31-333)	161 (70-10000)	84 (60-150)	0.44 (0.20-0.76)
09a all/09s	1	86 (47-210)	210 (128-528)	NA	NA
06a/09a	1	142 (46-)	195 (77-10000)	128 (89-299)	0.52 (0.17-1)
06a all/09a	1	273 (86-)	611 (188-10000)	NA	NA
Cape Shore					
06a/09s	2	107 (55-313)	231 (112-306)	92 (68-136)	0.78 (0.37-1)
06a all/09s	2	236 (112-1107)	270 (155-771)	NA	NA
06a/06s	1	56 (28-176)	196 (79-10000)	89 (66-128)	0.77 (0.40-1)
06a all/06s	1	110 (55-407)	289 (143-848)	52 (40-72)	0.55 (0.37-0.80)
09a/09s	1	65 (31-275)	277 (97-10000)	NA	NA
09a all/09s	1	126 (60-587)	184 (0-10000)	NA	NA
06a/09a	1	131 (42-m)	87 (53-208)	99 (71-118)	0.61 (0.23-1)
06a all/09a	1	150 (64-2535)	310 (143-10000)	NA	NA
All sites					
09a/09s	1	437 (192-5916)	893 (369-10000)	NA	NA
09a all/09s	1	155 (83-412)	370 (189-306)	NA	NA
06a/09a	1	251 (160-427)	331 (230-534)	NA	NA
06a all/09a	1	81 (62-138)	184 (100-10000)	NA	NA

*NA, no source population was available while pooling all the adult populations as the first sample.
collected from different locations at a given time, for adults and spat separately. For the pooled bay-wide samples, the N_{e} estimates were only slightly higher than those obtained for individual sites, ranging from 81-893 (Table 4).

c. N_{e} estimates from single-sample methods

Two single-sample methods were used to estimate N_{e} for all 16 samples collected. The LDNe method yielded mostly negative N_{e} estimates, except for five samples (Table 5). Negative estimates can be explained by sampling error without invoking any genetic drift. Thus, the best biological interpretation for the negative estimates is $N_{e}=$ infinity (Waples and Do, 2010). None of the N_{e} estimates had finite upper limits, except for 2009 spat from BD, which had a N_{e} of 270 . On the other hand, N_{e} estimates from ONeSAMP were considerably higher than those from the LDNe method, ranging from 140 in 2006 CS spat to 2,779 in 2006 SR adults. At all sites, N_{e} estimates for adults were higher than that for spat. On average, N_{e} for adult populations was 1,601 , ranging from 589 to $2,779 . N_{e}$ for spat samples averaged 252 , ranging from 140 to 440 . The difference was significant ($\mathrm{p}=0.0002$, two-sample t-test). All $16 N_{e}$ estimates from ONeSAMP had finite 95% confidence intervals.

Analysis of the pooled samples suggests that the N_{e} for the whole bay may be very high. The N_{e} estimate for all spat collected in 2006 was 67,107 and that for spat collected in 2009 was $3,086 . N_{e}$ estimates for adult populations were much higher than those for spat. The N_{e} for all adults collected in 2006 was 7.2×10^{10} and that for all 2009 adults was 3.0×10^{7}. These high point estimates suggest that the N_{e} could be very high.

4. Discussion

a. Interpreting N_{e} with different methods

In this study, we estimated N_{e} and examined temporal and spatial genetic variation in eastern oyster populations from Delaware Bay using adult and spat samples collected at five sites and over three years. Three temporal methods and two single-sample methods were used for N_{e} estimation. Overall, our results show that N_{e} estimates for individual sample collections were small and variable. Variation in N_{e} was evident not only among different sites and age-classes, but also among different methods. The latter variation suggests that some of the N_{e} estimates are not reliable. This is also indicated by the fact that many N_{e} estimates have no upper confidence limits. Caution is needed for interpreting the N_{e} results.

All N_{e} estimation methods make assumptions that, when violated, lead to biases in N_{e} estimates. Some of the assumptions may not hold for our study. The assumption that populations are in HWE was not true in 63% of cases tested in our study. Most of the departure from HWE might be caused by the presence of null alleles. Temporal methods should not be seriously affected if the null alleles are equally distributed across samples
(Jehle et al., 2001; Zeller et al., 2008). This is the case in our study as we did not see differences in null allele frequencies among samples.

Discrete generation is an important assumption for the temporal methods that is most easily violated. In our study, the adult populations almost certainly consisted of different year-classes, spanning 2-3 generations. Waples and Yokota (2007) showed that the bias is reduced if the generation interval is greater than 5 . However, our samples are only one or two generations apart. This may be one reason why N_{e} estimates from temporal methods are relatively small. Estimates over two generations were generally larger than those over a single generation (Table 4).

If rare alleles observed in the first sample are absent in the second sample, the momentbased Fst method could produce biased estimates. The likelihood-based methods should provide more precise estimates than the moment-based method since they use more information from the data (Wang, 2001; Berthier et al., 2002). In this study, some microsatellite markers used were highly polymorphic and may have many rare alleles. We tested the effects of rare alleles on N_{e} estimation by estimating N_{e} using markers with different allele numbers: 3 highly polymorphic markers with 20 to 27 alleles versus 3 moderately polymorphic markers with 12-15 alleles. Markers with high allele numbers did not significantly change N_{e} estimates from two temporal methods (data not shown). We also compared N_{e} estimates using the 3 most heterozygote deficient and the 3 least heterozygote deficient loci, but no significant difference in N_{e} estimates was found. This was expected as the null allele, which causes the heterozygote deficiency, is evenly distributed in samples.

When migration was permitted, the temporal MLNE method produced smaller N_{e} estimates, credible confidence intervals, and high migration rates ($0.31-0.78$). In some other studies where $N_{\text {eopen }}$ of Wang and Whitlock (2003) and at least one temporal $N_{\text {eclosed }}$ method were used, $N_{\text {eopen }}$ were all smaller than $N_{\text {eclosed }}$ (Ford et al., 2004; Hoffman et al., 2004; Johnson et al., 2004; Consuegra et al., 2005; Jensen et al., 2005; Saillant and Gold, 2006; Fraser et al., 2007a.b; Zeller et al., 2008). This is not surprising assuming migration reduces genetic changes attributable to genetic drift.

The finding of high migration rates suggests that there is tremendous mixing of oysters in Delaware Bay (Narvaez et al., this issue). This is reasonable as the bay is a well-flushed and mixed system, and the eastern oyster has a veliger larva that can disperse over large distances. It is interesting that migration rates are higher in upper and lower bay regions than the mid-bay region. This result suggests that middle bay populations may be the center of recruitment and contribute more to the next generation than the upper and lower bay populations, an idea that is supported by more than 50 years of population survey data (Powell et al., 2008). Most recruits in upper and lower bay regions may come from the middle bay, represented by SR and BD in this study, while the middle bay population are mostly self-recruiting, or more so than the other regions of the bay. This is the first time that migration rates have been estimated for the eastern oyster. As uncertainty exists for N_{e}
estimates, the migration rates should also be considered as preliminary and viewed with caution.
N_{e} estimates from the two single-sample methods are larger than those from temporal methods. The LDNe method did not produce valid point estimates, but the negative estimates and the lack of upper confidence bounds may suggest that the population is very large (Waples and Do, 2010). As Fraser et al. (2007b) suggests, it is important to consider the confidence intervals rather than point estimates generated by different methods. The lower confidence bounds provide estimates of minimum N_{e}. The lack of upper confidence limits may mean that the N_{e} is very large. It could mean that the N_{e} cannot be estimated with available data, which was limited by the relatively small number of samples and markers. As a guideline for sampling requirements, Palstra and Ruzzante (2008) suggested that at least 10% of a population's effective size need to be sampled. The sample size $(\mathrm{n}=48)$ in this study is not large, however, we see no correlation between sample size and N_{e} for the pooled spat samples. Spat from $2006(\mathrm{n}=96)$ had a larger N_{e} than spat from 2009 ($\mathrm{n}=192$, Table 5). Eastern oysters in Delaware Bay spawn mostly from June to August. The 2006 spat were collected in late November and early December, sized at $18.54 \pm 5.50 \mathrm{~mm}$ (length) while the 2009 spat were collected in Oct 30 , sized at $15.64 \pm 4.29 \mathrm{~mm}$ (length). It is possible that the 2006 collection covered more recruits, from more different parents than the 2009 collection. Environmental differences leading to differences in bay-wide reproduction between the two years may also explain the difference in N_{e}.

The ONeSAMP method based on Bayesian approximation produced valid N_{e} estimates for all 16 sample collections. All estimates had finite 95% confidence intervals, making them more reliable than those with infinity as the upper confidence limit. Among the five methods, N_{e} estimates from ONeSAMP were also among the highest. Beebee (2009) compared four single-sample estimators (heterozygote excess, linkage disequilibrium, Bayesian partial likelihood and sibship analysis) using microsatellite data from multiple natterjack toad (Bufo calamita) populations, and concluded that the Bayesian method was the most precise. Assuming the N_{e} estimates from ONeSAMP are reliable, we may conclude that N_{e} is temporally and spatially variable in Delaware Bay, and the adult populations have larger $N_{e} \mathrm{~S}(589$ to 2,779$)$ than spat (140-440). These estimates are in the same range of what has been reported for eastern oyster populations in James River $(535-1,516)$ by Rose et al. (2006), but considerably higher than that reported for Delaware Bay (33.8) by Hedgecock et al. (1992).

b. Sweepstake reproduction success

It has been suggested that marine organisms with high fecundity and type III survivorship may be prone to SRS (Hedgecock and Pudovkin, 2011). One prediction of the SRS hypothesis is a small effective population size to census population size ratio $\left(N_{e} / N\right)$, which indicates only a small proportion of adult oysters are successful in producing offspring that survive. Extremely low N_{e} / N ratios $\left(<10^{-2}-10^{-5}\right)$ have been reported in many marine

Table 5. Effective population size of eastern oyster populations in Delaware Bay estimated using LD-based single-sample estimators.

	LDNe	ONeSAMP
Hope Creek		
07a	$4366(279-\infty)$	$1127(492-5689)$
09a	$\infty(1380-\infty)$	$2285(1075-19137)$
09s	$\infty(490-\infty)$	$205(123-638)$
Round Island	$\infty(1439-\infty)$	$1160(460-5517)$
06a	$507(178-\infty)$	$1579(778-11703)$
09a	$\infty(804-\infty)$	$440(231-1964)$
06s	$\infty(339-\infty)$	$190(118-581)$
09s		
Shell Rock	$\infty(216-\infty)$	$2779(981-21354)$
06a	$\infty(303-\infty)$	$1333(675-9073)$
09a		
Beadons	$785(217-\infty)$	$2438(982-17713)$
06a	$\infty(331-\infty)$	$1606(778-13519)$
09a	$270(136-2742)$	$299(165-1191)$
09s		
Cape Shore	$\infty(391-\infty)$	$1113(483-5150)$
06a	$\infty(552-\infty)$	$589(271-2293)$
09a	$\infty(798-\infty)$	$140(76-365)$
06s	$309(140-\infty)$	$236(134-689)$
09s		
All sites	$\infty(1304-\infty)$	$7.2 \times 10^{10}(\infty-\infty)$
06 adult all	$\infty(1209-\infty)$	
09 adult all	$\infty(9301-\infty)$	$6700^{10}\left(\infty-9.54 \times 10^{13}\right)$
06 spat all	$\infty(1502-\infty)$	$3086(1149-16342)$
09 spat all		

invertebrates and fishes (Hedgecock, 1994; Hauser et al., 2002; Arnason, 2004; Hedrick, 2005; Hoarau et al., 2005; Zeller et al., 2008), which are in agreement with SRS predictions. In this study, despite the difficulties of estimating N_{e} and some uncertainties, all N_{e} estimates for individual sample collections were much smaller than the expected census size. The census size of adult eastern oyster populations from the natural beds on the New Jersey side of Delaware Bay was estimated at 1.6×10^{9} as of October 2009 (Hofmann et al., 2009). Even with our highest N_{e} estimate for a given population, 2,779 for SR adults of 2006, the N_{e} / N ratio is as small as 10^{-6}. Assuming these small N_{e} estimates are accurate, the extremely small N_{e} / N ratio supports the SRS hypothesis.

It should be cautioned that the small N_{e} estimates may not be reliable, as they are often without upper confidence limits. The pooled adult samples across the bay gave very large N_{e} estimates: 3.0×10^{7} for 2009 adults and 7.2×10^{10} for 2006 adults, which do suggest that the
N_{e} for the bay-wide population could be very large. Given the difficulties in N_{e} estimation and uncertainties, we should view both the extremely low estimates from individual samples and the very high estimates for the pooled samples with caution. The small estimates may be equally unreliable as the infinite estimates since many of the former are without upper confidence limits.

There are two main characteristic signatures left by SRS: reduction of genetic diversity and increased relatedness among recruits (Hedgecock et al., 2007). The slight genetic differences between adult populations and spat collections as indicated by moderate Fst values (only significant before Bonferroni corrections) support some variation in reproduction success. However, some of the results do not support SRS as a major phenomenon in the eastern oyster. There was no detectable reduction in genetic diversity (in terms of allelic richness or observed heterozygosity) between spat recruits and adult populations. This finding is in agreement with the results of Rose et al. (2006) and in conflict with SRS predictions. In addition, the negative relatedness estimation both in adult populations and spat recruits indicate that individual oysters are unrelated within the populations studied. This also argues against significant SRS. Further, the bay-wide population as a whole is homogenous and temporally stable (albeit only measured over a short time), which would not be expected under strong impact of SRS. Strong SRS would create rapid genetic changes due to drift and greatly diminish genetic variability over time. Empirical data show that the eastern oyster genome is highly polymorphic (Zhang and Guo, 2010) and eastern oyster populations are weakly differentiated over large geographic ranges (Karl and Avise, 1992; Gaffney, 1996). It is possible that weak SRS exists but cannot be detected by available statistics. SRS, if any, after major epizootics may help the development of disease resistance in Delaware Bay (Ford and Bushek, this issue), although SRS may work against the development of resistance in the long run as the population can sway back to a susceptible state.

In conclusion, N_{e} estimates for eastern oyster populations in Delaware Bay are highly variable and uncertain. Each spat fall may have a small N_{e} but the N_{e} for the entire bay could be very large. The relatively small N_{e} for a given spat collection and the slight genetic differences between spat and adult populations support some variation in reproductive success. The lack of significant changes in genetic diversity and temporal genetic differentiation along with negative relatedness argues against any lasting impact by SRS on the adult population in Delaware Bay. These results suggest that, while each spat fall may involve a small set of parents and carry some genetic drift, such variance in reproductive success does not have a strong effect on the genetic variation of the entire bay-wide population, as the adult population is an accumulation of many spat falls per year over many years.

Acknowledgments. We thank Liusuo Zhang, Yongping Wang, Coren A. Milbury, Xiaoxue Wang, Yan Wang, Gail Bradbury, Iris Burt and Kathy Alcox for their assistance in sample processing. We extend our special gratitude to Mark Beaumont and David Tallmon for their help with software. Yan He is a visiting student from Ocean University of China. This study was supported by a NSF Ecology of Infectious Diseases (EID) Grant (OCE06-22672).
APPENDIX
Table A1. Pairwise Fst values (below diagonal) and associated p-values (above diagonal) among 16 populations/samples of eastern oyster from Delaware Bay. None of the Fst values is significant at p <0.05 after Bonferroni's correction.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
HC07a	-	0.7267	0.5113	0.4050	0.8450	0.6413	0.7992	0.5467	0.8704	0.4704	0.4221	0.0413	0.0179	0.0742	$0.4971 \quad 0.3800$ $\begin{array}{llllll}0.0754 & 0.0004 & 0.1329 & 0.1954 & 0.0833\end{array}$ $\begin{array}{lllll}0.1238 & 0.0171 & 0.6688 & 0.1125 & 0.2658\end{array}$ $\begin{array}{llllll}0.0017 & 0.0013 & 0.0013 & 0.0050 & 0.0833\end{array}$ $\begin{array}{lllll}0.1400 & 0.0429 & 0.2038 & 0.1042 & 0.5250 \\ 0.0042 & 0.0004 & 0.0008 & 0.0050 & 0.0179\end{array}$ $\begin{array}{llllll}0.1433 & 0.0004 & 0.0221 & 0.0196 & 0.0933\end{array}$ $\begin{array}{llllll}0.0275 & 0.0042 & 0.1254 & 0.0250 & 0.1967\end{array}$ $\begin{array}{llllll}0.1321 & 0.0017 & 0.1308 & 0.1033 & 0.0458\end{array}$ $\begin{array}{lllll}0.0029 & 0.0004 & 0.0763 & 0.0083 & 0.0571 \\ 0.2813 & 0.1408 & 0.8633 & 0.1779 & 0.6592\end{array}$ $\begin{array}{llllll}0.2813 & 0.1408 & 0.8633 & 0.1779 & 0.6592\end{array}$ $\begin{array}{lll}0.0683 & 0.1208 & 0.5788 \\ 0.2521 & 0.0558 & 0.1500\end{array}$ $\stackrel{\pi}{\infty}$	$\stackrel{O}{6}$
:---																
$\stackrel{y}{\circ}$	$-$															

Figure A1. Mean relatedness values (r) for eastern oyster populations in Delaware Bay. Bars show means (\pm SE) following the methods of Konovalov and Heg (2008).

REFERENCES

Arnason V. 2004. Coding and consent: Moral challenges of the database project in Iceland. Bioethics, 18, 27-49.
Beebee T. J. C. 2009. A comparison of single-sample effective size estimators using empirical toad (Bufo calamita) population data: genetic compensation and population size-genetic diversity correlations. Mol. Ecol., 18, 4790-4797.
Beerli P. and J. Felsenstein. 2001. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. U. S. А., 98, 4563-4568.

Berthier P., M. A. Beaumont, J. M. Cornuet and G. Luikart. 2002. Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach. Genetics, 160, 741-751.
Brookfield J. F. Y. 1996. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol., 5, 453-455.
Brown B. L., D. E. Franklin, P. M. Gaffney, M. Hong, D. Dendanto and Kornfield, II. 2000. Characterization of microsatellite loci in the eastern oyster, Crassostrea virginica. Mol. Ecol., 9, 2216-2218.
Buston P. M., C. Fauvelot, M. Y. L. Wong and S. Planes. 2009. Genetic relatedness in groups of the humbug damselfish Dascyllus aruanus: small, similar sized individuals may be close kin. Mol. Ecol., 18, 4707-4715.
Carlsson J. and K. S. Reece. 2007. Eight PCR primers to amplify EST-linked microsatellites in the Eastern oyster, Crassostrea virginica genome. Mol. Ecol. Notes, 7, 257-259.
Charlesworth B. 2009. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet., 10, 195-205.
Consuegra S., C. G. De Leaniz, A. Serdio and E. Verspoor. 2005. Selective exploitation of early running fish may induce genetic and phenotypic changes in Atlantic salmon. J. Fish Biol., 67, 129-145.
England P. R., J. M. Cornuet, P. Berthier, D. A. Tallmon and G. Luikart. 2006. Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conserv. Genet., 7, 303-308.
Ford M. J., D. Teel, D. M. Van Doornik, D. Kuligowski and P. W. Lawson. 2004. Genetic population structure of central Oregon Coast coho salmon (Oncorhynchus kisutch). Conserv. Genet., 5, 797812.

Ford, S. E. and D. Bushek. 2012. Development of resistance to an introduced marine pathogen by a native host. J. Mar. Res., 70, 205-223.
Fraser D. J., M. M. Hansen, S. Oestergaard, N. Tessier, M. Legault and L. Bernatchez. 2007a. Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems. Mol. Ecol., 16, 3866-3889.
Fraser D. J., M. W. Jones, T. L. McParland and J. A. Hutchings. 2007b. Loss of historical immigration and the unsuccessful rehabilitation of extirpated salmon populations. Conserv. Genet., 8, 527-546.
Gaffney P. M. 1996. Biochemical and population genetics, in The eastern oyster Crassostrea virginica, V. S. Kennedy, R. I. E. Newell and A. F. Eble, eds., College Park: Maryland Sea Grant College, 423-441.
Galtsoff P. 1964. The american oyster Crassostrea virginica Gmelin. J. Exp. Mar. Biol. Ecol., 64, 11-28.
Goudet J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered., 86, 485-486.
Guo S. W. and E. A. Thompson. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 48, 361-372.

Hauser L., G. J. Adcock, P. J. Smith, J. H. Bernal Ramírez and G. R. Carvalho. 2002. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc. Natl. Acad. Sci. U. S. A., 99, 11742-11747.
Hauser L. and G. R. Carvalho. 2008. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish. Fish., 9, 333-362.
Hedgecock D. 1994. Does variance in reproductive success limit effective population sizes of marine organisms, in Genetics and evolution of aquatic organisms, A.R. Beaumont, ed., London: Chapman \& Hall, 122-134.
Hedgecock D., P. Barber and S. Edmands. 2007. Genetic approaches to measuring connectivity. Oceanography (Wash. DC), 20, 70-79.
Hedgecock D., V. Chow and R. S. Waples. 1992. Effective population numbers of shellfish broodstocks estimated from temporal variance in allelic frequencies. Aquaculture, 108, 215-232.
Hedgecock D., S. Launey, A. I. Pudovkin, Y. Naciri, S. Lapegue and F. Bonhomme. 2007. Small effective number of parents (Nb) inferred for a naturally spawned cohort of juvenile European flat oysters Ostrea edulis. Mar. Biol., 150, 1173-1182.
Hedgecock D. and A. I. Pudovkin. 2011. Sweepstakes reproductive success in highly fecund marine fish and shellfish: A review and commentary. Bull. Mar. Sci., 87doi:10.5343/bms.2010.1051.
Hedrick P. 2005. Large variance in reproductive success and the Ne/N ratio. Evolution, 59, 1596-1599.
Hill W. G. 1981. Estimation of effective population size from data on linkage disequilibrium. Genet. Res., 38, 209-216.
Hoarau G., E. Boon, D. N. Jongma, S. Ferber, J. Palsson, H. W. Van der Veer, A. D. Rijnsdorp, W. T. Stam and J. L. Olsen. 2005. Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.). P. Roy. Soc. B-biol. Sci., 272, 497-503.
Hoffman E. A., F. W. Schueler and M. S. Blouin. 2004. Effective population sizes and temporal stability of genetic structure in Rana pipiens, the northern leopard frog. Evolution, 58, 2536-2545.
Hofmann E., D. Bushek, S. Ford, D. Haidvogel, D. Hedgecock, J. Klinck, C. Milbury, D. Narvaez, E. Powell and Y. Wang. 2009. Understanding How Disease and Environment Combine to Structure Resistance in Estuarine Bivalve Populations. Oceanography (Wash. DC), 22, 212-231.
Jehle R., J. W. Arntzen, T. Burke, A. P. Krupa and W. H dl. 2001. The annual number of breeding adults and the effective population size of syntopic newts (Triturus cristatus, T. marmoratus). Mol. Ecol., 10, 839-850.
Jensen L. F., M. M. Hansen, J. Carlsson, V. Loeschcke and K. L. D. Mensberg. 2005. Spatial and temporal genetic differentiation and effective population size of brown trout (Salmo trutta, L.) in small Danish rivers. Conserv. Genet., 6, 615-621.
Johnson J. A., M. R. Bellinger, J. E. Toepfer and P. Dunn. 2004. Temporal changes in allele frequencies and low effective population size in greater prairie-chickens. Mol. Ecol., 13, 2617-2630.
Kalinowski S. T. and R. S. Waples. 2002. Relationship of effective to census size in fluctuating populations. Conserv. Biol., 16, 129-136.
Karl S. A. and J. C. Avise. 1992. Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science, 256, 100-102.
Konovalov D. A. and D. Heg. 2008. Estimation of population allele frequencies from small samples containing multiple generations. Proceedings of the 6th Asia-Pacific Bioinformatics Conference, Kyoto, Japan, Imperial College Press, 321-332.
Konovalov D. A., C. Manning and M. T. Henshaw. 2004. KINGROUP: a program for pedigree relationship reconstruction and kin group assignments using genetic markers. Mol. Ecol. Notes, 4, 779-782.
Krimbas C. B. and S. Tsakas. 1971. The genetics of Dacus oleae. V. Changes of esterase polymorphism in a natural population following insecticide control-selection or drift? Evolution, 25, 454-460.

Leberg P. 2005. Genetic approaches for estimating the effective size of populations. J. Wildl. Manage., 69, 1385-1399.
Luikart G., N. Ryman, D. A. Tallmon, M. K. Schwartz and F. W. Allendorf. 2010. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv. Genet., 11, 355-373.
Narváez, D. A., J. M. Klinck, E. N. Powell, E. E. Homann, J. Wilkin and D. B. Haidvogel. 2012. Modeling the dispersal of Eastern oyster (Crassostera virginica) larvae in Delaware Bay. J. Mar. Res., 70, 381-409.
Palstra F. P. and D. E. Ruzzante. 2008. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol. Ecol., 17, 3428-3447.
Peel D., J. R. Ovenden and S. L. Peel. 2004. NeEstimator: software for estimating effective population size, Version 1.3. Queensland Government, Department of Primary Industries and Fisheries.
Powell E. N., K. A. Ashton-Alcox, J. N. Kraeuter, S. E. Ford and D. Bushek. 2008. Long-term trends in oyster population dynamics in Delaware Bay: regime shifts and response to disease. J. Shellfish Res., 27, 729-755.
Pudovkin A. I., D. V. Zaykin and D. Hedgecock. 1996. On the potential for estimating the effective number of breeders from heterozygote-excess in progeny. Genetics, 144, 383-387.
Raymond M. and F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered., 86, 248-249.
Rice W. R. 1989. Analyzing tables of statistical tests. Evolution, 43, 223-225.
Rose C. G., K. T. Paynter and M. P. Hare. 2006. Isolation by distance in the eastern oyster, Crassostrea virginica, in Chesapeake Bay. J. Hered., 97, 158-170.
Saillant E. and J. R. Gold. 2006. Population structure and variance effective size of red snapper (Lutjanus campechanus) in the northern Gulf of Mexico. Fish. Bull., 104, 136-148.
Schuelke M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol., 18, 233-234.
Shinde D., Y. Lai, F. Sun and N. Arnheim. 2003. Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis:(CA/GT) n and (A/T) n microsatellites. Nucleic Acids Res., 31, 974-980.
Tallmon D. A., A. Koyuk, G. Luikart and M. A. Beaumont. 2008. ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol. Ecol. Resour., 8, 299-301.
Tallmon D. A., G. Luikart and M. A. Beaumont. 2004. Comparative evaluation of a new effective population size estimator based on approximate Bayesian computation. Genetics, 167, 977-988.
Wang J. 2001. A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genet. Res., 78, 243-257.
Wang J. and A. W. Santure. 2009. Parentage and sibship inference from multilocus genotype data under polygamy. Genetics, 181, 1579-1594.
Wang J. and M. C. Whitlock. 2003. Estimating effective population size and migration rates from genetic samples over space and time. Genetics, 163, 429-446.
Wang Y. and X. Guo. 2007. Development and characterization of EST-SSR markers in the eastern oyster Crassostrea virginica. Mar. Biotechnol., 9, 500-511.
Wang Y., Y. Shi and X. Guo. 2009. Identification and characterization of 66 EST-SSR markers in the eastern oyster Crassostrea virginica (Gmelin). J. Shellfish Res., 28, 227-234.
Waples R. S. 2006. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci*. Conserv. Genet., 7, 167-184.

- 1989. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics, 121, 379-391.

Waples R. S. and C. Do. 2008. LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour., 8, 753-756.
Waples R. S. and C. Do. 2010. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications, 3, 244-262.
Waples R. S. and M. Yokota. 2007. Temporal estimates of effective population size in species with overlapping generations. Genetics, 175, 219-233.
Wattier R., C. R. Engel, P. Saumitou-Laprade and M. Valero. 1998. Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Mol. Ecol., 7, 1569-1573.
Wilson G. A. and B. Rannala. 2003. Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163, 1177-1191.
Wright S. 1931. Evolution in Mendelian Populations. Genetics, 16, 97-159.
Zeller M., T. B. H. Reusch and W. Lampert. 2008. Small effective population sizes in two planktonic freshwater copepod species (Eudiaptomus) with apparently large census sizes. J. Evol. Biol., 21, 1755-1762.
Zhang L. and X. Guo. 2010. Development and validation of single nucleotide polymorphism markers in the eastern oyster Crassostrea virginica Gmelin by mining ESTs and resequencing. Aquaculture, 302, 124-129.
Zhdanova O. L. and A. I. Pudovkin. 2008. Nb_HetEx: a program to estimate the effective number of breeders. J. Hered., 99, 694-695.

Received: 10 October, 2011; revised: 8 June, 2012.

[^0]: 1. Rutgers University, Institute of Marine and Coastal Sciences and The New Jersey Agricultural Experiment Station, Haskin Shellfish Research Laboratory, Port Norris, New Jersey, 08349, U.S.A.
 2. Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
 3. Corresponding author. email: xguo@hsrl.rutgers.edu
