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Linear instability of uniform shear zonal currents
on the β-plane

by Nathan Paldor1, Yona Dvorkin2 and Doron Nof3

ABSTRACT
A unified formulation of the instability of a mean zonal flow with uniform shear is proposed, which

includes both the coupled density front and the coastal current. The unified formulation shows that
the previously found instability of the coupled density front on the f -plane has natural extension to
coastal currents, where the instability exists provided that the net transport of the current is sufficiently
small. This extension of the coupled front instability to coastal currents implies that the instability
originates from the interaction between Inertia-Gravity waves and a vorticity edge wave and not from
the interaction of the two edge waves that exist at the two free streamlines due to the Potential Vorticity
jump there. The present study also extends these instabilities to the β-plane and shows that β slightly
destabilizes the currents by adding instabilities in wavelength ranges that are stable on the f -plane
but has little effect on the growthrates in wavelength ranges that are unstable on the f -plane. An
application of the β-plane instability theory to the generation of rings in the retroflection region of
the Agulhas Current yields a very fast perturbation growth of the scale of 1 day and this fast growth
rate is consistent with the observation that at any given time, as many as 10 Agulhas rings can exist
in this region.

1. Introduction

The study of linear instabilities that develop as small amplitude, wavelike, perturbations
on a mean current is greatly simplified by assuming that the latter is typified by a uniform
lateral shear. In cases where the thickness of the layer of fluid under study vanishes along a
contour (e.g. when the isopycnal that bounds the layer from below, shoals until it intersects
the ocean’s surface along a line commonly referred to as a free streamline) the mean shear has
to equal the Coriolis frequency for the mean potential vorticity to be finite (i.e. nonsingular).
On the f -plane the assumption regarding the uniform shear (that equals f0) leads, via the
geostrophic balance, to a parabolic sea-surface height in the case of a barotropic ocean
(and a parabolic interface depth in the equivalent-barotropic set-up). This physical set-up
described above was studied in the past in two cases (both are depicted in Fig. 1): the
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Figure 1. The coupled density front (a, left) and the coastal current (b, right) with uniform mean
shear. On the f -plane, geostrophy yields a parabolic interface cross-stream variation. In the coastal
current, the flow is uni-directional when the interface slopes monotonically throughout the entire
domain whereas a return flow exists near the coast when the slope changes sign, which occurs
when the slope of the interface at the free streamline is sufficiently small. The elevation of the
sea-surface is greatly exaggerated as it only compensates for the deepening of the interface so as to
yield uniform (hydrostatic) pressure in the lower layer. In both cases the mean width of the current
is L and a free streamline (where the interface intersects the sea-surface) exists at y = 0. In the
case of the coastal current (panel b) the coast bounds the current at y = −L while in the case of
coupled density front (panel a) a second free streamline exists at y = −L.

coupled density front, where the interface that bounds the upper layer intersects the free
surface along two lines (panel (a)), and the coastal current where the mean flow is bounded
on one side by a vertical wall (panel (b)).

An analytic theory of the instability of a coupled density front was proposed by Griffiths
et al. (1982, GKS hereafter), where the theoretical estimations (made up of analytical
calculations for long waves and their numerical extension to short waves) were compared
with laboratory experiments. The original theory of GKS was subsequently extended in
Paldor and Ghil (1990) to the two-layer case, where the dynamics of the lower layer is
coupled with that of the upper layer by the hydrostatic relation (and this coupling is due to
the finite depth of the lower layer). The main new finding of Paldor and Ghil (1990) is the
existence of additional instabilities that prevail in discontinuous wavenumber bands. These
instabilities exist due to the interaction of other modes rather than those whose interaction
generates the instability discovered by GKS. In addition, Paldor and Ghil (1990) have also
shown that in a two-layer ocean in which the lower layer is sufficiently thin, a continuous (in
zonal wavenumber) instability curve exists for short waves where the growth rate increases
linearly with the wavenumber. Recently, Scherer and Zeitlin (2008) have demonstrated
numerically that the isolated instability bands of the coupled density front originate from the
coalescence of real modes: Inertia-gravity modes; standing modes (where the real part of the
phase speed vanishes) and vorticity modes (associated with potential vorticity discontinuity
at the free streamlines).
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In the case of the uniform shear current, shown in panel (b) of Figure 1, Paldor (1983)
showed that this current is stable on the f -plane provided that the flow is uni-directional
and its minimal speed is above some threshold value. However, the numerical search has
not detected any instability even when the current has a retrograde segment near the coast
(i.e. a part of the current that flows backwards relative to the off-coast part) so its mean
speed is below the threshold value. This case was extended to a two-layer set-up in Paldor
and Ghil (1991), and a continuous unstable mode was found for sufficiently shortwave
perturbations. However, the stability of this current was never investigated on the β-plane.

Despite the different boundary conditions, the two uniform shear cases are analyzed in the
present study in a single theory. We use a unified formulation that applies to both the coastal
current case, where the physical boundary condition is “no normal flow” at the coast and the
coupled density front, where the physical boundary condition at the right free streamline
is regularity of the solutions. This unified formulation is applied to the instability study of
the two cases on the β-plane, where both the mean flows and the perturbation equations are
more cumbersome than on the f -plane.

The paper is organized as follows: The unified formulation of the instability problem of
the uniform shear flow on the β-plane in the two cases is developed in Section 2. In Section 3
we deduce analytical constraints of the instability theory on the f -plane and in Section 4 we
calculate numerically the instabilities that follow from this unified formulation. The study
ends with a discussion in Section 5.

2. A unified formulation of the instability problem of coastal currents and coupled
density fronts

We consider the Shallow Water Equations (SWE) on the β-plane:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− v(f0 + βy) = −g

∂h

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ u(f0 + βy) = −g

∂h

∂y
,

∂h

∂t
+ ∂(hu)

∂x
+ ∂(hv)

∂y
= 0. (1)

where, (x, y) are the Cartesian coordinates in the (east, north) directions, t is time, (u, v) are
the components of the velocity vector in the (x, y) directions, h is the thickness of the layer,
and g is the gravitation constant. The Coriolis frequency, f , is assumed to vary linearly
with y i.e., f = f0 + βy, with f0 = 2Ω sin(φ0) and β = 2Ω cos(φ0)/R (where φ0 is the
central latitude of the domain and R and Ω are Earth’s radius and frequency of rotation,
respectively).

We let L denote the mean width of the current in both the coupled front and the coastal
current (see Fig. 1), and use it for scaling the horizontal lengths (x, y). Scaling time on
1/f0 leads naturally to the velocity scale f0L and selecting (f0L)2/g to be the height scale
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completes the scaling that transforms the dimensional system (1) into the nondimensional
form:

∂u
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− v(1 + εy) = −∂h

∂x
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= 0, (2)

where ε = βL

f0
= cot(φ0)

L
R

. For L ≈ 400 km and cot(φ0) ≈ 1.6 (near 35◦ latitude) the
small parameter ε is about 0.1. At higher latitudes (poleward of 35◦) and for narrower (less
than 400 km) currents the value of ε is smaller than 0.1.

We now assume that a basic (mean) state exists, and that it is made up of u(y), h(y) that are
in geostrophic balance with no x or t dependence. Small amplitude (linear) perturbations
about this basic state are the focus of the search for instabilities. Since the geostrophic
balance of the mean flow, u(y) = − 1

1+εy
∂h̄
∂y

, provides only one relationship between u(y)

and ∂h(y)

∂y
, another constraint is needed to uniquely determine both u(y) and h(y). In previous

similar instability studies on the f -plane (GKS; Paldor and Ghil, 1990, 1991) the additional
constraint was imposed as a uniform shear, i.e. ∂ū/∂y = Const . The dimensional value of
this uniform shear of the mean flow in these studies was chosen to be f0. Accordingly, in
the present (nondimensional) formulation we set u(y) to equal y + U0 for some constant
U0 (which is an arbitrary velocity at y = 0) so as to ensure that for ε = 0 our results can be
compared to those obtained in the previous studies. The mean flow is then:

u(y) = y + U0

h(y) = − εy3

3
− y2

2
(1 + εU0) − U0y = −y2

2
− U0y − ε

(
y3

3
+ U0

y2

2

)

From the last expression for the mean thickness it is clear that h̄(−1) = U0 − 1
2 + ε( 1

3 − U0
2 )

so for h̄(−1) to be nonnegative (the thickness of the upper layer can not be negative), U0

has to satisfy U0 ≥ 1− 2ε
3

2−ε
. For U0 = 1− 2ε

3
2−ε

= 3−2ε
6−3ε

≈ 1
2 (1 − 1

6 ε) (and in particular U0 = 0.5
for ε = 0) the mean height vanishes at the right boundary, y = −1 (in addition to the left
boundary, y = 0) and the coupled density front is recovered. It is clear from the definition of
ū(y) that it is uni-directional for U0 ≥ 1, while for U0 < 1 there is a segment near y = −1
where it is negative (directed towards −x).

Having determined the basic state we now turn our attention to the perturbations. Since
there are no coefficients in the SWE that depend explicitly on x or t (only f depends
on y), one can safely let the perturbations take the form of zonally propagating waves with
y-dependent amplitudes: (u, v, h) ∼ (u(y), v(y), h(y))eik(x−ct).
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Substituting this form in the (linearized) perturbation equations and defining V =
−ikv ⇔ v = V i

k
one obtains:

uc = uu − εyV

k2
+ h,

V c = uV − (1 + εy)u − ∂h

∂y
,

hc = h

k2

∂V

∂y
− V

k2
u(1 + εy) + uh + hu.

These equations can be written as a matrix-like eigenvalue system where the phase speed,
c, is the eigenvalue and (u(y), V (y), h(y)) is the eigenvector:⎛

⎜⎝
u − εy

k2 1
−(1 + εy) u − ∂

∂y

h −u(1+εy)

k2 + h

k2
∂
∂y

u

⎞
⎟⎠

⎛
⎝u

V

h

⎞
⎠ = c

⎛
⎝u

V

h

⎞
⎠ (3)

(the differential operator, ∂/∂y, that appears in some of the elements of the matrix is the
reason why this is not a genuine matrix eigenvalue problem).

Since the first of these equations (the upper row of the matrix) does not contain the
differential operator, this algebraic relationship actually expresses u as a linear combination
of h and V :

u = − h

(u − c)
+ εyV

k2(u − c)
.

This simple expression can be employed to eliminate u from the other two equations, which
yields the pair of coupled differential equations:

∂h

∂y
= V

[
u − c − εy

k2(u − c)
− ε2y2

k2(u − c)

]
+ h

[
1

(u − c)
+ εy
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]
,

∂V

∂y
= V

[
u

h
(1 + εy) − εy

(u − c)

]
+ h

[
−k2

h
(u − c) + k2

(u − c)

]
. (4)

The last step in the formulation of the problem is the transformation of this (h, V ) system
to a new (h, ψ) system where the variable ψ is defined by: ψ = V · h̄. The resulting new
system is:

∂h

∂y
= ψ

h

[
u − c − εy

k2(u − c)
− ε2y2

k2(u − c)

]
+ h

[
1 + εy

(u − c)

]
,

∂ψ

∂y
= ψ

[
− εy

(u − c)

]
+ h

[
−k2(u − c) + hk2

(u − c)

]
. (5)
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The main advantage of the transformation from V to ψ is that the boundary conditions
associated with system (5) are ψ(0) = 0 = ψ(−1) for both the coupled density front
and the coastal current. In contrast, in the (h, V ) system the BC at the right boundary is
V (−1) = 0 in the case of the coastal current and that V (−1) is regular in the case of
the coupled density front. The (h, ψ) system lets one analyze the instability of the coupled
density front as a particular case of the coastal current’s instability where U0 = 3−2ε

6−3ε
without

changing the boundary condition at y = −1.

3. Stability of a coastal current on the f -plane

Setting ε = 0 and requiring U0 > 0.5 (i.e. focusing on the coastal current) one can derive
integral constraints on the complex solutions of the second order differential eigenvalue
system (4) for c = cr + ici with ci �= 0 (see Eqs. 18 and 19 in Paldor, 1983). These integral
constraints lead to the condition:

1∫
0

|φ|2(3z2 − 2U0z − 2|γ|2)dz > 0, (6)

where: z = −y (i.e. z varies between 0 and 1), γ = U0 − c = U0 − cr − ici and φ(z(y)) =
u(y). This integral was used in Paldor (1983) to derive the necessary condition for instability:
U0 < 3/2 based on the realization that for U0 > 3/2 the integrand on the left-hand side of
(6) is negative throughout the entire 0 ≤ z ≤ 1 domain even for vanishingly small γ so the
integral inequality cannot be satisfied.

The unified formulation developed in the preceding section provides a natural connection
between the instability of the coupled front (where U0 = 0.5) and the coastal current (where
U0 > 0.5). By viewing the former problem as a particular case of the latter with U0 = 0.5 it
is not clear whether the coastal current is stable throughout the entire 0.5 < U0 < 1.5 range
(and the instability only occurs for U0 = 0.5) in which case U0 > 1.5 is an overestimate of
the stability threshold or there is a whole subrange of 0.5 ≤ U0 < 1.5 where it is unstable
(in which case U0 > 1.5 is a close stability threshold). This f -plane issue is addressed in
relation to the total transport of the current, which is also determined by U0 as follows:
For h̄(−1) = U0 − 0.5 and h̄(0) = 0 an application of the geostrophic balance to the
downstream transport yields:

0∫
−1

h̄ · ūdy = −
0∫

−1

h̄ · h̄ydy = 1

2
(h̄(−1)2 − h̄(0)2) = (U0 − 0.5)2/2.

For U0 = 0.5 (i.e. the coupled density front) instabilities exist and the total transport
vanishes. Whether or not these instabilities prevail for values of U0 exceeding 1/2 is unclear
from the available literature on the subject and this point is the first point addressed in the
next section.
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4. Results

The numerical results shown below were calculated using two methods of solutions.
The first method applied the Chebyshev collocation method (see a general description of
the method in Trefethen (2000) and a particular recent application in De-Leon and Paldor
(2011)) to system (3). For the most part, the collocation method was used to solve system
(3) with 120 points (a total of 121 points, including the two boundaries) and occasionally
verified the accuracy of our results by computing the eigenvalues (i.e. phase speeds) and
eigenfunctions (ordered as u, V, and h) with 360 points. The second method is a shooting
method where system (5) was integrated numerically from y = 0 starting with the initial
conditions ψ(0) = 0 and h(0) = 1 (the latter is a mere trivial normalization value) to
y = −1 and the value of c was varied in order to find the values for which the boundary
condition ψ(−1) = 0 is satisfied (see similar application of the shooting method in Paldor
and Nof, 1992; Paldor and Dvorkin, 2006). The numerical results obtained with these two
methods were identical to more than four significant digits, lying closer to one another than
the widths of the curves shown in the figures below but the results of the latter were easier to
sort (less spurious roots) and were more robust (to changes of parameters such as accuracy
of integration).

The instability curves (growth rates) shown in Figure 2 are an application of the unified
instability theory developed in Section 2 to the coupled density front and the coastal current,
on the f -plane. Setting ε = 0 in system (5) and letting the value of U0 increase from 0.5
(the coupled density front; upper panel) to larger values of U0 = 0.56 and U0 = 0.62 (both
describe the coastal current, middle and lower panels) we notice that the instability of the
coupled density front (the longwave GKS instability, as well as the additional shortwave
branches) in which the boundary condition on V is its regularity at y = −1, has a natural
extension to the coastal current regime despite the change of boundary condition to V = 0
at y = −1. As the value of U0 increases from 0.5, the various instability branches shift to
the right (shorter waves) and their maximal growth rate decreases. As explained above, U0

also determines the total transport of the mean current and the results shown in Figure 2
demonstrate that the coastal current is stable from U0 ≈ 0.65, at which value its total
transport is: (U0 − 0.5)2/2 ≈ 0.01. When U0 increases above 0.65 the total transport of the
coupled current increases above 0.01 and the current becomes stable.

The effect of β (proportional to ε) on the instability of the coupled density front is
demonstrated in Figure 3 by calculating the instabilities for ε = 0.05 and ε = 0.1 and
setting U0(ε) to the appropriate values of the coupled density front: U0 = 3−2ε

6−3ε
. Clearly, on

the β-plane, the instability peaks are nearly the sane as those on the f -plane but wavelength
ranges that are stable on the f -plane (i.e., the ranges between the isolated peaks in the upper
panel of Fig. 2) are destabilized by β.

The β effect is different on the coastal current. As is evident from the results shown in
Figure 4, at U0 = 0.75 and U0 = 0.65 (where the coastal current was stable on the f -plane
i.e. for ε = 0) the shortwave instability branches near k = 5.5 (for U0 = 0.65) and k = 8.4
(for U0 = 0.75) become dominant and the separate modes at longer wavelength (see Figs. 2
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Figure 2. Instability curves, kCi(k), of the coupled density front (U0 = 1/2, upper panel) and the
coastal current (U0 > 1/2, middle and lower panels) on the f -plane (ε = 0). The similarity
between the two instabilities is evident despite the different V -boundary condition (but not that of
ψ) employed in the two problems. These instabilities vanish for U0 ≥ 0.65.

and 3) merge into a single continuous, slightly unstable, mode. The instability curves at
ε = 0.05 (not shown) are similar to those at ε = 0.1 but have slightly different central
wavenumber and maximal growth rate. No instabilities were found at U0 = 0.8 while at a
lower value of U0 = 0.6 this single mode has a somewhat larger amplitude and is located
near k = 0.45 (which is the central wavenumber of the second peak of the curves shown
in Fig. 3). It seems, therefore, that similarly to the variation of the ε = 0 curves in Figure 2
with U0, in the present ε > 0 case, too, an increase of U0 from its “coupled front” minimal
value eliminates successively the individual peaks of Figure 3.

The (complex) eigenfunctions associated with the unstable modes whose phase speeds
were shown above have the expected structure. However, the calculation of the eigenfunction
verifies our results regarding the eigenvalues since the former are calculated independently
by integrating system (5) numerically using the values of c found previously at the noted
values of ε, U0 and k. An example of the eigenfunction structure is shown in Figure 5 for
the instability of the U0 = 0.75 near k = 8.4 in Figure 4 and it shows that our numerical
solution for ψ(y) satisfies the boundary conditions at y = −1 and y = 0 and that both h(y)

and ψ(y) that solve system (5) are differentiable throughout the (−1, 0) interval.
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Figure 3. The β-effect (i.e. ε �= 0) on the instability of the coupled density front (i.e. when U0 =
(3 − 2ε)/(6 − 3ε)). Clearly, a comparison of these plots with the upper panel of Figure 2 shows
that β destabilizes the front in wavelength ranges that are stable on the f -plane but hardly affects
the ranges that are unstable on the f -plane.

5. Discussion

The unified formulation proposed here applies to the instability problems of the coupled
density front and the coastal current on the f -plane when the shear in both mean flows is
uniform. This unified formulation enables one to view the former as a particular case of
the latter, and our numerical solutions of Eq. (5) demonstrate that instabilities exist on the
coastal current when U0 is slightly above 0.5 (i.e. 1/2 ≤ U0 ≤ 0.65). Eq. (7) shows that
the total downstream transport equals (U0 − 0.5)2/2 so the disappearance of the instability
for U0 > 0.65 occurs when the downstream transport increases above 0.01 at U0 = 0.65.

The results of this study apply to zonal currents only while the f -plane theory of GKS
has no similar restriction on the direction of the mean current. The reason for this difference
is that on the f -plane all coefficients of the original equations (e.g. system 2 with ε = 0)
are constant so that the only nonconstant coefficients in the perturbation equations (system
3 and 4) are those associated with the mean state variables ū and h̄. Accordingly, on the
f -plane the directions of x and y remain arbitrary and can be set to fit any observed mean
current. In contrast, on the β-plane the explicit dependence of f on y implies that for a
mean meridional geostrophic current both v̄ and h̄ have to be functions of both x and y so
the simple scenario portrayed in Section 2 (where ū and h̄ are functions of y only) does not
hold.
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Figure 4. The effect of β (i.e. ε) on the instability of the coastal current at ε = 0.1 and U0 = 0.65;
U0 = 0.75, (i.e. above the threshold value of 0.65 above which no instabilities exist on the f -plane).
A large range of wavelength becomes slightly unstable and at the narrow range near k = 5.5 (for
U0 = 0.65) and k = 8.4 (for U0 = 0.75) a dominant but narrow branch arises where the maximal
growth rates are about 0.025 and 0.0035, which is much larger than the growth rates at lower values
of k. The narrow branches with sharp peaks near k = 5.5 and k = 8.4 are reminiscent of the
shortwave branches near k = 5 − 6 and k = 8 − 9 in Figure 3.

The effect that the variation in f (i.e., the β effect) has on the instability curves is quite
different in the two problems: For the coupled density front, β destabilizes the wavenumber
ranges that separate the isolated peaks, while hardly affecting the peaks themselves (compare
the top panel in Fig. 2 with the two panels of Fig. 3). For the coastal current a single mode
exists at k = 8.4 for U0 = 0.75 when ε = 0.1 and a wide range instability with small
growth rate exists between k = 0 and k = 7. In contrast, no instability was found in Figure
2 for U0 > 0.65 when ε = 0. This destabilization of short waves is similar to the effect of
the lower layer on the coastal current found in Paldor and Ghil (1991).

As was shown in previous studies (e.g. Scherer and Zeitlin, 2008; Paldor and Ghil, 1991)
the various instability branches originate from the coalescence of different pairs of real
modes in certain wavelength bands, including the particular case when the real part of the
phase speed vanishes (e.g. GKS instability) which is interpreted as a standing mode. In the
context of the coupled density front, two waves are candidates for this coalescence: Inertia-
Gravity (Poincare) waves and vorticity edge (Rossby) waves associated with the PV jump
at y = −1 and y = 0. Our unified formulation and the extension of these instabilities into
the U0 > 0.5 region (where only one free streamline exists), imply that in the case of the



2011] Paldor et al.: Linear instability of uniform shear flow 703

Figure 5. The (h(y), ψ(y)) eigenfunctions for ε = 0.1 and U0 = 0.75 at k = 8.4 (the “spike” in Fig.
4). The complex phase speed is: c = 0.414+0.44 ·10−3i and despite the singularity at y = −0.336
of the (real part of the) coefficients (ū(y) − c)−1 = (U0 + y − c)−1 that appear in system (5), the
complex eigenfunctions are smooth everywhere, including at the singular point y = −0.336.

coupled front (U0 = 0.5) the instabilities result from the interaction Inertia-Gravity waves
with an edge wave and not by the interaction of the two edge waves (one at y = −1 and
the other at y = 0). As in other equivalent barotropic instability studies (see e.g. Killworth
et al., 1984; Paldor and Killworth, 1987) the energy source for the perturbations’ growth is
the horizontal shear of the mean current (extracted via the Reinolds stress terms).

The instability theory developed above can be applied to the Agulhas Current near its
retroflection point at 35◦S − 40◦S latitude (see Fig. 6.5 in Lutjeharms, 2006). As is evident
from the sigma-t 25.8 surface, at this segment the current has zero net transport and two
free streamlines, mimicked by the idealized cartoon shown in panel (a) of Figure 1 – the
coupled density front. For the relevant oceanographic parameters: L = 300 km (current’s
mean width at the retroflection region); φ0 = south latitude of 37.5◦ one obtains ε =
cot(φ0)L/R = 0.06 (so U0 is about 0.492) and the two lower panels of Figure 3 show
that at this ε the current is unstable at all wavelengths. The maximum growth rate in both
ε = 0.05 and ε = 0.1 panels occurs at k = 2.2 so half the wavelength of the most unstable
wave is (π/2.2) ∗ 300 km ≈ 450 km and the growth rate at k = 2.2 (for both values of ε) is
0.15 so the time scale for the growth of the most unstable mode is: 1/(0.15 ∗ f0) ∼ 1 day.
The 450 km estimate of the size of the Agulhas eddies based on half the wavelength of the
most unstable mode is consistent with observations of the diameter of rings shed off from
the current at the retroflection region (see the discussion on page 170 in Lutjeharms, 2006).
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The very fast perturbation growth (about 1 day) is consistent with the observation that more
than 10 rings may exist at any given time in the Cape basin just southwest of Cape Town
(see Fig.e 6.19 and the discussion on page 173 of Lutjeharms, 2006).
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