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Primary and secondary intrusions in double-diffusively
stable vertical gradients

by Julian A. Simeonov1

ABSTRACT
The purpose of this paper is to show that molecularly-driven double-diffusive intrusions can pro-

duce significant lateral and vertical double-diffusive mixing even when the initial temperature and
salinity are both stably stratified in the vertical. Assuming uniform density-compensated horizontal
gradients and periodic disturbances, three-dimensional direct numerical simulations (DNS) for the
fastest growing intrusion show that the latter equilibrates due to the generation of salt fingers which
reduce the driving buoyancy pressure gradient. The DNS also provided statistical data for a new
parameterization of the salt finger fluxes which includes the effects of shear and variable vertical gra-
dients. This parameterization makes it feasible to numerically investigate the subharmonic instabilities
of the equilibrium DNS solution. Linearized calculations with parameterized salt fingers show that
the vertical and horizontal wavelength of the fastest growing secondary instability are approximately
three and fourteen times that of the primary intrusion. Nonlinear simulations show that the equilibrium
lateral and vertical double-diffusive fluxes of the secondary mode are an order of magnitude larger
than those of the primary intrusion. Numerically determined dependences of the intrusion lateral
velocity on the vertical wavelength are compared to previous numerical and experimental work.

1. Introduction

When warm freshwater overlies cold salty water in the ocean, small-scale double-diffusive
processes are usually thought to be unimportant. Holyer (1983) showed that horizontal
temperature and salinity gradients can destabilize such stratification with respect to lateral
intrusions that gain/lose buoyancy as heat is exchanged faster than salt (molecularly) across
the interleaving boundaries – essentially a slanted form of salt fingers (Stern, 1960). This
interleaving process is also considered unimportant because of the small vertical scale (few
meters) of the fastest growing intrusion. One of the motivations for the present work is to
show that such molecularly-driven intrusions can give rise to significant lateral mixing when
longer vertical wavelengths are produced by a subharmonic instability of shorter waves.

The intrusions discussed here may be relevant to the observations of frontal interleav-
ing between the climatologically important Indonesian Throughflow (4–10 Sv) and Indian

1. Naval Research Laboratory, Marine Geoscience Division, Stennis Space Center, Mississippi, 39529, U.S.A.
email: simeonov@nrlssc.navy.mil

797



798 Journal of Marine Research [69, 4-6

Figure 1. Temperature (a) and salinity (b) profiles across the front at 10◦S–15◦S between the Indone-
sian Throughflow and Indian Ocean thermocline waters; the interval between profiles is 1 degree
of latitude or about 111 km and the vertical resolution is 2 dbar. This CTD data is from the 1995
WOCE section I8N at 80◦E (Talley and Baringer, 1997). The 2 dbar data are obtained by filtering
and averaging the 25 Hz raw data to 2 Hz, applying a spike removal filter to the 2 Hz data, and
applying a ship-roll filter to minimize density inversions during pressure-sequencing of the 2 Hz
series.

Ocean thermocline waters. As a result of lateral mixing, the westward flowing Indonesian
water loses most of its cold and fresh anomaly by the time it reaches the African coast
(Gordon, 2005). Below 100 m the Indonesian waters have nearly uniform salinity (Fig. 1)
in the vertical and are stratified mainly by temperature with characteristic density ratios
R ≡ αT̄z/βS̄z = −10; closer to the Indian Ocean waters, however, the salinity stratification
is as strong as that due to temperature and R approaches −1. In the present study, we will
use a spatially uniform density ratio with the intermediate value R = −5. For this double-
diffusively stable gradient there will be no salt fingers or diffusive convection during the
initial stage of linear growth when the intrusion amplitude is small. This is similar to the
intrusions on a stable salinity gradient “heated from below” at R = 0.6 (Simeonov and
Stern, 2008), except that the development of temperature inversions is less likely in the
present case of strongly stable background temperature field. As in the R = 0.6 case, we
expect that salt fingers developing on salinity inversions would play a significant role in the
finite amplitude intrusion dynamics.
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Motivated by ocean observations, we consider horizontal gradients which are two orders
of magnitude smaller than the vertical gradients. This should be contrasted with laboratory
interleaving experiments (e.g. Ruddick et al., 1999; Krishnamurti, 2006) where the hori-
zontal gradients are of the same order as the vertical gradients (or even larger initially); the
latter is not a realistic representation of an oceanic front. In this connection, the intrusion
scales considered in this study – O(1 m) in the vertical and O(1 km) in the horizontal – are
2–3 orders of magnitude larger than the typical laboratory scales. Another major difference
between our calculations and laboratory intrusions (also related to the strength of the hori-
zontal gradient) is concerned with the onset of the interleaving process. In the present study,
there will be no salt fingers initially and infinitesimal interleaving disturbance amplify solely
due to molecular diffusion as in Holyer’s (1983) linear theory; small-scale double diffusion
would appear only after a relatively long period since a large lateral displacement of the weak
horizontal gradient is needed to perturb the initial vertical gradient. In laboratory experi-
ments on the other hand, only a small lateral displacement of the initial strong horizontal
gradient is sufficient to destabilize the initial vertical gradient. The appearance of strong
double diffusion like salt fingers at the very onset of such experiments results in an intrusion
dynamics which is beyond the scope of this paper. Since our focus is on the intrusion scales
rather than the scale of the background gradients we consider here the simplest case where
the background temperature and salinity vary linearly in the vertical and the horizontal.

Our investigation begins with three-dimensional Direct Numerical Simulations (DNS) of
the fastest growing mode of linear theory (Holyer, 1983). The purpose of these DNS is to
investigate the equilibration mechanism and to estimate the average horizontal and vertical
heat and salt fluxes and their dependence on the horizontal gradients. For the DNS, we use a
tilted computational box (Simeonov and Stern, 2008) whose vertical size and slope are given
by Holyer’s (1983) linear theory. In a preliminary comparison of the 2D and 3D simulations,
we found significant qualitative and quantitative difference resulting from the absence of
salt fingers in the 2D simulations. Such difference is consistent with our previous work
(Stern and Simeonov, 2005b) where we found that strong shear can completely suppress
two-dimensional fingers, while the corresponding 3D finger flux remains finite because
fingers independent of the downstream direction are not affected by the shear (see also
Kimura and Smyth, 2007). Linden (1974) showed that in the presence of shear, the finger
variation in the downstream direction is suppressed due to progressive tilting of the vertical
finger flow by the shear.

Three-dimensional DNS for wavelengths longer than the fastest growing one would be
prohibitively expensive because of increased domain size and much slower growth rates.
Furthermore, the intrusion slope remains fixed in the DNS but may actually evolve in a
large-scale domain. As long as the dynamics of intrusions considered here involves only
salt finger effects, it is possible to model the latter with flux parameterizations and consider
only the evolution of large scales. We have previously used a similar approach in studying
the amplification of gravity waves by salt fingers (Stern and Simeonov, 2002) using a
gradient flux law for salt fingers obtained in the small-domain DNS of Stern et al. (2001).
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Unfortunately, this gradient flux law is not applicable to intrusions because of the presence
of shear and layers in which the vertical gradients remain double-diffusively stable. These
effects will be implicitly included in a new gradient flux law obtained from the DNS for
the fastest growing intrusion. As shown, a parameterized calculation using the new flux law
(Section 3) predicts intrusion amplitudes in excellent agreement with the corresponding
three-dimensional DNS.

In the second part of the present work, we use this new flux law for parameterized
calculations of intrusions in large computational domains which include wavelengths longer
than the fastest growing one (Section 4) and slopes which are free to vary. These calculations
will be used to determine the dependence of the maximum intrusion velocity and the lateral
heat flux on the vertical wavelength and the horizontal gradient (Section 5). In Section 6, the
model results are discussed in relation to intrusion observations associated with Indonesian
Throughflow waters and previous laboratory experiments.

2. DNS for the fastest growing primary intrusion

As in the previous DNS, we assume here lateral temperature T̄x and salinity S̄x gradients
which are density compensated αT̄x = βS̄x < 0, horizontally uniform and unbounded.
The molecular heat diffusivity, KT , and viscosity, ν, are the same as in seawater with a
corresponding Prandtl number Pr ≡ ν/KT = 7. The salt diffusivity KS is such that the
corresponding diffusivity ratio τ ≡ KS/KT = 1/96 is approximately equal to that of
seawater. The assumed normal mode intrusions are plane waves with a slope s relative
to the horizontal; in a tilted computational domain having the same slope these will be
independent of the rotated horizontal axis (ξ).

The governing Navier-Stokes equations are nondimensionalized using the length scale
d ≡ (K2

T /gβ|S̄z|)1/4, time scaled2/KT = (gβ|S̄z|)−1/2 ≡ N−1
S , temperature scaleβ|S̄z|d/α

and salinity scale |S̄z|d; here NS is the buoyancy frequency for the mean salinity gradient.
The velocity scale is KT /d . Typical ocean values of d and d2/KT are respectively 1 cm and
10 min.

Using primes to denote the deviations from the undisturbed basic state, the nondimen-
sionalized equations in the rotated (ξ, y, η) reference frame are:

dv′

dt
+ Pr ∇p′ = Pr Δv′ + (T ′ − S ′)G (1a)

∇ • v′ = 0 (1b)

dT ′

dt
− a − Rs√

1 + s2
u′ − R + as√

1 + s2
w′ = ΔT ′ (1c)

dS ′

dt
− a − s√

1 + s2
u′ − 1 + as√

1 + s2
w′ = τΔS ′, (1d)

d

dt
≡ ∂

∂t
+ u′ ∂

∂ξ
+ v′ ∂

∂y
+ w′ ∂

∂η
, ∇ ≡

(
∂

∂ξ
,

∂

∂y
,

∂

∂η

)
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where in (1c,d) the coefficients in front of u′ and w′ are the undisturbed across-front (ξ)

and vertical (η) temperature and salinity gradients,

G = (−s, 1)(1 + s2)−1/2

is a unit vector antiparallel to gravity, and a ≡ S̄x/S̄z is the isohaline slope.
Assuming periodic boundary conditions in (ξ, y, η), Eqs. (1) will be solved with the

pseudo-spectral Fourier method. The integration in time is performed with a fourth-order
Runge-Kutta scheme (RK-4). The along-intrusion Lξ, and vertical Lη domain sizes are
set equal to the fastest growing intrusion wavelength h∗; the spanwise domain size Ly is
0.5 h∗. The calculations presented below are for R = −5, Pr = 7 and τ = 1/96. For
these parameters Holyer’s (1983) linear theory gives for the largest growth rate and the
corresponding vertical wavelength and slope:

λ = 0.0517a, h∗ = 17.3a−1/2, s = 0.145a. (2)

The intrusion equilibration is illustrated here with a calculation for a = 0.05 and h∗ =
77.4 (2). The assumed Lξ = Lη = 2Ly = 77.4 domain is resolved on a grid with 256 ×
128 × 256 nodes, having a uniform grid step Δx = Δy = Δz = 0.302; the time step was
Δt = 0.02. The calculation was initialized with the normal mode intrusion

[u′(η), T
′
, S

′] = [U0, T0, S0] sin(2πη/h∗) (3)

where for U0 = 0.5, T0 = 4.7 and S0 = 8.1 are determined from the linear theory solution.
The domain averaged horizontal heat flux 〈√(u′ + sw′)T ′〉 (Fig. 2a, thick gray) shows

that the exponential intrusion amplification stops at t = 500 when salt fingers (not shown)
first develop within the salinity inversions (Fig. 3b) near the top/bottom of the computational
domain. After the intrusion growth is interrupted by salt fingers, the horizontal heat flux
(Fig. 2a) and the maximum lateral velocity Umax ≡ max[√u′(η)] (Fig. 2b) continue to
oscillate around their respective equilibrium values 〈√(u′ + sw′)T ′〉 = 13.1 ± 4.4 and
Umax = 1.68 ± 0.3 (averaged over 600 ≤ t ≤ 1500). The initial fingers are laminar, grow
exponentially and produce large vertical fluxes of heat and salt which cause a reduction of the
intrusion salinity anomaly (Fig. 3b, profile 15). The fingers then become disorganized with
smaller vertical fluxes (Stern and Simeonov, 2005a) which are strong enough to produce
well-mixed layers in salinity (Fig. 3b) but not in temperature (Fig. 3a) and density (Fig. 3c).
As a result of the weak mixing, no thin interfaces develop as found previously in DNS for
stable salinity gradient “heated from below” or finger favorable gradients (Simeonov and
Stern, 2007, 2008). The horizontally-averaged vertical density (Fig. 3c) is nearly unchanged
from its undisturbed value and the quasi-equilibrium state essentially consists of a thick
doubly-stable central region separated by finger-favorable salinity inversions with an overall
density ratio Rf = 20. The relatively weak fingers corresponding to this density ratio are

shown in Figure 4 using two surfaces of constant perturbation salinity S ′(ξ, y, η)−S
′
(η) =
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Figure 2. The lateral heat flux (a) and the maximum lateral velocity (b) in the main DNS for τ = 1/96,
a = 0.05 and Lξ = Lη = 2Ly = h∗; this run (thick solid gray) ends at t = 1600. The effect of
domain size is illustrated in (a) and (b) with two additional simulations for Lξ = Lη = Ly = h∗
(dashed) and 4Lξ = Lη = Ly = h∗ (solid) domains. Also shown in (b) is the vertical heat flux
(dark gray dashes) for the 4Lξ = Lη = Ly = h∗ run. c) The buoyancy work (dashed) and the
viscous dissipation (solid) for the main run (thick lines) and the 4 Lξ = Lη = Ly = h∗ run (thin
lines).

±2. The cross-section of the fingers at the top of the computational box (Fig. 4) shows long
streaks stretched along the ξ axis, suggesting that the preferred form of sheared fingers is
that of salt sheets, previously observed in the laboratory by Linden (1974).

Figure 4 shows that there are about 4–5 finger pairs in the y-direction. To check the effect
of the number of fingers on the intrusion amplitude we next repeat the above calculation in
a computational box with twice larger width Ly = h∗. The calculation is initialized with
the data from the main run at t = 1100, extended periodically in the y-direction, and some
random noise. The respective lateral heat flux (Fig. 2a dashed) and Umax (Fig. 2b dashed)
are indistinguishable from those of the Ly = h∗/2 run for 1100 ≤ t ≤ 1500. Thus, a
couple of salt finger pairs in the y-direction appear to be sufficient in modeling this type of
finite amplitude intrusions. Because the preferred finger form consists of salt sheets aligned



2011] Simeonov: Double-diffusive mixing 803

Figure 3. A time sequence of vertical profiles of the mean temperature (a), salinity (b) and density
(c) for the primary calculation in Figure 2. The time interval between profiles is 40 time units and
the horizontal offset between profiles is 50. After the salinity inversion (the salt finger layer) forms
it persist until the end of the calculation.

with the flow, it is plausible that some reduction of the ξ-domain size will not affect the
equilibrium intrusion amplitude. This is shown by the run with Lξ = h∗/4 (Fig. 2a,b solid
line) where the equilibrium Umax = 1.86 ± 0.13 and 〈√(u′ + sw′)T ′〉 = 16.1 ± 1.9 imply
an amplitude that is only about 10% larger.

The terms in the equation for the rate of change of the mean kinetic energy u′2/2 (Fig. 2c)
suggest that an approximate balance between buoyancy production s〈(T ′ − S

′
)u′〉 (dashed)
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Figure 4. A volumetric plot of two surfaces of constant perturbation salinity S′(ξ, y, η)−S
′
(η) = ±2

at t = 1512; the positive/negative isohaline surface is shown in yellow/blue. To emphasize the
small-scale, the large amplitude signal of the mean intrusion S

′
(η) is removed. A color scheme,

using red/dark blue for high/low salinity shows “interior” salinity variation where the two isohaline
surfaces intersect the domain sides.

and viscous dissipation Pr〈(∂u′/∂η)2〉 (solid) exists from the beginning of the calculation.
Compared to these terms, the Reynolds stress work (not shown) is three orders of magnitude
smaller and the small difference between buoyancy production and viscous dissipation in
Figure 2c is essentially the small rate of change of u′2/2. The buoyancy-viscous balance
implies that the magnitude of Umax is controlled by the intrusion buoyancy anomaly. This
should be contrasted with Simeonov and Stern (2007) where the intrusion momentum was
strongly damped by Reynolds stresses after the onset of double-diffusively driven mixed
layer convection.
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Figure 5. The vertical buoyancy fluxes (4) due to molecular diffusion (short dashes), advection of the
basic state (long dashes), salt finger convection (dash-dot) and their sum (thick line) at t = 240 (a)
and time-averaged (1500 ≤ t ≤ 3200, Fig. 2) in the final quasi-steady state (b).

Next, we show that the intrusion T − S amplitude equilibrates because the salt fingers
tend to oppose the buoyancy anomalies produced by molecular diffusion. The effect of the
salt fingers can be illustrated using the equation for the rate of change of the horizontally
averaged density perturbation:

∂ρ′

∂t
= ∂

∂η

[
∂(τS

′ − T
′
)

∂η
+ w′(T ′ − S ′) + s(1 − R)Ψ

′
]

, (4)

where ∂Ψ
′

∂η
≡ −u′. In Eq. (4), the first term is the molecular diffusion, the second is the

salt finger flux and the third one is the displacement of the undisturbed density gradient by
the intrusion. These terms are shown in Figure 5 for an early time corresponding to linear
growth (left panel) and for the final equilibrium (right panel). During the linear growth
t = 240 the buoyancy fluxes are dominated by molecular diffusion (Fig. 5a, short dashes)
and this produces the buoyancy anomalies that drive the intrusion; at this time there are no
salt fingers and w′(T ′ − S ′) = 0. In the final state, the salt fingers and the s(1 − R)Ψ

′
term
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Table 1. The maximum nondimensional lateral velocity Umax and the corresponding horizontal heat
flux 〈(u′ + sw′)T ′〉 in three-dimensional DNS for R = −5, τ = 1/96 and different a ≡ S̄x/S̄z

with their corresponding vertical domain size Lη and grid size; approximately the same grid step
(about 10% variation) is used in all runs. Two of the a = 0.02 runs use slope smaller than the
fastest growing one.

a ≡ S̄x/S̄z s Lη Umax 〈(u′ + sw′)T ′〉 Ri0 Grid size

0.05 0.145a 77.4 1.86 16.1 740 64 × 128 × 256

0.02 0.145a 122.3 3.0 38.5 693 128 × 128 × 384

0.02 0.120a 122.3 2.9 32.4 638 128 × 128 × 384

0.02 0.090a 122.3 2.6 22.8 693 128 × 128 × 384

0.01 0.145a 173 4.1 87 831 128 × 128 × 512

result in a complete cancellation of the molecular buoyancy flux divergence so that the total
flux divergence is approximately zero (Fig. 5b, solid).

Some comments are due concerning the heat flux and velocity oscillations in Figure 2a,b.
These oscillations do not seem to result from the interaction of salt fingers with the internal
gravity wave having the same slope as the computational domain (cf. Stern and Simeonov,
2002) as the period of the oscillations changes in time. Furthermore, the buoyancy and
velocity oscillations are clearly in-phase (Fig. 2a,b). Figure 2b also shows that there is a
time lag of about 100 time units between the maximum finger fluxes (dark grey dashes)
and the intrusion amplitude (thin solid). We suggests that this time lag is the result of the
finite time it takes the salt finger flux to adjust to changes in the intrusion amplitude (and
vertical gradients). Such an effect will be absent in the parameterized simulations where
the finger flux adjusts instantaneously to changes in the vertical gradients; it will be shown
that the absence of the oscillations in the parameterized simulations does not affect the
time-averaged intrusion amplitude (Section 3b).

For the purpose of developing a parameterization of salt fingers in the intrusions consid-
ered here, several additional DNS (Table 1) for smaller values a = 0.02, 0.01, as well as
slopes smaller than the fastest growing one, were also made. (It is expected that larger-scale
secondary instabilities will have a bias towards smaller slopes.) Having shown (Fig. 2) that
the intrusion equilibration can be modeled with Lξ and Ly smaller than h∗, the a = 0.02
and a = 0.01 runs use respectively 3Lξ = Lη = 3Ly = h∗ and 4Lξ = Lη = 4Ly = h∗
computational domains; the corresponding grid sizes given in the Table 1 greatly reduce
the computational requirements. The DNS results for the fastest growing slope s = 0.145a

(Fig. 6, ©) also suggest the following linear dependence relating Umax to the intrusion
thickness Lη:

Umax = 0.024Lη. (5)

This dependence of Umax on Lη will be compared below with the results of the nonlinear
parameterized calculations obtained in Section 5.



2011] Simeonov: Double-diffusive mixing 807

Figure 6. The maximum lateral velocity (©) for the DNS in Table 1 as a function of the layer
thickness. The straight line is a linear fit passing through the origin and having a slope of 0.024.
Also shown is the maximum lateral velocity (Σ) of the fastest growing secondary instability modes
for a = 0.05, 0.02 and 0.01 obtained with parameterized calculations in Section 5.

3. A model for the fastest growing primary intrusion with parameterized salt
finger fluxes

a. Gradient flux law for salt fingers in intrusions for R = −5

Here, the DNS from the previous section are used to obtain a parameterization for salt
fingers which are influenced by the intrusion shear and are limited to a region of finite
depth. The nondimensionalization in Section 2 implies the following parametrization for
the nondimensional vertical heat FH and salt FS fluxes:

FH = −Nu(T̄ ′
η − R), (6a)

FS = FH /γ, (6b)

where the Nusselt number Nu and the salt finger flux ratio γ will be obtained from the DNS
in Table 1. The Nusselt number and the flux ratio are computed as horizontal/time averages
from the final quasi-steady state:

Nu = − (w′ − su′)T ′ + su′T ′

T̄ ′
η − R

. (6c)

γ = (w′ − su′)T ′ + su′T ′

(w′ − su′)S ′ + su′S ′ . (6d)
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Figure 7. The local Nusselt number Nu (a) and flux ratio γ (b) as a function of the local density ratio
in the intrusion DNS (Table 1). The solid line in (a) is Nu = 3.5R−1. The plot excludes the central
region where the finger flux is zero (Fig. 5b, dash-dot) and the density ratio is negative. The R−1

fit in (a) gives more weight to the slope of Nu(R) at low R.

Note that in (6c,d) the vertical intrusion heat flux −su′T ′
is removed from the total vertical

flux (w′ − su′)T ′; the same procedure was used for the vertical salt flux in (6d). The Nusselt
number and the flux ratio are plotted on Figures 7a,b as a function of the horizontally/time
averaged local density ratio:

R′(η) = T̄ ′
η − R

S̄ ′
η − 1

. (7a)
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The Richardson number Ri0 based on the maximum shear in the finger layer (at η = 0) and
the basic state density gradient

Ri0 = (1 − R)[
u′

η(η = 0)
]2 (7b)

given in Table 1 shows that the shear acting on the salt fingers is quite weak.
Nevertheless, the weak fingers at R′ = 20 are strongly affected by this shear as their Nu =

0.14 is an order of magnitude smaller than the corresponding Nu = 1.06 exp(5.62/R′) for
fingers in the absence of shear (Stern et al., 2001). The reduction of the finger flux with
shear is consistent with previous laboratory and numerical experiments (Fernandes and
Krishnamurti, 2010; Kimura et al., 2011; Stern and Simeonov, 2005b).

Motivated by the numerical reasons discussed below, we propose the following functions
to fit the numerical data on Figure 7:

Nu = 3.5/R′, γ = 0.45; (8)

although these are not explicit functions of the Richardson number the effect of shear is
implicit in the numerical constants in (8). We note that the above R−1 fit is not chosen
to minimize least square errors but the errors in the slope of Nu(R) at low R. This slope
is what produces the vertical divergence of the salt finger flux that is responsible for the
intrusion equilibration and, therefore, is the main feature of interest here. From (6a), (7a)
and (8) we obtain the following very simple formula for the heat flux:

FH =
{−3.5

(
S ′

η − 1
)

where S ′
η ≥ 1

0 where S ′
η < 1

(9)

which is valid for all x and z. The discontinuity at S ′
η = 1 will be smoothed with a 2nd

order finite-difference de-aliasing filter (Lele, 1992), which suppresses variations at the grid
scale 2Δz. We note that instead of the piece-wise continuous formula (9) it is also possible
to use exponential function fits Nu(R) which smoothly extend FH for all values of x and z

(including the salinity interface region characterized with negative R). Although this may
be attractive for analytical calculations, it is not suitable for spectral simulations where the
intrinsic nonlinearity of the exponential function magnifies short wave variations in the flux
that lead to numerical instabilities. Less severe, but similar numerical problems are also
caused by power fits Nu(R) with large exponents.

b. Comparison with DNS

To test the proposed flux formulas (9, 6b), here we compare the results of a parameterized
calculation for a = 0.05 with the corresponding DNS (Section 2). The governing equations
are the two-dimensional (x, z) Eqs. (1) in a nonrotated reference frame (s = 0), further
modified by adding the vertical divergence of the salt finger fluxes ∂FH /∂z and ∂FS/∂z,
respectively, to the l.h.s. of Eqs. (1c, d):
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Figure 8. The lateral heat flux as a function of time in the parameterized run for R = −5, a = 0.05
(light) compared with the corresponding DNS heat flux (dark, also Fig. 2).

dv′

dt
+ Pr ∇p′ = Pr Δv′ + (T ′ − S ′)G (10a)

∇ • v′ = 0

dT ′

dt
− au′ − Rw′ = ΔT ′ − ∂FH

∂z
(10b)

dS ′

dt
− au′ − w′ = τΔS ′ − ∂FS

∂z
. (10c)

The effect of the very small salt finger Reynolds stress (Section 2a) is omitted in (10a). In
(10a) there is no turbulent eddy viscosity (cf Mueller et al., 2007) which is acceptable as
long as the intrusion shear/density profiles remain stable with respect to shear/gravitational
instabilities.

The same Fourier spectral method is used to solve the equations numerically. The salt
finger terms are obtained from (9,6b) by first computing the fluxes in the physical space
and then evaluating the vertical derivatives spectrally. The domain length and height are
h∗/s = 10676 and h∗ = 77.4, respectively, essentially resolving one horizontal and vertical
wavelength of the fastest growing intrusion. The computational grid had 64 grid nodes in
both x and z, resulting in grid steps of Δx = 166.7 and Δz = 1.21. In the presented
calculation a time step Δt = 0.1 is used. The calculation was initialized with the normal
mode (3) with amplitude U0 = 0.5.

The lateral heat flux in Figure 8 (light) shows that at this relatively large amplitude the
intrusion grows much slower than both the DNS and linear theory prediction. In preliminary
test with smaller initial amplitude, however, the intrusion grew at a rate very close to
the linear theory one. Another difference from the DNS is the absence of the nonlinear
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Figure 9. Comparison of profiles of total temperature (a), salinity (b), salt finger heat flux (c) and
salt flux (d) in the final quasi-steady state of the 3D DNS (solid line) and the corresponding
parameterized calculation (“�”) for R = −5, a = 0.05. The DNS profiles are horizontal/time
averages. The profiles of the parameterized run are from the end of the calculation at x = 0.

oscillations. Nevertheless, Figure 8 shows that over a comparable time interval the intrusion
in the parameterized calculations reaches a steady state with a heat flux 〈u′T ′〉 = 15.2 which
differ by no more than 10% from that in the DNS (Table 1); the corresponding maximum
lateral velocity Umax = 1.81 is also comparable to the DNS. The predicted profiles (Fig. 9,
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“�”) of mean temperature and salinity and small-scale fluxes of heat and salt agree closely
with those in the DNS (Fig. 9 solid line). As a final test, two additional runs were made for the
fastest growing intrusions corresponding to a = 0.02 and 0.01; we use the same number of
grid points as before but the time steps were Δt = 0.2 and Δt = 0.5 for a = 0.02 and 0.01,
respectively. The respective equilibrium heat flux and lateral velocity were 〈u′T ′〉 = 37.9
and Umax = 2.87 for a = 0.02, and 〈u′T ′〉 = 75.9 and Umax = 4.05 for a = 0.01. These
also agree closely with the DNS results in Table 1. The overall good agreement suggests
that the chosen parameterization (Section 3a) may be useful in obtaining realistic estimates
of the amplitude of intrusion scales larger than the fastest growing one (Section 5). Before
turning to the question of finite amplitude, we first investigate the stability of the steady
state solution obtained in this section.

4. The secondary instability of the equilibrium steady-state primary intrusion.

Previous DNS (Simeonov and Stern, 2008) suggest that the quasi-equilibrium solutions
for the primary intrusion are subject to subharmonic instabilities which give rise to longer
vertical wavelengths. Due to the inherent limitation of the tilted box DNS, in Simeonov
and Stern (2008) the slope of the secondary modes was forced to be the same as that
of the fastest growing intrusion. The slope of the fastest growing secondary instability,
however, may differ from that of the primary intrusion. Since it is not computationally
feasible to include explicitly the horizontal intrusion scales in a DNS we will investigate
the subharmonic instabilities with the parameterized model developed in Section 3. The
goal of this section is to get some guidance in selecting appropriate domain sizes for the
nonlinear calculations in Section 5; the assumption is that in a larger domain the solution
will be dominated by the fastest growing secondary instability. Therefore, here we are not
interested in a detailed linear theory study of the secondary instability but only in a rough
estimate of the horizontal and vertical wavelength of the fastest growing secondary mode.

Because of the model implementation which involves numerical smoothing of the flux
FH , a piece-wise linear function of S̄ ′

z, it is not possible to explicitly linearize this term in
(10). Furthermore, the basic steady-state (Fig. 9) is not a monochromatic plane wave and
the normal mode of its subharmonic instability would be composed of a large number of
Fourier modes. Due to the advective product terms in (10) a linearized calculation would
be as computationally expensive as a fully nonlinear one. We will, therefore, not use the
traditional method where Eqs. (10) are linearized about the basic state, but the power iteration
method which allows us to compute the fastest growing mode directly from the nonlinear
equations. In this method, a small random noise perturbation of given initial amplitude is
added to the steady-state solution and the nonlinear equations are integrated for a short
period of time so that the perturbation amplitude remains small (preferably less than a few
% relative amplitude) compared to that of the steady-state solution. The perturbation is
then renormalized back to its initial amplitude and the equations are integrated again. After
many iterations of this step only the fastest growing perturbation survives the recurrent
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Table 2. The growth rate of the dominant secondary instability mode for a = 0.05 in computational
domains with given Lz and Lx . Note, that a mode with horizontal and vertical wavelength Lx and
Lz is not the dominant one when its harmonics grow faster. The table indicates that mode 14 × 3
is the fastest growing mode.

Lz Lx Growth rate

2 h∗ 2 h∗/s σ2×2 = 1.42 × 10−3

3 h∗/s σ3×2 = 1.48 × 10−3

4 h∗/s σ4×2 = 1.54 × 10−3

5 h∗/s σ5×2 = 1.55 × 10−3

6 h∗/s σ6×2 = 1.54 × 10−3

8 h∗/s σ8×2 = 1.48 × 10−3

3 h∗ 2 h∗/s σ2×3 = 1.05 × 10−3

4 h∗/s σ4×3 = 1.22 × 10−3

8 h∗/s σ8×3 = 1.55 × 10−3

12 h∗/s σ12×3 = 1.64 × 10−3

14 h∗/s σ14×3 = 1.65 × 10−3

16 h∗/s σ16×3 = 1.63 × 10−3

20 h∗/s σ10×3 = 1.61 × 10−3

4 h∗ 4 h∗/s σ4×2 = 1.54 × 10−3

12 h∗/s σ6×2(σ4×2) = 1.54 × 10−3

16 h∗/s σ5 1
3 ×2 = 1.55 × 10−3

20 h∗/s σ5×2 = 1.55 × 10−3

24 h∗/s σ4 4
5 ×2 = 1.54 × 10−3

amplitude reduction. Note that in a normal mode the amplitudes of temperature, salinity
and velocity are not independent; thus, the perturbation T , S and v must be reduced by
the same factor during renormalization. In our implementation we renormalize using the
temperature amplitude.

In the following we consider only periodic modes having x- and z-wavelengths of mh∗/s
and nh∗ with integer m and n; such modes will be denoted as m × n. When mode m × n

grows faster than all other modes with shorter wavelengths its spatial structure and growth
rate can be obtained with the power iteration method in a computational domain having
Lx = mh∗/s and Lz = nh∗; this will usually be the case if we consider the band of
wavelengths shorter than that of maximum growth. Thus, the maximum growth rate will be
determined by applying the power iteration to successively larger domains, beginning with
the smallest one having Lx = 2h∗/s and Lz = 2h∗. It should be mentioned that modes
with noninteger m and n are also valid solutions but will not be considered (explicitly) since
they require much larger computational domains; for example, the mode with m = 5 1

3 will
appear as the third harmonics in a computational domain with Lx = 16h∗/s.

The results of our power iteration calculations for the secondary instability of the a = 0.05
primary intrusion are shown in Table 2. Mode 5 × 2 grows the fastest among all modes
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with n = 2 (Table 2, fourth row) and has a growth rate σ5×2 = 0.155 × 10−2, which
is only two times smaller than the growth rate λ of the corresponding primary intrusion
(2). The temperature and velocity distribution of mode 5 × 2 (Fig. 10a,c) consist of a
sequence of elongated closed cells with local slope equal to that of the primary intrusion.
The corresponding salinity field (Fig. 10b) has large-gradient interfaces which also line
up with the salinity interfaces of the primary mode (Fig. 10, gray lines). The closed cells
form a frontal line with slope equal to sn/m. The number of cells depends on the ratio of
m and n and is zero (plane wave) when m = n. These cellular modes are similar to the
secondary instability modes considered by Kerr (1992) and Walsh and Carmack (2003),
and can generally be expected when the horizontal gradients vary (Niino, 1986); in our case
the horizontal gradients are modified by the finite amplitude primary intrusion.

Note, that mode 8 × 2 in Table 2 has a growth rate smaller than that of mode 4 × 2
which is also resolved in the computational domain with Lx = 8h∗/s and Lz = 2h∗.
To determine the growth rate of mode 8 × 2 with power iteration it was necessary to
periodically remove the two projections of the perturbation on mode 4 × 2; in this domain
there are two independent modes 4 × 2 with a horizontal phase difference of 1h∗/s. The
number of projections increases rapidly with the domain size and this procedure will not be
used for the rest of the calculations in Table 2 where the mode with wavelengths Lx and Lz

grows slower than its harmonics; in such cases, we give in the table the growth rate of the
harmonics. Since we are interested only in the maximum growth rate we can stop our search
when upon further increase of the domain size we have only dominant harmonic modes.
Table 2 shows that the latter occurs for Lz > 3h∗ and implies that the fastest growing
secondary instability is approximately represented by mode 14 × 3.

We have made similar power iteration calculations for a = 0.02 and a = 0.01 (not
shown) where we again find that mode 14 × 3 is the fastest growing secondary instability
mode. Figure 11 shows that the growth rate of this mode is a linear function of a:

σ14×3 = 0.033a (11a)

like the growth rate of the primary instability (2). Likewise, the vertical wavelength h14×3

and the slope s14×3 of the fastest growing secondary mode have the same dependence on a

as the primary instability (2):

h14×3 = 51.9a−1/2; s14×3 = 0.031a, (11b)

but the slope is 4–5 times smaller than that of the primary intrusion. These results will be
used for the nonlinear calculations in the following section.

5. Nonlinear calculations for the fastest growing secondary mode

Here, we will estimate the equilibrium heat flux and maximum lateral velocity of the
fastest growing secondary instability mode with parameterized calculations for three dif-
ferent values of a = 0.05, 0.02 and 0.01. Accordingly, we use a computational box with
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Figure 10. Temperature (a), salinity (b) and velocity (c) of the secondary instability mode for a = 0.05
obtained with the power iteration in a domain having Lx = 5h∗/s and Lz = 2h∗. Also shown in
(a) and (b) are the temperature and salinity of the primary intrusion; positive values are solid gray
lines, negative values are dashed gray and the zero is gray dots. The horizontal scale is decreased
by a factor of 131.
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Figure 11. The growth rate (©) of the fastest growing secondary mode 14 × 3 for three different
a = 0.05, 0.02 and 0.01. The solid line is the linear fit in Eq. (11a).

Lx = h14×3/s14×3 and Lz = h14×3, and the same grid steps and time steps as in Section 3b.
The initial condition for T , S, u and w consisted of the steady-state equilibrium primary
mode of Section 3b and the corresponding fastest growing secondary instability mode of
Section 4; the latter had an rms temperature amplitude equal to 0.3.

The finite amplitude evolution of the secondary instability for a = 0.05 is illustrated by
three snapshots of the temperature field (Fig. 12), and by the averaged horizontal heat flux
(Fig. 13a) and the terms in the equation for the rate of change of the total kinetic energy
(Fig. 13b). Figure 13b shows that the intrusion remains in a close balance between buoyancy
work and viscous energy dissipation during the entire simulation. This suggests that the
secondary mode amplification and subsequent equilibration is controlled by the evolution
of the buoyancy perturbation (discussed below). For the initial period 0 < t < 2500 (Fig.
13a) the perturbation amplifies exponentially with the same growth rate (to three significant
digits) as that predicted by (11a). At t = 2000 (Fig. 12b) the secondary mode is already
apparent in the numerical solution and has an amplitude which is about two times larger
than that of the solution at t = 0 (Fig. 12a). After t = 3000 (Fig. 13) the solution grows
approximately linearly at much slower rate and the closed cells begin to merge so that at time
t = 5000 (Fig. 12c) the solution is already a simple plane wave with slope equal to s14×3;
this simple plane wave solution persists until the end of the simulation. At t = 7000 the heat
flux begins to equilibrate at 〈u′T ′〉 = 567.7 (Fig. 13a) which is an order of magnitude larger
than that of the primary mode. A mild density inversion develops for t > 7000 just below
and above the main density interface (Fig. 14a) and gives rise to very weak overturning
instabilities which manifest as short x-wavelength noise. The noise has a negligible effect
on the time-averaged large-scale solution (Fig. 14a,b black) which is essentially the same
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Figure 12. The perturbation temperature at three different times t = 0 (a), t = 2000 (b) and t =
5000 (c) showing the finite-amplitude evolution of the secondary instability mode in a nonlinear
simulation for a = 0.05.

as the instantaneous solution at t = 7000 (Fig. 14a,b gray) when the noise is absent. The
maximum lateral velocity of the final steady-state solution Umax = 8.2 (Fig. 14b) is about
five times larger than the maximum velocity of the corresponding primary intrusion in
Section 3b. Unlike the primary mode in Figure 9, the equilibrium subharmonic mode has a
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Figure 13. (a) The lateral heat flux as a function of time in the parameterized nonlinear calculation
for the fastest growing secondary mode for a = 0.05. (b) The corresponding terms in the equation
for the rate of change of the total kinetic energy; the Reynolds stress term (not shown) is essentially
zero and the primary balance is between viscous dissipation and buoyancy work.

Figure 14. Profiles of total density (a) and lateral velocity (b) at x = 0 for t = 7000 (gray) and
time-averaged for 8000 < t < 16000 (black) for the secondary mode nonlinear calculation in
Figure 13. (c) Temperature (black) and salinity (gray) profiles in the final steady state consist of a
stable (salinity) interface surrounded by a salt finger favorable salinity inversions. The large salinity
gradients and small temperature gradients are qualitatively similar to the observations (Fig. 1).
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Figure 15. Profiles of the vertical buoyancy fluxes (4) due to molecular diffusion (short dashes),
advection of the basic state (long dashes), salt finger convection (dash-dot) and their sum (thick
line) at t = 2000 (a) and t = 9000 (b) for the secondary mode nonlinear calculation in Figure 13.

stronger salinity inversion in the salt-finger layer and a weak temperature inversion centered
on the salinity interface (Fig. 14c).

To further elucidate the nonlinear evolution of the primary mode and the equilibration of
the secondary mode we consider the buoyancy flux terms in the equation for the laterally
averaged density perturbation (4). Vertical profiles of these terms are shown for an earlier
time t = 2000 (Fig. 15a) when the solution is still dominated by the primary mode and
a later time t = 9000 (Fig. 15b) when the secondary mode has equilibrated. Figure 15a
shows that at t = 2000 the total buoyancy flux varies on the scale of the secondary mode
although the individual flux components vary on the vertical scale of the primary intrusion.
The amplification of the secondary mode (and the decay of the primary one) result from this
particular distribution of the total buoyancy flux. As the primary mode decays, the vertical
variation of the individual flux components changes accordingly (Fig. 15b) to reflect the
length scale of the secondary intrusion. In the final steady state, the buoyancy production
equilibrates again due to an approximate balance of the opposing molecular and salt finger
fluxes (Fig. 15b). Compared to the initial salt finger flux (Fig. 15a) the flux in the final
steady state is eight times stronger because the density ratio in the salt finger layer R = 3.9
is much smaller.
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Table 3. The maximum nondimensional lateral velocity Umax and the horizontal heat flux 〈u′T ′〉 of
the fastest growing subharmonic mode for different a ≡ S̄x/S̄z. Also given is the corresponding
vertical domain size Lz. In all three calculations the Richardson number (7b) is Ri0 = 167.7 and
the density ratio in the salt finger layer is about 3.9.

a ≡ S̄x/S̄z Lz Umax 〈u′T ′〉
0.05 232.2 8.2 567.7

0.02 366.9 13.0 1419.2

0.01 519 18.3 2838.4

We made two similar calculations for a = 0.02 and a = 0.01, and the equilibrium
intrusion heat flux and the maximum lateral velocity for these are given in Table 3. Figure 6
(Σ) shows that the subharmonic mode considered here also has Umax that increases linearly
with the vertical wavelength:

Umax = 0.035h14×3; (12a)

but the coefficient is about 50% larger than that for the primary intrusion (5). This differs
from Simeonov and Stern (2008) where the velocity dependence on the vertical wavelength
was approximately the same for the primary and the subharmonic modes. The discrepancy
is probably due to the assumption in Simeonov and Stern (2008) that the slope of the
subharmonic modes is equal to that of the primary intrusion. Table 3 also suggest the
following inverse dependence of the heat flux of the subharmonic mode on a

〈u′T ′〉 = 28/a; (12b)

this can be explained with simple dimensional arguments (Merryfield, 2000). An interesting
fact obtained with these parameterized calculations is that the density ratio in the salt finger
layer R = 3.9 and the Richardson number (7b) Ri0 = 167.7 does not change with a. The
density ratio and the Richardson number, however, are several times smaller than R = 20
and Ri0 = 791 in the corresponding primary intrusion.

It is very plausible that the secondary equilibrium modes (plane waves) obtained here are
themselves subject to subharmonic instability yielding even larger vertical and horizontal
scales. Using the finite amplitude calculations for all wavelengths then one can obtain the
dependence of the heat flux on the vertical scale with empirical coefficients that depend on
a (cf. Simeonov and Stern, 2008). Preliminary simulations for longer vertical wavelengths
suggest much stronger overturning instabilities and the associated mixing must be included
in the parameterization of the small-scale fluxes (see for example Mueller et al., 2007). These
parameterizations must take into consideration the interaction of gravitational, salt finger
and shear instabilities and would require further extensive DNS modeling. The development
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Figure 16. The lateral flux (a) as a function of the vertical wavelength Lz for different a; the solid
lines are the cubic fits (13a). (b) The heat flux coefficient B as a function of a; the solid line is given
by Eq. (13b).

of parameterizations appropriate for scales larger than the secondary modes considered
here is beyond the scope of the present paper. In this paper, we use only the results for
the fastest growing (Section 3b) and the secondary (this section) modes to determine a
tentative dependence of the heat flux on the vertical scale. This is shown in Figure 16a,
where the heat flux for different a is fitted by an ad-hoc cubic function of the vertical
wavelength Lz:

〈u′T ′〉 = B(a)L3
z. (13a)
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The coefficient B(a) shown in Figure 16b appears to vary as the square root of a:

B(a) = 2.2 × 10−4a
1
2 . (13b)

6. Discussion

We have considered here finite-amplitude intrusions in double-diffusively stable verti-
cal gradients such as those characterizing the front between the Indonesian Throughflow
and Indian Ocean thermocline waters (Fig. 1). The finite amplitude evolution of the fastest
growing intrusion of linear theory (Holyer, 1983) was studied with three-dimensional DNS
which do not resolve explicitly the horizontal intrusion wavelength. The DNS showed that
the molecularly-driven intrusions amplify until the modification of the vertical gradients
results in the formation of salinity inversions that can support salt finger fluxes; the pre-
dicted fingers were not strong enough to drive mixed-layer convection. It was found that the
intrusion momentum remains in approximate buoyancy-viscous balance where the Reynolds
stress work is negligible. This is consistent with Simeonov and Stern (2007) which show
that a strong mixed layer convection is necessary for any significant Reynold stress effects.
Because we study inifinitely wide fronts here, we do not expect Reynolds stress effects
observed in finite width laboratory fronts (Krishnamurti, 2006). The present DNS also
showed that the intrusions equilibrate because the salt fingers oppose the buoyancy anoma-
lies produced by molecular diffusion. In addition to estimating the equilibrium intrusions
amplitude we also used the DNS to obtain a new parameterization of salt finger fluxes for a
limited range of shear and variable vertical gradients. In agreement with previous studies of
the effect of shear on salt fingers (Fernandes and Krishnamurti, 2010; Kimura et al., 2011)
the new parameterization (8) predicts fluxes smaller than those in the absence of shear.
The parameterization was tested in a two-dimensional calculation in which the horizontal
intrusion wavelength is resolved explicitly; the predictions for a = (0.05, 0.02, 0.01) were
in good agreement with the corresponding DNS of Table 1.

Parameterized calculations were next used to investigate the subharmonic instability of
the equilibrium primary intrusion. “Linearized” calculations for three different values of a

(Section 4) showed that the fastest growing subharmonic mode has horizontal and vertical
wavelengths which are respectively fourteen times and three times larger than those of the
corresponding primary intrusion. The temperature and velocity spatial distribution of this
mode consist of closed cells contained in a “carrier” plane-wave with a slope that is 3/14 of
the slope of the primary mode. Parameterized calculations for the finite amplitude evolution
of the fastest growing subharmonic mode (Section 5) showed that at large amplitude the
latter is less influenced by the primary mode and becomes a pure plane wave. The subsequent
equilibration of this larger-scale plane wave is similar to that of the primary mode and results
mainly from salt finger buoyancy flux opposing the molecular one and buoyancy-viscous
momentum balance.
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The finite amplitude parameterized calculations were used to determine the dependence of
maximum lateral velocity and the heat flux on the vertical wavelength. Denoting dimensional
quantities with an asterisk, Eqs. (12a) and (13a,b) become:

U∗
max = 0.014Nh∗

14×3, (14a)

F ∗ = 2.2 × 10−4ρCpa
1
2

(
L∗

z

d

)3
KT β|S̄z|

α
, (14b)

where N = Ns

√
1 − R is the buoyancy frequency due to the total density gradient. Note

that the thickness in (14b) is arbitrary while that in (14a) corresponds to the fastest grow-
ing secondary mode. Assuming αT̄x = βS̄x (14b) suggests the following horizontal eddy
diffusivity:

KH ≡ αF ∗

ρCpβ|S̄x |
= 2.2 × 10−4

a
1
2

(
L∗

z

d

)3

KT . (15)

The coefficient in (14a) is about three times larger than that obtained in the laboratory
experiments of Bormans (1992) for R = −1 and Ruddick et al. (1999) for R = 0.6.
Compared to our previous DNS for finger favorable and diffusive stratification (Simeonov
and Stern, 2007, 2008), the coefficient in (14a) is an order of magnitude smaller and suggests
much weaker velocities. The small numerical coefficient in (14a) is a consequence of the
very weak forcing (molecular diffusion) that drives the intrusions considered in this paper.
Ruddick et al. (1999) rationalized the linear law (14a) by invoking a dimensional argument
where the velocity scale is given by Nh and the constant multiplication factor is essentially a
Froude number. While the latter implies a buoyancy-inertia balance, such a balance was not
explicitly used in that paper as the intrusions were considered to be in a state of “continuous
hydrostatic adjustment”. To test the relevance of a buoyancy-inertia balance in the present
experiments, we note that the buoyancy term sρ̄′ driving the lateral velocity (1a) contains
the slope s which is also related to the thickness h, s ∼ h−2, from Eqs. (2) or (11b). Then,
the density scale ρ′ ∼ h (reflecting the presence of salinity inversions) implies a buoyancy
term sρ′ ∼ h−1 such that a buoyancy-inertia balance u′2/h ∼ sρ′ results in a non-constant
Froude number u′/h ∼ h−1. On the other hand, sρ′ ∼ h−1 and the buoyancy-viscous
balance u′/h2 ∼ sρ′ found in the present paper give the desired constant Froude number
dependence u′/h ∼ 1.

It is interesting to discuss our numerical results in relation to the Indian Ocean observa-
tions in Figure 1. We estimate the following horizontal and vertical salinity gradients from
Figure 1 - S̄x = 0.6 PSU/550 km = 10−6 PSU/m and S̄z = 0.2 PSU/200 m = 10−3 PSU/m
which yield a = 10−3 for the gradient ratio. Assuming also β = 10−3 PSU−1 we obtain
d = 0.7 cm. For these parameters the thickness of the fastest growing subharmonic mode
is h∗

14×3 = 11.5 m and the corresponding maximum velocity (14a) is U∗
max = 1.2 mm/s.

Figure 14c also suggests that the salinity interface has a thickness of about 1 meter. For com-
parison, the dominant interleaving scales in Figure 1b (about 30 m) are also characterized
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with thin interfaces having a thickness of a few meters (see for example the 14◦S profile at
75 m depth). Assuming an advection-diffusion balance, the molecular heat flux divergence
across observed interfaces could be used in principle to make an order of magnitude esti-
mate of the intrusion lateral velocity. Unfortunately, the publicly available 2 dbar data in
Figure 1 is too coarse to estimate the molecular fluxes due to several rounds of filtering and
averaging. Assuming intrusion thickness Lz = 30 m (Fig. 1b) and the same parameters as
above, we also estimate from (15) a horizontal eddy diffusivity of KH = 82 m2/s.

Like Simeonov and Stern (2008), the present model does not predict a preferred verti-
cal wavelength. We believe that this results from the assumption of laterally unbounded
gradients. The latter corresponds to infinite available potential energy that can be released
through successively larger scale instabilities. In a finite width front, the maximum hori-
zontal wavelength of a perturbation will be limited by the width of the front. This horizontal
wavelength will be related uniquely to a vertical wavelength of the subharmonic modes. In
this connection, it will be interesting to apply the parameterized model developed here to
study the effect of variable mean gradients on the intrusions. The parameterized model can
also be used to investigate the important effects of planetary rotation and baroclinicity (May
and Kelley, 1997; Smyth, 2008) which are neglected here. Our parameterization is limited
to relatively small intrusion scales where the effect of shear (cf. Radko and Stern, 2011;
Kimura et al., 2011) and overturning instabilities is negligible. Additional Direct Numerical
Simulations will be needed to extend parameterizations to larger scales where the shear and
gravitational instabilities are not negligible.
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