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Measuring overturns with gliders

by S. A. Thorpe1

ABSTRACT
The accuracy of the estimation of the vertical size of eddies in turbulent stratified shear flows

in the ocean from measurements obtained by gliders is examined. It is assumed that gliders move
along paths inclined at moderate angles to the horizontal. Comparison is made with measurements
by probes falling or lowered vertically through billows resulting from Kelvin-Helmholtz (K-H) or
Holmboe instability and through the statically unstable regions formed at early stages of convective
breaking of internal waves. The probable errors involved in estimating the overturn scale of a K-H
billow along the track of a glider are greatest when the ratio of the billow’s vertical to horizontal scale,
b/a, is greatest and when a glider’s inclination angle, α, is moderate, but the errors are generally
relatively small. At small angles, α, the glider path may intersect more than one billow, reducing the
errors. Larger errors are possible, however, in measuring eddies in turbulent stratified shear flows, and
their magnitude depends on the orientation of eddies relative to the trajectory of the glider.

False overturns may be apparent using gliders with small inclination angles, α, in internal waves,
and consequently erroneous estimates of the displacement scales obtained, even when the slope of
the waves, s, < 1 and convective overturn is entirely absent. Quantification of overturns from glider
measurements of the apparent vertical size of the regions in which the density increases upward
can result in misleading estimates of the scale of overturns. Although, because of the wave-induced
horizontal and vertical motions, the trajectory of free-fall probes will not be vertical when passing
through an internal wave field, and nor will it be steady, the mean square displacements obtained from
measurements are found to be the same as those that would be made by a probe passing vertically
through a frozen wave field. Attention is drawn to the paucity of information about the structure of
naturally occurring eddies in the stratified ocean.

1. Introduction

This note was prompted by a suggestion that the vertical size of overturns in turbulent
stratified flow in the ocean can be determined by gliders. This idea has led to a line of enquiry
that reveals how little seems presently to be known about the structure of overturns in the
ocean. The absence of such information leads to uncertainty in the estimates of the rate of
dissipation of turbulent kinetic energy inferred indirectly from the size of glider-measured
overturning scales. A distinction is drawn between overturns that move with the flow, like
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Kelvin-Helmholtz billows, and those that propagate through the fluid, like those produced
in convectively breaking internal waves. Attention is drawn to the possible differences in
the estimates of overturns made from free-fall profilers, and those from gliders or AUVs that
rise or sink through the water but move with a substantial horizontal component of motion
relative to the flow, from moored profilers and from moored arrays or towed thermistor
chains.

The vertical size of turbulent eddies containing regions of static instability (but not nec-
essarily dynamic instability) where ‘overturning’ occurs and where the density of water
increases upward, is commonly estimated by resorting a measured vertical density pro-
file into a stable one in which density decreases upward everywhere, and finding the root
mean square (rms) of the vertical displacements of fluid elements required to perform the
resorting. The rms value provides a measure of the scale of overturn, usually termed the
displacement scale, commonly denoted by LT . (An intrinsic assumption in the reordering is
that turbulence stirs a stratified fluid rapidly with relatively little molecular diffusion of the
parameter, usually heat or salinity, that determines its density; Thorpe, 1977.) On average,
LT is found empirically to be proportional to the Ozmidov scale,

LOz = ε1/2/N3/2, (1)

where ε is the rate of dissipation of turbulent kinetic energy per unit mass and N is the
buoyancy frequency of the resorted density, with a constant of proportionality between LT

and LOz of about unity (Dillon, 1982; Peters et al., 1988; Wesson and Gregg, 1994; Ferron
et al., 1998). The Ozmidov scale characterizes the vertical scale of the largest eddies that
overturn in a turbulent stratified fluid (Ozmidov, 1965).

Various instrumental means are available to provide measures of the vertical scales of
overturning eddies. Of these, free-fall microstructure probes are perhaps the most reliable.
Falling freely through the water, they attain a horizontal motion close to that of the sur-
rounding water and consequently measure profiles of density through the water that are
very close to vertical. Where density can be inferred from temperature (e.g., in freshwater
lakes or in the ocean where there is a monotonic relationship between salinity and density)
measurements of temperature are often used to infer displacement scales. Vertical arrays
of moored thermistors (e.g.,van Haren and Gostiaux, 2010) or towed thermistor chains
(e.g., Marmorino, 1987) can be used to infer the size of overturns, provided the separation
between sensors is sufficiently small, typically less than 1 m.

A rough estimate of the magnitude of the Ozmidov scale, useful in guiding the depth
resolution required for measurements in a particular area, may be derived using the Osborn
(1980) formula for the vertical eddy diffusivity,

KV = 0.2ε/N2, (2)

equation (1) then giving LOz = (5KV /N)1/2, which can be determined if historical data
for KV (typically about 10−5 m2 s−1) and N are available. Provided their vertical speed is
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much greater than the horizontal speed of the passing water, moored profiling instruments
(e.g. Thorpe, 1977) or lowered CTDs may also provide vertical measures of overturns.

Can gliders be used to provide accurate estimates of vertical overturning scales? These
bodies, about 2 m in length, generally move through the water at speeds of 0.2–1 m s−1 and
at angles, α, to the horizontal of 14–45 deg (Eriksen, 2009); they do not move vertically
through the water, but may, for example, measure the mean vertical separation of points over
which the density measured along their path increases (or decreases) as they move upward
(or downward) along their slanting path. The question then is: ‘How do these slantwise
measured vertical scales compare to those measured by a vertically profiling instrument?’

The answer evidently depends on α and the shape, and possibly the motion through
the water, of the overturns. Three classes of overturns about which some information is
available and that can be modeled in simple analytical ways are considered here: Kelvin-
Helmholtz and Holmboe billows, coherent eddies in turbulent stratified waters, and convec-
tively overturning internal gravity waves. These are addressed separately in the following
three sections, and general conclusions are drawn in the final section. In a companion paper
(Smyth and Thorpe, 2012) a more sophisticated model of K-H billows than that used here
is adopted to estimate more accurately the displacement scales measured by gliders passing
through them.

2. Kelvin-Helmholtz and Holmboe billows

Kelvin-Helmholtz (K-H) billows are fluid structures marking a stage of the transition from
a laminar or relatively low turbulence regime to a turbulent regime in a stratified shear flow.
Billows develop at sufficiently small values of the minimum gradient Richardson number,
Ri, with their axes aligned in the direction of the vorticity vector of the mean flow, and they
move at a speed close to that of the mean flow at the level where they form. Laboratory
experiments in which K-H billows are produced on an interface between two fluids of
differing density in relative motion (Thorpe, 1973) find that, before pairing of neighboring
billows (if it occurs), their aspect ratio, b/a, taken as their height, 2b, divided by their
length, 2a, measured normal to the axes of the billows (i.e., in the horizontal direction
normal to the vorticity vector of the mean flow), decreases from about 0.5 to 0.06 as Ri at
the onset of instability increases from 0.06 to 0.19. The overturning regions of the billows
are of a roughly elliptical form with major axes that are horizontal. Pairing occurs mainly
when Ri is significantly less than the canonical value, 1/4. The length of billows’ crests,
their ‘transverse’ scale, is typically about 8a before pairing between neighboring billows or
some other along-crest disruption occurs, limiting the crest length (Thorpe, 2002). Billows
formed by Holmboe instability observed in laboratory experiments, for example, by Thorpe
(1968), Lawrence et al. (1991) and Strang and Fernando (2001), have aspect ratios of 0.2–
0.3, and, like K-H billows, transverse scales (shown by Lawrence et al.) of about 8a prior
to the development of three-dimensional instabilities. The billows occurring on a shallow
flowing layer in Pawlak and Armi’s (1998) laboratory experiments have an aspect ratio of
about 0.5.
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There appear to be no measurements of the transverse scale of naturally occurring billows
in the sea or in lakes, and no clear evidence of billow pairing. The billows photographed by
Woods (1968) in the Mediterranean seasonal thermocline have an aspect ratio, b/a, of about
0.5. Those measured using arrays of thermistors in Loch Ness by Thorpe et al. (1977) –
although these have a structure resembling Holmboe instability - and Thorpe (1978) have
aspect ratios of about 0.43 and 0.15, respectively. Billows observed by Marmorino (1987)
using a towed thermistor chain in the seasonal thermocline of the Sargasso have an aspect
ratio of about 0.2, although there is no certainty that the measured horizontal dimension
(along the track of the vessel towing the chain) is normal to the vorticity of the mean flow.
Van Haren and Gostiaux’s (2010) billows measured by an array of 100 temperature sensors
on a vertical mooring above the sloping side of the Great Meteor Seamount in the Canary
Basin have an aspect ratio of about 0.15.

Overall, the aspect ratio of naturally-occurring billows appears to range from about 0.15 to
0.5. The transverse scales are presently unknown. What overturning scale might be inferred
from a glider moving through a billow?

For simplicity, we shall first consider a glider moving through a single elliptical billow
in a vertical plane normal to the billow axis (Fig. 1a), and intersecting the major axis of the
ellipse, taken as the x-axis, in a point X at distance X from its center. We neglect the glider
motion induced by the motion field of the billow or the mean shear. Although the billow
will contain a spiraling density structure and the vertical density gradient may change sign
within the billow, we disregard the complexity involved in accounting for this fine structure
(it is considered by Smyth and Thorpe, 2012), and suppose that the overturning scale of the
billow is simply given by its root mean square (rms) height. The vertical axis is z, and the
ellipse is

x2/a2 + z2/b2 = 1, (3)

while the glider path is x = X + z cot α. The glider therefore meets the elliptical edge of
the billow at two locations, A and B, where z = z2 and z1, respectively, given by the roots
of

(X + z cot α)2/a2 + z2/b2 = 1. (4)

Hence solving the quadratic for z and subtracting the roots, the height of the billow observed
by the glider is

z1 − z2 = 2ab tan α(b2 + a2 tan2 α − X2 tan2 α)1/2/(a2 tan2 α + b2). (5)

The roots of (4) are equal at two values of X (the points X1 and X2 in Figure 1a) when the
glider is tangential to the billow ellipse: when

X = X1, X2 say, = ±a(1 + (b/a)2 cot2 α)1/2

= ±aq, say, (6)
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Figure 1. The approximately elliptical shape of billows. (a) The line AB represents the track of a
glider, inclined to the horizontal at angle α, passing through a billow and measuring a vertical scale,
z1 − z2. Tangents to the elliptical billow parallel to AB meet the major axis at points X2 and X1.
(b) Intersection of glider paths with a train of billows. If α > α1, equal to the slope of the braid
between the two billows, the path intersects only one billow. If α2 < α < α1 the path may intersect
two billows while if α < α2 three billows may be intersected. (c) A glider path, AB, intersecting
two billows when α2 < α < α1. The vertical distance between A and B gives the (local) apparent
height of an overturn. Only when the point X where AB meets the major axis of the elliptical
billows lies between X3 and X4 will a glider path intersect two billows. A single intersection is
shown by the glider path CD.

where q = (1+(b/a)2 cot2 α)1/2. The mean square billow height, ζ2, observed by the glider
passing repeatedly at inclination, α, through billows, is found by integrating (z1 − z2)

2 over
the range of X from X2 to X1 (recalling that the overturning scale is zero when X < X2
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Table 1. Values of Bf, a measure of the ‘error’ involved in taking the glider overturn measurements,
for representative values of glider inclination, α, and billow aspect ratio, b/a. The range 0.15 ≤
b/a ≤ 0.5 is that of the billow shape in a vertical plane normal to the axes of the observed billow
crests. The corresponding range in a vertical plane through the billow crests is 0.0375 to 0.125.
The values of Bf are given by (8) except when α = 20 deg. and b/a = 0.5 and glider paths may
intersect two neighboring billows, when an amended calculation is as given in the Appendix.

Aspect ratio, b/a

α (deg) 0.0375 0.125 0.15 0.3 0.5

20 0.997 0.973 0.962 0.879 0.936

30 0.999 0.988 0.984 0.943 0.869

40 0.999 0.994 0.992 0.971 0.927

and when X > X1) and dividing by the X range, taken as −λ/2 < X < λ/2, the range of
x between the braids in Figure 1a, where λ is the billow wavelength and we have assumed
aq < λ/2. Taking the square root gives the rms billow height measured along the glider
path as

ξ = 4b[a/(3λq)]1/2. (7)

The corresponding rms billow height measured by a vertically falling probe averaged over
the range of X from −λ/2 to λ/2 is 4b[a/(3λ)]1/2, found from (7) in the limit as α tends
to 90 deg. The ratio, Bf, of the glider-measured height to a vertical profiler measurement of
the billow overturning scale (Bf consequently being a measure of the Bias function or error
involved in taking the glider overturn measurements) is therefore

Bf = q1/2 = {1 + [(b/a) cot α]2}−1/4. (8)

This is displayed in Table 1 for representative values of α and b/a. The measure of error,
Bf, is less than unity and decreases – implying greater errors - as b/a increases at fixed α

or as α decreases for fixed b/a; the errors become larger as the aspect ratio of the billows
increases and as the glider angle decreases. Substantial underestimation of the overturning
scale may occur but only for a billow with small aspect ratio or when the glider path is
inclined at a small angle to the horizontal.

For comparison we consider measurements by a glider moving in a vertical plane parallel
to the billow crests. The transverse extent of billows, the length of the billow crests, is taken
from the laboratory observations as 8a (4 times the major axis of the billows) and it is
supposed that the transverse section through the center of the billows is elliptical with
aspect ratio, b/4a, one quarter of the previous value or a range of aspect ratios from 0.0375
to 0.125 for naturally-occurring billows. Values of Bf in Table 1 now lie between 0.97 and
unity, implying relatively small errors in the measurement of the overturn scale.
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Returning to glider paths in a vertical plane normal to the billow axis: (8) applies when
aq < λ/2. When aq > λ/2, the glider path may intersect two or more billows in a train
of billows, as shown in Figure 1b. The condition for such multiple intersections is that α

is less than the slope of the braids between neighboring billows, which is roughly equal
to tan−1(b/a) (see Appendix). For a path to intersect more than one billow it is therefore
necessary that α < α1 ≈ tan−1(b/a); (8) is valid only for α > α1. Because Bf in (8)
decreases as α decreases, it has a minimum value at α = α1 of 2−1/4 ≈ 0.841. Since the
largest observed value of b/a is about 0.5, the largest value of α1 is about 26.6 deg; when
α = 20 deg, multiple intersections will only be possible for billows with b/a > 0.364. The
calculation of Bf when α < α1 is outlined in the Appendix, and the value shown in Table 1
at α = 20 deg., b/a = 0.5, accounts for the intersection of glider paths with a second billow.
The value, Bf = 0.936, compares with a value, 0.767, given by (8) when the intersection
with the second billow is ignored; accounting for intersection with a second billow leads to
an increase in Bf.

As α decreases further below α1, the glider path may intersect more than two billows but
the analytical estimates of Bf become unrealistic: very long trains of billows of uniform
size do not occur naturally.

At a later stage in the transition from laminar flow to turbulence driven by K-H instability,
after the billows have amalgamated to form a horizontally homogeneous layer of turbulent
flow, the vertical overturning scale will become almost independent of α with Bf ≈ 1.
Some slight differences in values of Bf at small positive and negative α may, however, exist
as a consequence of the remaining, slightly tilted, striated structure of the density field (e.g.,
see Thorpe, 1971; Figs. j–n).

3. Coherent eddies in turbulent flow

We are aware of no studies of the detailed structure of the density within eddies in tur-
bulent stratified shear flows that might be used to obtain precise measures of the vertical
scales of overturns made along the inclined glider paths. There are, however, some, but
few, observations of the autocorrelation structure of the thermal field that provide some
indication of the size and shape of coherent eddies. Keller and Van Atta (2000) measured
turbulent temperature fluctuations with a vertical array of sensors in a uniformly and ther-
mally stratified, uniform shear flow downstream of a grid in the laboratory. They present
isocontours of the autocorrelations of temperature fluctuations in a vertical plane orien-
tated in the downstream direction in mean flows with Richardson numbers of 0.015, 0.095
and 0.5. The roughly elliptical contours with aspect ratios, b/a, of about 0.45 are tilted
upward by angles, β, (Fig. 2) of 35, 31 and 20 deg, respectively, in a direction consistent
with the imposed shear. No correlation values transverse to the flow are given. Detailed
temperature correlations have also been obtained in freshwater lakes, although only in the
near-surface mixed layer. Ozen et al. (2006) made measurements in Lake Geneva from a
submersible carrying a vertical and transverse array of thermistors. The autocorrelations in
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Figure 2. An elliptical isocontour of the autocorrelation of temperature fluctuation in a vertical, x−z,
plane. The aspect ratio is b/a and the major axis of the isocontour of length 2a is inclined at an
angle β to the horizontal. The line AB represents the track of a glider, inclined to the horizontal at
angle α, passing through the typical structure of a coherent eddy defined by the isocontour.

the along-track direction (up-wind) are inferred using the Taylor hypothesis. The isocon-
tours in the vertical plane orientated along-track have an elliptical structure with aspect ratio
of about 0.5–0.8 and are tilted with β ≈ 60 deg. (Similarly tilted structures are observed
using a three-dimensional moored array of thermistors in Loch Ness by Thorpe and Hall
(1977). The coherent structures advect through the stationary array with the mean flow.)
In the transverse y direction the correlation is greater than in the along-track direction, the
y-distance over which the correlation coefficient equals 0.6 being, for example, about 1.6
times the along-track distance. The thermal structures result from the process of entrainment
of cold water from the thermocline into the mixed layer and have some similarity to those
produced by Holmboe instability.

Supposing these coherent structures represent the average structure of overturns, we may,
as in Section 2, compare the vertical scales observed along glider tracks at angles, α, to the
horizontal, i.e., at an angle, (α − β), to the major axis of the elliptical isocontours (Fig. 2),
taking averages over one wavelength, λ. Following the analysis of Section 2 but putting α

equal to α−β and projecting the length AB onto the new vertical direction, we find that the
ratio, Bf, of the glider to the vertical profiler measurement of the billow overturning scale,
is given by

Bf = | sin α|1/2{[cos2 β + (b/a)2 sin2 β]/[sin2(α − β) + (b/a)2 cos2(α − β)]}1/4. (9)

This model contains a single billow, but is comparable to the case of an infinite train of
billows considered in Smyth and Thorpe (2012) provided that the glider trajectory does not
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Table 2. Values of Bf, a measure of the ‘error’ involved in taking the glider overturn measurements, for
representative values of glider inclination, α, and turbulent eddy aspect ratio, b/a, and inclination,
β, of its major axis, with values taken from top: Keller and Van Atta (2000) with aspect ratio,
b/a = 0.45; and below: Ozen et al. (2006) with β = 60 deg. (Values of Bf found using (9) with
b/a = 0.43 and for β = −20 deg are given by Smyth and Thorpe, 2012, Fig. 5.)

β (deg)

α (deg) 20 35

20 0.851 0.762

30 1.000 0.970

40 1.061 1.099

−20 0.669 0.585

−30 0.762 0.681

−40 0.827 0.740

α (deg) aspect ratio, b/a

0.5 0.8

20 0.550 0.574

30 0.706 0.707

40 0.856 0.815

−20 0.479 0.542

−30 0.575 0.653

−40 0.656 0.743

encounter neighboring billows, i.e., if λ > 2a sin(β−α)[1+(b/a)2 cot2(β−α)]1/2/| sin α|.
This equation for Bf reduces to (8) when β = 0 and equals 1 if α = 90 deg. Values of Bf are
shown in Table 2 for representative values of α, β and b/a. Although generally of order unity
implying relatively small errors, values may exceed 1 and are sometimes small, implying
relatively large errors may occur when α is small.

4. Convectively breaking internal gravity waves

Although a special case, two-dimensional internal gravity waves propagating in the (x, z)

plane through a fluid of uniform buoyancy frequency, N , provide a description of the mod-
ulated structure observed in waves passing through the thermocline (e.g., Lazier and Sand-
strom, 1978). Their presence is shown to lead to the possible detection of false overturns.
There is the substantial advantage that, even when overturning, the waves can be expressed
exactly by the simple set of equations for the horizontal and vertical components of velocity:

u = (amσ/k) cos(kx + mz − σt), w = −aσ cos(kx + mz − σt), (10)
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density:

ρ = ρ0{1 − N2g−1[z − a sin(kx + mz − σt)]}, (11)

with dispersion relation:

σ2 = k2N2/(k2 + m2), (12)

where a is now the wave amplitude (the amplitude of isopycnal surfaces), (k, m) is the
wavenumber vector, σ is the wave frequency and g is the acceleration due to gravity. For
simplicity the effects of the Earth’s rotation are ignored. Isopycnal surfaces are shown in
Figure 3. The vertical density gradient

∂ρ/∂z = ρ0N
2g−1[am cos(kx + mz − σt) − 1], (13)

is greatest on the lines

kx + mz − σt = 2nπ, (14)

where n is an integer. If the slope of the waves, s = am, is greater than 1, (13) implies
that near these lines ∂ρ/∂z > 0, and the isopycnals overturn as in Figure 3b resulting
in regions that are statically unstable (shown hatched) surrounding the lines (14).2 The
convectively breaking internal wave equations, (10)–(12) with s > 1, provide a sim-
ple mathematical description of overturns. Unlike the billows or coherent structures in
turbulent stratified shear flows, the overturning regions, propagate through the stratified
fluid at phase speed c = (σ/K2)(k, m), where K2 = k2 + m2, and with group velocity
cg = [mN2/(σK4)][km, −(k2 + l2)] inclined at an angle θ to the horizontal as shown in
Figure 3. This angle, θ, has values between 0, for low frequency waves, and 90 deg for waves
of frequency close to the buoyancy frequency. Waves radiating from turbulent regions, e.g.,
the upper ocean mixed layer, are found to have θ ∼ 45–60 deg (Linden, 1975; Sutherland
and Linden, 1998).

The height of the overturning scales, taken as the vertical size of the statically unstable
regions at the onset of convective breaking in internal gravity waves, is now examined.
A glider is allowed to have a velocity component in the y direction normal to the plane
of propagation of the waves, so that its velocity relative to the water through which it is
rising can be written (−V cos α cos φ, V cos α sin φ, V sin α), where α is the inclination to
the horizontal negative x axis (Fig. 4) and φ is an azimuthal direction, the angle between
the projection of the glider path onto the horizontal and the negative x direction.

2. In their abstract, Liu et al. (2010) state “Isopycnal overturning is induced at a local wave steepness of
sc = 0.75−0.79, which is below the conventional threshold of s = 1.” The parameter, s, in that work is, however,
taken as the slope of internal waves being forced at the upper boundary of a stratified domain. The wave slope
is modulated with distance from the boundary, leading to regions of overturn and mixing. Liu states in private
correspondence (2011) that the word “local” in the quoted sentence in their abstract should be deleted.
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Figure 3. Isopycnal surfaces of internal gravity waves travelling through a uniformly stratified fluid
with (a) s < 1 and (b) s > 1. Three surfaces of constant phase are shown by the dashed lines. The
waves in (b) are statically unstable in the hatched regions. The group velocity, cg , is inclined to the
horizontal at an angle θ. (From Thorpe, 1994.)

We may consider three different Cases of increasing complexity and approach to reality:
(a) in which the glider moves at a constant speed, V , and upward inclination, α, through
stationary waves (appropriate when V � c = σ/K; invoking symmetry, we select an
upward glider path without loss of generality); or (b) through moving waves; or (c) in
which it moves at a speed V and inclination, α, relative to the water that moves with the
wave-induced speeds (10). In each case we fix the origin and the time t = 0 at the position
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Figure 4. The slope angles, Φ1 and Φ2, of an isopycnal surface distorted by the presence of internal
gravity waves as shown in Figure 3 with (a) statically stable waves with s < 1, and (b) overturning
waves with s > 1. Glider tracks when V � c, when the wave field is effectively frozen, are
also shown by the straight lines, AB, CD and EF. The angle α is the inclination of the glider
track to the negative x-axis. Track AB, with α < Φ2, intersects the isopycnal surface several
times and will consequently measure a density gradient along its path that changes sign with,
therefore, apparent overturns, whether or not the wave is overturning. A glider moving along track
CD with Φ2 < α < Φ1 intersects the isopycnal surface only once: the density therefore decreases
monotonically, with no apparent overturns. ‘Real overturns’ are measured by tracks like EF in part
(b) with Φ1 < α < 90 deg when s > 1. Apparent overturns may be detected as on track EF as in
part (a) provided 180 deg > α > Φ1 > 90 deg (i.e., when s < 1 and no overturning is present).

where the glider passes through the surface given by (14) with n chosen there to be zero.
(In traversing the density field, the glider will generally somewhere cross such a surface,
and the origin is chosen at the point of its intersection.)

We define two angles, Φ1 and Φ2, related to the wave slope. These are shown in Figure 4.
At time t = 0, the equation for the isopycnal surface where ρ = ρ0 is z = η(x) and where,
from (11),

η = a sin(kx + mη). (15)
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The gradient of the isopycnal surface, dη/dx, is given by

dη/dx = a(k + mdη/dx) cos(kx + mη), (16)

so at η = x = 0 (zero phase),

dη/dx = ak/(1 − s) = s tan θ/(1 − s), (17)

using k = m tan θ and s = am. The inclination of the surface to the negative x direction
is Φ1 = tan−1[s tan θ/(s − 1)], which is positive implying the angle Φ1 is <90 deg (but >

θ), if s > 1 as shown in Figure 4b. Where the wave displacement, η = 0 at kx = π (180 deg
phase), the gradient of the isopycnal surface is

dη/dx = −ak/(1 + s) = −s tan θ/(1 + s). (18)

The inclination of the isopycnal surface to the negative x direction is therefore Φ2 =
tan−1[s tan θ/(s +1)], as in Figure 4a. Since s > 0, the angle Φ2 is less than θ and therefore
< Φ1.

If, in moving through a frozen wave field, the glider angle, α, < Φ2 or if α > Φ1, its
path will cross some isopycnal wave surfaces more than once and hence it will record an
along-track density gradient that changes sign even though there is no overturning (i.e.,
when s < 1); as illustrated in Figure 4, such false overturns may be recorded by gliders
moving through an internal wave field.3 The condition for false overturns, α < Φ2, is
satisfied only if 0 < α < θ ≤ 90 deg, and if s > 1/[tan θ/ tan α − 1]. When s < 1, the
condition α > Φ1 (Fig. 4a) for a false overturn is found only when 180 > α(deg) > 90
and s > 1/(1 − tan θ/ tan α) (an expression which is <1 since tan α < 0). If s > 1, the
overturn with α > Φ1 (Fig. 4b) will be observed if 90 ≤ α(deg) < 180 or at smaller α

when s > 1/(1 − tan θ/ tan α).
Two measures of the size of overturns are estimated and compared. An ‘overturning

scale’ is defined as the vertical distance, but measured along the glider track, over which the
upward vertical density gradient measured by the moving glider is positive. A ‘displacement
scale,’ LT , is found by the conventional reordering of the observed density profile (but again
measured along the glider track) into a stable one and integrating the displacements of fluid
elements required to do this. Both measures are normalized by dividing by 2a. We shall find,
however, that in Case (c) the choice of seeking a range in the vertical, Z, measured along a
glider track in which ρ increases with Z can lead to some anomalous and non-meaningful
estimates of the size of overturns.

a. A vertically moving measuring probe in a stationary wave field

The overturning scale of the internal wave measured by a probe rising vertically through
a stationary wave field, Case (a), can be found by putting x = t = 0 in (13). We have

3. Such false overturns are foreseen by Thorpe (1977; his Fig. 7).
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Figure 5. The rms displacements, LT , (dashed line) resulting from reordering the density profile,
ρ = ρ0{1 − N2g−1[z − a sin(mz)]} over the vertical region within which convective instability
may occur when s > 1, normalized with 2a, and the scale, ζ, of the statically unstable region (full
line), given by (19).

am cos(mz) = 1 at ∂ρ/∂z = 0, and since when s > 1, ∂ρ/∂z > 0 at z = 0, the nondimen-
sional height of the overturning region, the true overturning scale of the internal wave, is
given by

ζ = 2z/2a = (1/s) cos−1(1/s). (19)

Values are shown, together with the displacement scales, LT , in Figure 5. Remarkably, ζ

and LT do not depend on θ. The two metrics are different; the conventionally estimated
displacement, LT , scale differs from that determined by measuring the heights of statically
unstable regions. Their ratio provides a correction that may be applied to derive LT from
values of ζ measured by a glider moving along tracks inclined to the vertical through waves
with effective slopes, s, provided that the form of the equation for density remains the same
as in (11), i.e., containing a constant and a linear term plus a sinusoidal function of location,
z or Z, as it does in Cases (a) and (b). Because of the relative motion of the waves in Cases
(b) and (c), the measured overturning and displacement scales when α = 90 deg might be
expected to differ from the actual overturn scales of the frozen wave field. We later consider
whether this is so.
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Case (a); stationary waves
Without loss of generality (by taking t = 0 as a glider path passes through one of the

long-dashed lines in Fig. 3), we can consider a glider track passing through the origin,
x = z = 0 at time t = 0. Taking the along-track distance moved by the glider as D(= V t),
its location at time t is

x = −D cos α cos φ, y = D cos α sin φ, z = D sin α. (20)

From (11) but putting t = 0 in this equation because the wave is frozen, the glider
therefore records a density

ρ = ρ0{1 − N2g−1[D sin α − a sin(mD sin α − kD cos α cos φ)]},
= ρ0{1 − N2g−1[D sin α − a sin((Dγ/a) sin α)]}, (21)

using k = m tan θ, where γ = s(1 − cos φ tan θ/ tan α). If cos φ = tan α/ tan θ then γ = 0
and the sine term in (21) vanishes, so the density gradient sampled by the glider moving
with directions (α, φ) is constant. In general, however, the along-track density gradient is
zero when dρ/dD = 0, or when the vertical location of the glider is given by z = z0 and
D = D0 where

z0/a, = D0 sin α/a, = (1/γ) cos−1(1/γ). (22)

Real values of D0 sin α are found only when |γ| > 1. This condition is satisfied for some
φ provided α does not lie between Φ2 and Φ1. The apparent height of overturns is then
2D0 sin α. (Alternatively, a glider track assigned through x = π/k, z = 0 at t = 0 leads to
D0 sin α/a, = (1/γ) cos−1(−1/γ) and gives an apparent overturn height 2|D0| sin α when
γ < 0.) Nondimensionalizing with the wave amplitude, a, the actual height of overturns is
found by putting α = 90 deg, giving γ = s and ζ = 2D0 sin α/2a = (1/s) cos−1(1/s) as
in (19).

To provide examples, we suppose that the glider track lies in the x − z plane (so φ = 0)
in which the internal wave is traveling. If α > θ, then α > Φ2, and there are no tracks
like those shown by the lines AB in Figure 4, and no corresponding solutions for ζ for
false, or unreal overturns. If, however, α > Φ1, with s > 1, real values of ζ are found
corresponding to track EF in Figure 4b. When tan θ = 0.125 (θ = 7.1 deg) there are no
false overturns and no solutions for ζ if α > 7.1 deg, but real overturns are possible with
real values of ζ when s > 1 provided α and s are large enough, as shown e.g., in Figure 6a.
Similarly if tan θ = 1.0 (θ = 45 deg), false overturns are observed when for α < Φ2, or
when s > [(tan α)−1 − 1]−1, even when s > 1 and real overturns are present in the internal
wave (Fig. 6b). For this value of θ, Φ1 = tan−1[s/(s − 1)] > 63.4 deg if 1 < s ≤ 2 (the
range of s > 1 shown in Fig. 6b); there are therefore no glider paths, EF in Figure 4b, with
α > Φ1, that intersect the overturning region of the internal wave. Corresponding values of
ζ, when the glider path is normal to the plane of the internal wave (φ = 90 deg), are shown
by dashed lines in Figure 6a and b. In this case ζ is independent of α since γ = s.
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Figure 6. Case a: The overturning scales, ζ, measured by a glider moving at speed, V , at an angle
of inclination to the horizontal, α, = 20, 30, 40 and 90 deg through stationary internal waves
of steepness, s. (a): azimuthal angle, φ = 0 (full lines) and φ = 90 deg (dashed line) when
tan θ = 0.125 (θ = 7.1 deg); (b): φ = 0 (full lines) and φ = 90 deg (dashed line) when tan θ = 1.0
(θ = 45 deg). (If α = 40 deg, solutions for ζ are possible only if s > 5.22). In (c): tan θ = 0.125
(θ = 7.1 deg), and (d): tan θ = 1.0 (θ = 45 deg) the rms overturning scales are averaged over the
azimuthal angle φ of the glider direction.
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Generally the direction of a glider track relative to that of an internal wave will not be
known. Supposing that a track is adopted so that the glider repeatedly samples a wave from
differing directions, φ, we can estimate the rms apparent overturn scale measured as the
glider moves at an angle, α, and now sampling the wave field from all azimuthal directions,
φ. The rms overturn scale is found by (numerically) integrating ζ from φ = 0 to φ = 180 deg.
The nondimensionalized, rms, apparent overturning scales given by (22) and calculated in
the depth range −π/2 < mz < π/2 of a single internal wave are shown in Figure 6, c
and d. The (real) overturning scales, given by α = 90 deg, are seen to be overestimated at
α = 20, 30 and 40 deg in Figure 6 in the range 1/(1 + tan θ/ tan α) < s < 1 and in a range
where 1 < s < ∼1.1, and underestimated at greater values of s. Although not shown here,
the glider-measured overturning scales are close to the real scales when s exceeds 1.2 and
θ is small, specifically when θ is less than about tan−1(0.2 tan α).

Case (b); propagating waves
Retaining the time, t , in (11), so allowing the internal wave to propagate, and writing t =

D/V , we find the density measured by the glider as a function of along-track distance, D:

ρ = ρ0{1 − N2g−1[D sin α − a sin(mD sin α − kD cos α cos φ − cmD sec θ/V )]},
= ρ0{1 − N2g−1[D sin α − a sin(Dγ sin α/a)]}, (23)

where γ = s[1 − cos φ tan θ/ tan α − (c/V )/(sin α cos θ)] and the relations c = σ/K and
k = m tan θ have been used. As in Case (a), the density gradient is constant in particular
directions, those in which γ = 0, i.e., when cos φ = (tan α/ tan θ)[1 − (c/V )/ sin α cos θ].

The rate of change in density along the glider track, dρ/dD, is zero where D = D0 with

D0 sin α = (a/γ) cos−1(1/γ). (24)

Values of ζ = 2D0 sin α/2a, when the azimuth angle, φ, = 0 or 90 deg, and tan θ = 0.125
and 1.0 are shown in Figure 7, a and b, when c/V = 0.2. As in Case (a), there are no solutions
for ζ, and no overturns, false or real, found when s < 1 and tan θ = 0.125. However ζ now
depends on α when φ = 90 deg. The smallest values of s at which solutions for ζ are
found are listed in the figure caption. For comparison, examples of the nondimensionalized
rms apparent overturning scales, ζ, integrated over the azimuthal directions, φ, are shown
in Figure 7, c and d, for c/V = 0.2. Although values at s < 1 are similar to those of
Figure 6, c and d, when c/V = 0, the apparent overturning scales are generally reduced
when s exceeds about 1.2. When α = 90 deg, corresponding to the trajectory of a freely
rising probe, the parameter γ is equal to s[1 − (c/V )/ cos θ], and

ζ = 2D0 sin α/2a = {1/[s[1 − (c/V )/ cos θ]} cos−1{1/[s(1 − (c/V )/ cos θ)]}. (25)

Comparing this to (19) we see that a probe in free-fall through the propagating wave
field ‘sees,’ or measures, waves with effective slopes, s[1 − (c/V )/ cos θ], that differ from
their real slopes, s. The cut-off at wave slopes found at s = 1 in Figure 5 now occurs at
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Figure 7. Case b: The overturning scales, ζ, measured by a glider moving at speed, V , with c/V = 0.2,
at various labelled angles of inclination to the horizontal, α, through propagating internal waves
of steepness, s, when the glider’s motion is not affected by the motions induced by the waves.
(a): azimuthal angle, φ = 0 (full lines) and φ = 90 deg (dashed lines) when tan θ = 0.125
(θ = 7.1 deg). (When φ = 0 and α = 20 and 30 deg, s must exceed 14.9 and 2.63, respectively,
for real values of ζ; and when φ = 90 deg and α = 40 deg, s must exceed 2.43 for real ζ.) (b):
φ = 0 (full lines) and φ = 90 deg (dashed line) when tan θ = 1.0 (θ = 45 deg). (If φ = 90 deg and
α = 20 deg and 30 deg, s must exceed 5.78 and 2.30, respectively, for real ζ.) The rms overturning
scales are averaged over the azimuthal angles, φ, of the glider direction relative to the x-z plane of
the internal waves in (c) tan θ = 0.125 (θ = 7.1), and (d) tan θ = 1.0 (θ = 45 deg).
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s = [1 − (c/V ) cos θ]−1 > 1. For example, when c/V = 0.2, as in Figure 7, overturns for
a vertically moving probe, α = 90 deg, are only detected in waves with tan θ = 0.125 when
their slopes exceed about 1.25.

Case (c); the glider track perturbed by internal waves
The oscillatory paths of particles in the internal waves are along straight lines parallel

to the group velocity and therefore inclined at angle θ to the horizontal. Ignoring the time
delays involved in accelerating the glider to conform to the wave induced motion, its motion
when at a location (X, Y, Z) at time, t , is given by the sum of the wave motion, (10), and
the relative glider motion:

dX/dt = (sσ/k) cos(kX + mZ − σt) − V cos α cos φ, (26a)

dY/dt = V cos α sin φ, (26b)

dZ/dt = −aσ cos(kX + mZ − σt) + V sin α. (26c)

Adding k times (26a) and m times (26c) and integrating:

kX + mZ = V t(m sin α − k cos α cos φ), (27)

taking X = Y = Z at t = 0. Substituting in (26c) and integrating:

Z = −(a/Ψ) sin(σΨt) + V t sin α, (28)

whereΨ = [(V/σ)(m sin α−k cos α cos φ)−1] = [(sin α cos θ−cos α sin θ cos φ)/(c/V )]−
1. Expressions for the glider trajectory, X using (27) and (28), Y obtained by integrating
(26b) and Z from (28), are now given in parametric form in terms of time, t . The term
sin(σΨt) introduced in (28) represents the perturbation of the wave field on the glider
motion, Doppler shifted in frequency as a result of the glider motion through the waves.
The density measured by the glider is found by substituting (27) and (28) into (11):

ρ = ρ0{1 − N2g−1[V t sin α − (a(1 + Ψ)/Ψ) sin(σΨt)]}. (29)

The time derivative of the density observed by the glider, dρ/dt , is zero when

σΨt = cos−1{V sin α/[aσ(1 + Ψ)]}
= cos−1{1/[s(1 − tan θ cos φ/ tan α)]}, = Ω say, (30)

or when, from (28), at glider location Z = Z0 where

Z0/a = {(V/σa)Ω sin α − sin Ω}/Ψ
= {Ω sin α cos θ/[s(c/V )] − sin Ω}/Ψ. (31)

The parameter Ψ, is zero and Z/a in (31) tends to infinity when azimuth directions are
given by cos φ = tan α/ tan θ − (c/V )/(sin θ cos α). For these values of φ, dZ/dt and
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Figure 8. Case c: The normalized rms overturning scales, ζ = Z0/a (full lines), and the rms dis-
placements, LT /2a (dashed lines) measured by a glider moving at speed, V , with c/V = 0.2, at
an angles of inclination to the horizontal, α, = 20, 30, 40 and 90 deg through propagating internal
waves of steepness, s, with (a) tan θ = 0.125 (θ = 7.1) and (b) tan θ = 1.0 (θ = 45 deg) when the
glider moves in the plane of the waves (φ = 0) and the glider’s velocity is affected by the motions
induced by the waves.

dρ/dZ are constant. Small deviations from this azimuthal direction are found to lead to
large apparent overturning scales, and for this reason integration is not made over φ in this
Case.

Symmetry implies that in many cases (but see below) the apparent height of an overturn
is 2Z0, the density increasing from −Z0 to Z0, and the normalized overturning scale is
ζ = 2Z0/2a. Figure 8 shows examples of the normalized overturning scales, ζ, for glider
tracks in the plane of the waves, φ = 0, calculated in the range −π/(2σΨ) < t < π/(2σΨ)

of one Doppler shifted period, at various inclinations, α, to the horizontal. The figure also
shows LT /2a, the rms displacements divided by 2a. Real solutions for Ω are found from
(30) only when

|s(1 − tan θ/ tan α)| ≥ 1. (32)

This is identical to the earlier conditions for multiple intersections of the glider track
with isopycnals, α < Φ2 and α > Φ1, and leads to a value of s below which there are
no solutions (e.g., in Figure 8a, when θ = 7.13 deg, α = 30 deg, s must exceed 1.276. In
Figure 8b, where θ = 45 deg, s must be greater than 5.22 if α = 40 deg, exceeding the
range of s shown and greater than likely possible oceanic values).
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Figure 9. The variation of density measured by the glider as a function of its vertical location, Z.
In (a) Z increases monotonically, but in (b) and (c), because of the motion induced by the wave
field, the glider is carried downward. The statically unstable regions where the measured density
increases with Z are marked by the thickened lines. The relatively small vertical extent of the
statically unstable regions in (b) leads to the anomalous curve for ζ at α = 20 deg in Figure 8a, as
explained in the text.

In general for V > 0, relatively small c and 0 < α(deg) ≤ 90, the glider moves
montonically upward, leading to density variations with its vertical position, Z, as illustrated
in Figure 9a. If, however, the maximum downward vertical component of the wave induced
motion in (26c), |w| = aσ, exceeds the upward vertical motion of the glider through the
water, V sin α, i.e., when (c/V )s/(sin α cos θ) > 1, the glider may be carried downward
by the wave motion over part of the Doppler shifted period. An example, one that leads
to anomalous overturning scales, is found in Figure 8a when c/V = 0.2, θ = 7.1 deg
and α = 20 deg, giving a condition s > 1.70 for downward glider motion, although the
condition (32) proves less severe, leading to a cut-off at s = 1.52. When 1.52 < s < 1.70,
the variation of density at the vertical position, Z, of the glider is as illustrated in Figure 9a,
but at greater s the variation is as sketched in Figure 9b. Although the displacement scales,
LT , are relatively large, regions where the measured vertical density gradient, dρ/dZ, is
positive are now relatively small as indicated by the thickened lines in Figure 9b, and the
overturning scales, Z0, that must now be calculated over these regions, are therefore small
as shown in Figure 8a; the glider-measured overturning scales are not a robust measure of
LT . A further example of downward glider motion is found in Figure 8b when c/V = 0.2,
θ = 45 deg and α = 20 deg, giving |w| > V sin α if s > 1.21. At greater s, the density,
ρ, measured by the glider at height, Z, is as shown in Figure 9c, giving relatively large
overturning scales, comparable to those in Figure 9a.

Although the overturning scales differ, the displacement scales, LT , at α = 90 deg mea-
sured by a free-fall probe displaced from its vertical track by the wave-induced water motion
(the dashed curves marked ‘90’ in Fig. 8) are found to be independent of θ and the same
as those of Case (a) in Figure 5 (c/V = 0). Consequently a free-fall probe ascending or
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descending through a field of convectively breaking internal waves will measure the real
displacement scales within the overturning waves and LT will be independent of c/V , at
least within the limits assumed here, e.g., that a probe will conform to the wave-induced
motions without any time delay and that the statically unstable state of the waves when
s > 1 is maintained during the passage of the probe.

5. Summary

Proportionality of the displacement scale, LT , and the Ozmidov length scale, LOz, is
commonly used to obtain estimates of ε, the rate of dissipation of turbulent kinetic energy
per unit mass. Eq. (1) implies that the estimated dissipation rate is proportional to the square
of the scale of overturns, LT . As shown in Section 2 and Table 1, the probable errors involved
in estimating the overturn scale of K-H billows are greatest when their aspect ratio, b/a,
is greatest and when a glider’s inclination angle, α, is small, but is unlikely to amount to
a factor 2−1/2 or therefore to an underestimate of ε by a factor as great as 2. Given the
commonly wide range of ε values and the usual uncertainty of about 2 in measuring its
value using shear foil probes, this underestimate may be relatively insignificant. As shown
in Table 2, larger errors are possible, however, in measuring eddies in stratified turbulent
flows, and their magnitude depends on the orientation of eddies relative to the trajectory
of the glider. The attempts to obtain estimates of probable overturning scales in turbulent
eddies draw attention to the paucity of information about the structure of naturally occurring
eddies in the stratified ocean.

Attention is also drawn to the false overturns that might be apparent using gliders with
small inclination angles, α, in internal waves, an effect that may be augmented when steep
waves are superimposed on others. Apparent and spurious breaking may be detected using
gliders, and erroneous estimates of the displacement scales obtained, even when the wave
slope, s, < 1 and convective overturn is absent (Figs. 7 and 8). Figures 6 and 7 show that the
measured overturning scales depend on the azimuthal angle, φ; the orientation of a glider
path to the internal wave. Except in particular regions (e.g., near continental slopes of in
the lee of a ridge) where the wave orientation may be known, the direction of propagation
of steep internal waves is presently indeterminate; over relatively short periods of time
and moderate distances, the internal wave field may be directionally anisotropic, but more
information of wave directionality and its persistence is required. Quantification of overturns
from glider measurements of the apparent vertical size of the regions in which the density
increases upward can result in misleading estimates of the scale of overturns (exemplified
by the case shown in Fig. 9b), and care is consequently required in using gliders to measure
displacement scales.

Although, because of the wave-induced horizontal and vertical motions, the trajectory
of free-fall probes will not be vertical when passing through an internal wave, and nor will
it be steady, the mean square displacements obtained from measurements are found to be
the same as those that would be made by a probe passing vertically through a frozen wave
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field. Although advected in space by the internal waves, free-fall probes continue to cross
isopycnal surfaces at a constant rate, just as if they were frozen. More information is however
required of the nature of breaking internal waves in the deep ocean, as well as turbulent
eddies, particularly of how to distinguish between shear induced overturns and convective
wave breaking, perhaps using fine-scale arrays of high-resolution sensors as suggested by
Thorpe (2010).
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APPENDIX

Braids, at angles α1 to the horizontal, are roughly tangential to billows. A braid shown in
Figure 1b, passes through the point (λ/2, 0), where λ is the billow wavelength. Using (6)
and equating the braid slope to tan−1(b/a), we find λ = (2

√
2)a. As can also be inferred

from Figure 1b, a glider path can intersect a third billow if α < α2 where the tangent at
angle α2 passes through the point (λ, 0), (6) then giving λ2 = a2 + b2 cot2 α2, or with
λ = (2

√
2)a, α2 = tan−1[b/(

√
7a)]. The largest value of b/a is 0.5, and so α2 ≤ 10.7 deg.,

smaller than the typical glider paths. Generally, at most, a glider will intersect only two
billows.

Figure 1c shows a glider path, AB, at inclination α2 < α < α1 that intersects two billows
and passes through the point X = (x, 0), where OX = x. Extending (6), the vertical
distance, zB–zA, between the points A and B is found to be given by,

zB − zA = (b/y2){bλ cot α + a[(y2 − x2)1/2 + (y2 − (λ + x)2)1/2]},

where y = aq = [a2 + b2 cot2 α]1/2. The points X3 = λ − y and X4 = y give the range of
the point X, corresponding to a glider path passing through two billows: the mean square
of (zB–zA) of such a path can be found numerically for given α and b/a. The mean square
billow height where the glider path only crosses a single billow (e.g., the line CD, for values
of x between O to X3 in Fig. 1c) is found by integrating (z1 −z2)

2 given by (5) and doubling
the resultant value to cover the range of x < 0. Summing the mean square values, weighted
by the ranges O to X3 and X3 to X4 and taking the square root, gives the rms height that
would be observed by the glider at inclination α. Division by the rms height observed by
a vertically moving probe over one billow but averaged over a length OX4 then leads to a
revised value of Bf.
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