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Secondary toroidal vortices above seamounts

by Valery N. Zyryanov1

ABSTRACT
The classical Taylor-Couette flow appears in a homogeneous fluid between two coaxial cylinders

rotating with different angular velocities. The stability loss by a Taylor-Couette flow leads to a bifur-
cation and generation of Taylor toroidal vortices. In this study we consider an analog to this effect in
the case of seamounts in a homogeneous ocean on a f -plane. A seamount is approximated by two
coaxial cylinders with heights h1, h2 standing one upon the other, the lower cylinder having a larger
diameter. Taylor-Couette flow forms in a circular area above the ledge as follows from the differen-
tial squeezing of background vorticity above topography. The essential difference from the classical
Taylor-Couette flow is the additional background rotation. We demonstrate that in this model ocean
a current bifurcation in a circular area above a seamount ledge leads to the generation of toroidal
vortices, also known as Taylor vortices in Taylor-Couette flows.

1. Introduction

Now it is well known that topographic anticyclonic eddies with vertical axes of rotation
are generated above the mountains in the World Ocean. Studies of the eddy generation
above local perturbations of the bed relief in a rotating fluid go back to the theoretical work
of Proudman (1916), who proved a theorem stating that the nonviscous motion of a fast
rotating fluid is independent of the coordinate parallel to the axis of rotation. Seven years
later, Taylor (1923) reproduced this situation in an experiment and found a cylindrical vortex
to form above a local perturbation of the bed. These studies were not resumed until 1961.

In 1961, Hide (1961) attempted to interpret the Jupiter’s Great Red Spot (JGRS) as a
Taylor column above a relief perturbation on Jupiter. Note that Hide was the first to use the
term “Taylor column” to a topographic eddy. In 1969, Ingersol (1969) studied the JGRS
problem in the context of the quasigeostrophic model with low viscosity and obtained a
solution with a stagnant zone within the Taylor column. These astrophysical studies gave
an impetus to similar studies in oceanography.

In 1972, McCartney (1972) suggested that lee Rossby waves can be generated down-
stream of a seamount in zonal flows on the β-plane. Hogg in 1973 published an important
work, in which he first presented the theory of topographic eddies in a stratified ocean on
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the f -plane with a constant Brunt-Väisälä frequency. He showed that under the effect of
stratification the cylindrical Taylor column transforms into a conical vortex with an upward-
directed vertex. The vortex may not manifest itself on the ocean surface, and an increase in
stratification can cause the vertex to sink even deeper.

Huppert (1975) formulated a criterion of the formation of topographic eddy in a strat-
ified flow on the f -plane with constant Brunt-Väisälä frequency. Analogous criterion for
an eastward barotropic flow on the β-plane above an axisymmetric bed perturbation was
derived by McCartney (1975). Later McCartney (1976) examined the role of β-effect in the
topographic eddy generation and showed a Rossby wave wake to form in eastward flows
downstream of a seamount. No such wake was found in westward flows.

Huppert and Bryan (1976) numerically modeled the topographic eddy generation in a
homogeneous ocean on the f -plane. They obtained an anticyclonic eddy above a seamount
and a cyclonic eddy, which initially drifted downstream of the seamount rotating clockwise
around the topographic eddy.

Zyryanov (1981) studied the effect of stratification on the structure of topographic eddies
on the β-plane in eastward flows. He showed that generation of baroclinic modes of Rossby
waves results in an inverse vorticity in the upper oceanic layers and, as a consequence, in
formation of an inverse conical eddy with cyclonic rotation above the Taylor-Hogg near-bed
anticyclonic cone.

Studies of the effect of mountains on motions in the atmosphere were reviewed by Smith
(1979), and in the ocean by Hogg (1980), Roden (1987), Zyryanov (1995, 2006). Effects of
seamounts on biological processes were reviewed by Boehlert and Genin (1987). Results
of laboratory modeling of topographic eddies were discussed by Baines and Davies (1980).
Boyer, et al. (1987) modeled the topographic eddies in a stratified fluid in the laboratory.

The discovery of topographic eddies in the World Ocean can be dated to 1967 when the
Russian research vessel “Astronom” found that large amounts of fish accumulated above a
seamount in the Hawaiian Ridge in the Pacific Ocean. Hydrological survey of the area around
the seamount revealed a columnar structure of distributions of hydrological, hydrochemical,
and biological characteristics, and the map of dynamical topography clearly demonstrated
a closed anticyclonic circulation (Darnitskiy, 1980). In 1975, the topographic eddy above
Agulhas Plateau was recorded by using neutral-buoyancy buoys (Grundlingh, 1978).

In the years that followed, detailed experimental studies were conducted on Gayot Fieber-
ling and on the chain of adjacent mountains (Roden, 1994; Eriksen, 1991; Kunze and Toole,
1997; Mullineaux and Mills, 1997), and on Gobb mountain in the Pacific (Freeland, 1994).

An important point is that the observations demonstrate an intense vertical mixing above
seamounts (e.g., see Fig. 1). The famous polynya above Kashevarov bank in the Sea of
Okhotsk, which is never covered by ice, also is evidence of the mixing (Rogachev and
Kosolapkin, 1995). This mixing cannot be explained by traditional theory of topographic
eddies which states that motion in the eddy is quasi-two-dimensional and the vertical veloc-
ities are small.

The aim of this paper is to show that the vertical mixing can be caused by secondary
toroidal vortices developing because of instability of the primary topographic eddy. We
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Figure 1. Distributions of temperature and salinity above Kashevarov bank in the Sea of Okhotsk,
Sept. 1970 (Kitani and Shimazaki, 1971).

demonstrate for a circular mountain that if the lateral mountain slope has the shape of a
ledge, then the velocity field of the primary topographic eddy in the ring domain above the
ledge is the same as in the classical Taylor-Couette flow between two rotating cylinders. It
is well known that this flow can be unstable in some range of its parameters, the growing
perturbations being able to develop into toroidal secondary vortices with axes coinciding
with the axis of primary eddy (e.g. Yudovich, 1966). We generalize the classical problem
to our case when solid lateral walls are absent and the Earth’s rotation is present.

2. Formulation of the problem

The classical Taylor-Couette flow forms in a homogeneous fluid between two coaxial
cylinders with radii r1 and r2(r1 < r2), rotating with different angular velocities ω1 (the
inner cylinder) and ω2 (the outer one). Loss of stability by the Taylor-Couette flow leads to
a bifurcation and, as a consequence, to generation of Taylor vortices. The radial distribution
of the tangential velocity Vθ(r) is given by the expression

Vθ(r) = ar + b

r
(1)
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Figure 2. Model seamount in the form of two cylinders; (1) the upper cylinder with a height of h̃1 and
a radius of r̃1, (2) the lower cylinder with a height of h̃2 and a radius of r̃2 (r̃1 < r̃2), (3) the annular
region in the fluid above the ledge, (4) sea bottom and (5) surface. The whole system rotates with
an angular velocity around the vertical axis z.

where

a = ω2r
2
2 − ω1r

2
1

r2
2 − r2

1

, b = (ω1 − ω2)r
2
1 r2

2

r2
2 − r2

1

. (2)

If the cylinders rotate in the positive direction (ω1 > 0, ω2 > 0), then the necessary
and sufficient condition for the loss of stability and the generation of secondary torus-like
Taylor vortices is

ω2r
2
2 − ω1r

2
1 < 0. (3)

The classical Taylor-Couette problem was investigated by many authors (Chandrasekhar,
1961; Coles, 1965; Yudovich, 1966; Barkovskiy and Yudovich, 1978); and in stratified fluids
by Ermanyuk and Flor (2005) and Guyez et al. (2006).

We consider a seamount in a homogeneous ocean on the f -plane approximated by two
coaxial cylinders with radii r̃1, r̃2 (r̃1 < r̃2) and heights h̃1, h̃2 standing one upon the other
with the lower cylinder having a larger diameter (Fig. 2). Let the fluid flow at the seamount
with uniform velocity Ṽ along an x-axis. It follows from the theory of topographic eddies
(Huppert, 1975; Zyryanov, 1995, 2006) that the nondimensional streamfunction over an
axisymmetric seamount, P(r, ϕ), is a sum of an axisymmetric topographic vortex σΦ(r),
and a uniform flow −V ′r sin ϕ:

P(r, ϕ) = −V ′r sin ϕ + σΦ(r). (4)
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Here r = r̃/L and r, ϕ are the polar coordinates, L is the horizontal scale of motion, P -
the pressure coinciding here with the streamfunction, V ′ = Ṽ /U0, U0 is a characteristic
velocity, σ - the topographic parameter (see below). The function Φ(r) is written in the
form (Huppert, 1975):

Φ(r) = −
r∫

0

t−1

t∫
0

h(ρ)ρdρdt, (5)

where h(ρ) - the radial profile of seamount.
In the case of piece-wise cylindrical seamount with ledge (Fig. 2) we have

h(r) = h1(r) + h2(r), (6)

where

h1(r) =
{
h1, r < r1

0, r > r1
, h2(r) =

{
h2, r < r2

0, r > r2
(7)

Substituting (6), (7) into (5) we obtain the following expression for the nondimensional
azimuthal velocity:

v0(r) = σ
dΦ

dr
= −1

2
σ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(h1 + h2)r, r < r1

h1r
2
1

1

r
+ h2r, r1 < r < r2

(h1r
2
1 + h2r

2
2 )

1

r
, r > r2

(8)

One can see that in the circular area r1 < r < r2 above a seamount, the radial profile of
the tangential velocity v0(r) coincides with the Taylor-Couette dependence (1)

v0(r) = a1r + b1

r
(9)

where

a1 = −σh2

2
, b1 = −σh1r

2
1

2
, σ = h0

H · Ro
, Ro = U0

f0L
,

r = r̃/L, r1 = r̃1/L, r2 = r̃2/L, h1 = h̃1/h0, h2 = h̃2/h0. (10)

Ro is the Rossby number, f0 is the characteristic value of Coriolis parameter, h0 is the
characteristic seamount height, H is the oceanic depth outside the seamount. The sign
minus in (10) shows that the current in r1 < r < r2 is an anticyclonic one.

The streamfunction field (4) describes the uniform flow −V ′r sin ϕ, which interacts with
seamount and spins up the topographic vortex σΦ(r). If at some moment the uniform flow
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−V ′r sin ϕ disappears or becomes weak then only the topographically induced axisym-
metric eddy remains over the seamount. In what follows, we examine the stability of this
anticyclonic topographic vortex.

At r = r1 and r = r2, the tangential velocity v0(r) takes the values

v0(r1) = −σ(h1 + h2)r1

2
, v0(r2) = −σ(h2r

2
2 + h1r

2
1 )

2r2
, (11)

respectively. The corresponding angular rotation velocities ωi = v0(ri)/ri, i = 1, 2 are
equal to

ω1 = −σ(h1 + h2)

2
, ω2 = −σ(h1r

2
1 + h2r

2
2 )

2r2
2

. (12)

As seen from (3), the classical secondary Taylor vortices arise only if ω1 > ω2; i.e.,
the inner cylinder rotates more rapidly. By virtue of (12) |ω1| > |ω2|, therefore, above
seamounts the flow field in the domain r1 < r < r2 is similar to the classical unstable
Taylor-Couette flow with the important distinction that in our case the Earth’s rotation is
present. It readily follows from (3) that an additional general rotation of both cylinders can
violate (3). Therefore, the condition (3) cannot be directly applied to our case.

3. Linear problem of stability

We now introduce the cylindrical coordinates (r, θ, z) and consider an axisymmetrical
stationary current which is independent of θ. The velocity �U ′ = (u′

r , u
′
θ, u

′
z) and pressure

P ′ are sought in the form

�U ′ = �U + �U0, P ′ = E · P + P0, (13)

where

�U0 = (0, v0(r), 0),
dP0

dr
= v2

0(r)

r
− f v0(r), (14)

E is the Ekman number (see below), f - Coriolis parameter nondimensioned on f0.
Substituting (13), (14) into the primitive equations on f -plane [e.g. Kamenkovich, 1977],

we arrive at the system of equations

1

r

∂

∂r
(rur) + ∂uz

∂z
= 0

Δur − ur

r2
− ∂P

∂r
= 1

E

[
ur

∂ur

∂r
+ uz

∂ur

∂z
− u2

θ

r
−

(
2v0

r
+ f

)
uθ

]

Δuθ − uθ

r2
= 1

E

[
ur

∂uθ

∂r
+ uz

∂uθ

∂z
+ uθur

r
+

(
dv0

dr
+ v0

r
+ f

)
ur

]

Δuz − ∂P

∂z
= 1

E

[
ur

∂uz

∂r
+ uz

∂uz

∂z

]
(15)
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where

Δ = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
, E = EV = EL, EV = Az

f0H 2
, EL = AL

f0L2
; (16)

EV , EL are the vertical and horizontal Ekman numbers, respectively. We suppose that
L ∼ r̃2 − r̃1 ∼ 10 km and H ∼ 1 km and therefore we can assume EV and EL to be equal
to each other.

Linearization of (15) gives the following spectral problem

1

r

∂

∂r
(rur) + ∂uz

∂z
= 0

Δur − ur

r2
− ∂P

∂r
= λ

(
2v0

r
+ f

)
uθ

Δuθ − uθ

r2
= λ

(
dv0

dr
+ v0

r
+ f

)
ur

Δuz − ∂P

∂z
= 0, (17)

where λ = 1/E is the eigenvalue.
The eigensolutions to (17) are represented in the form

ur = u(r) cos αz, uθ = v(r) cos αz

uz = w(r) sin αz, P = q(r) cos αz, (18)

where the functions w(r) and q(r) are related to u(r):

w(r) = − 1

αr

d

dr
[ru(r)], q(r) = −1

α

(
d2

dr2
+ 1

r

d

dr
− α2

)
w(r) ≡ L̃w(r) (19)

The vertical velocity uz vanishes at the bottom z = 0 and at the sea surface z = 1, therefore
α = kπ. Note that the boundary conditions at the seamount are written at the level z = 0
because the bottom perturbations are assumed to be small with respect to the total thickness
of the fluid.

Substituting (18) into (17) and taking into account (19), we obtain

(L − α2)u(r) − dq(r)

dr
= −λS(r)v(r)

(L − α2)v(r) = λG(r)u(r), (20)

where

S(r) = 2v0

r
+ f, G(r) = dv0

dr
+ v0

r
+ f, L = d2

dr2
+ 1

r

d

dr
− 1

r2
.
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By using (19) it is easy to verify that

d

dr
[L̃w(r)] − (L − α2)u(r) ≡ 1

α2
(L − α2)2u(r) (21)

and to rewrite (20) in the form

(L − α2)2u = α2λS(r)v

(L − α2)v = λG(r)u. (22)

4. Boundary conditions

Generation of a topographic vortex above a seamount can be considered as consisting
of three stages: an initial stage t < L/U when the fluid moves onto the seamount; an
intermediate stage t ∼ O(L/U), which lasts for several periods in terms of L/U and
during which the vortex structure forms; and the final stage with t � L/U , when the flow
becomes steady. As shown by Verron and Le Provost (1985), the flow reaches a steady state
at t ∼ 4L/U . Next, the vortex’s lifetime is determined by the spin-up time TS ∼ 1/(f E

1/2
V ).

Thus, the circular Taylor-Couette flow exists at least on times 4L/U < t < TS . During this
period, the vertical Stewartson’s viscous internal boundary layers (Stewartson, 1967) arise
along circular vertical surfaces at r = r1 and r = r2 from z = 0 to z = 1. These boundary
layers appear because of the vortex discontinuity which takes place at r = r1 and r = r2

as one can see from (8). The thickness of the Stewartson’s layer is ε ∼ O(E1/4) and for
ocean conditions it is about 10 km. Stewartson’s boundary layers at r = r1 and r = r2 are
recovered at r1 < r < r2 and therefore we have the viscous problem (15) in the annulus
domain r1 < r < r2.

At the outer boundary of the first Stewartson’s layer at r ∼ r1 − ε and the outer boundary
of the second Stewartson’s layer at r ∼ r2 + ε, one can assume the velocity perturbations
to vanish. Therefore, we may accept the following boundary conditions

[u(r) = v(r) = w(r)]|r=r1,r2 = 0. (23)

From the continuity equation in (17) and the expression for w(r) in (19), one obtains that

r2∫
r1

uzrdr = 0, (24)

i.e., the water flow through the cross-section of the cylinder area r1 < r < r2 is zero for
any z.

5. Conditions of bifurcation

System (22) was investigated by Yudovich (1966) for f = 0. He proved that if 2v0/r > 0
and dv0/dr + v0/r < 0 for r1 < r < r2, then for any α, excluding some denumerable set,
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the eigenvalue problem (22) has the spectrum of positive and simple eigenvalues 0 < λ1 <

λ2 < . . . and each λi is a point of bifurcation.
We note that G(r) = 2a1 + f = G0 = const . Therefore, the application of the operator

(L − α2)2 to the second equation (22) reduces (22) to one equation

(L − α2)3v = λ2α2G0S(r)v. (25)

Using the boundary conditions (23) and Eqs. (19) and (22), we write the boundary conditions
for the function v(r):

v = Lv = d

dr
[(L − α2)v] = 0, r = r1, r2. (26)

Eq. (25) together with conditions (26) constitute an eigenvalue problem for the function
v(r).

Using the results by Yudovich (1966), we formulate the main theorem.

Theorem. If the inequality

Q(r) = S(r)G0 < 0 (27)

is satisfied, then given α the eigenvalue problem (25), (26) has a positive and simple spectrum
{λi}.

Taking into account (9), (10) one can show that (27) is valid in two cases:

Case 1: S(r) > 0, G0 < 0. This case corresponds to a crater for which

h2 > f/σ, h1 <
r2

2

σr2
1

(f − σh2) < 0. (28)

Case 2: S(r) < 0, G0 > 0. This case corresponds to a seamount as in Figure 2 for which

h2 < f/σ, h1 >
r2

2

σr2
1

(f − σh2) > 0. (29)

So, the bifurcation of the Taylor-Couette flow above seamount is possible, if either (28) or
(29) are satisfied. In Case 2 one can write

h0

H
= h1 + h2. (30)

Assuming the dimensionless Coriolis parameter f to be unity, we obtain from (10), (30)
and the first inequality (29) that

h2(h1 + h2) < Ro. (31)
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Figure 3. Domains (tongues) of allowable values of cylinder heights h1 and h2 depending on the
Rossby number Ro for δ = r2/r1 = 10/7. The negative values of h1 refer to the case of a crater.

From the second inequality (29) we have

(
h1

δ2
+ h2

)
(h1 + h2) > Ro, (32)

where δ = r2/r1.
Thus by virtue of (31) and (32), the sufficient conditions (29) can be written as

h2(h1 + h2) < Ro <

(
h1

δ2
+ h2

)
(h1 + h2). (33)

In Case 1 (a crater) we determine h0 as

h0

H
= |h1| + h2, (34)

and conditions (28) take the form

h2(|h1| + h2) > Ro >

(
h1

δ2
+ h2

)
(|h1| + h2). (35)

Conditions (33), (35) determine domains of allowable valuesh1 andh2 given Rossby number
Ro. The domains have the form of tongues (Fig. 3).
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6. Spectrum calculation

To calculate the eigenvalues 0 < λ1 < λ2 < . . . we represent (25) as the system of
ordinary differential equation of sixth order

dvi

dr
= vi+1, i = 1, . . . , 5

dv6

dr
= −

6∑
j=1

aj vj

⎫⎪⎪⎬
⎪⎪⎭ , (36)

where

a1 = −45/r6 + 9α2/r4 − 3α4/r2 − α6 − λ2α2G0S(r)

a2 = 45/r5 − 9α2/r3 + 3α4/r

a3 = −27/r4 + 9α2/r2 + 3α4

a4 = 12/r3 − 6α2/r

a5 = −6/r2 − 3α2

a6 = 3/r. (37)

The boundary conditions (26) in terms of vi take the form:
at r = r1:

v1(r1) = 0

−
(

1

r2
1

+ α2
)

v1(r1) + 1

r1
v2(r1) + v3(r1) = 0

v4(r1) + 1

r1
v3(r1) −

(
2

r2
1

+ α2
)

v2(r1) + 2

r3
1

v1(r1) = 0 (38)

at r = r2:

v1(r2) = 0

−
(

1

r2
2

+ α2
)

v1(r2) + 1

r2
v2(r2) + v3(r2) = 0

v4(r2) + 1

r2
v3(r2) −

(
2

r2
2

+ α2
)

v2(r2) + 2

r3
2

v1(r2) = 0. (39)

Solution to (36)–(39) is represented as a sum

�V =
6∑

j=1

βj
�Yj (λ), �V = (v1, v2, . . . , v6), (40)



474 Journal of Marine Research [69, 2-3

where the vectors �Yj = (y
(1)
j . . . y

(k)
j . . . y

(6)
j ) satisfy Eqs. (36) with initial conditions on

r = r1

�Yi |r=r1 = (. . . y
(j)

i . . .) =
{

0, j �= i

1, j = i
(41)

and βj are some coefficient to be determined. One can readily see that β1 = 0 by virtue of
the first condition (38).

Substituting (40) into (38), (39) gives the following linear system for βj :

A(λ) ·
⎛
⎜⎝

β2
...

β6

⎞
⎟⎠ = 0, (42)

where the matrix A is

A =

⎛
⎜⎜⎜⎜⎜⎝

1/r1 1 0 0 0
2/r2

1 + α2 1/r1 1 0 0
a31 . . . a35

a41 . . . a45

a51 . . . a55

⎞
⎟⎟⎟⎟⎟⎠ (43)

and

a3j = Y
(1)
j+1(r2, λ),

a4j = 1

r2
Y

(2)
j+1(r2, λ) + Y

(3)
j+1(r2, λ),

a5j = Y
(4)
j+1(r2, λ) + 1

r2
Y

(3)
j+1(r2, λ) −

(
2

r2
2

+ α2
)

Y
(2)
j+1(r2, λ), (44)

for j = 1, . . . , 5. The homogeneous system (42) has nonzero solution if its determinant is
zero:

D(λ) ≡ det[A(λ)] = 0. (45)

Given α the roots λ of Eq. (45) constitute the spectrum of the eigenvalue problem (25), (26).
To calculate the roots we find numerically the vectors �Y2(λ), . . . , �Y6(λ) for some range of
the parameter λ fitting λ in such a way that (45) is satisfied with a high accuracy.

The curve D(R), where R = λ2, is shown in Figure 4 for α = π and in Figure 5 for
α = 2π. Three values R1, R2, R3 in Figure 4 and two values R1, R2 in Figure 5 are the first
eigenvalues of spectrum.
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Figure 4. The first three roots R1, R2, R3 of the determinant (45) with α = π, h1 = 0.3, h2 = 0.15,
σ = 5, f = 1, r1 = 7, r2 = 10.

Figure 5. The first two roots R1, R2 of the determinant (45) with α = 2π, h1 = 0.3, h2 = 0.15,
σ = 5, f = 1, r1 = 3.5, r2 = 5.
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7. Fluid particle trajectories in bifurcation modes

The roots R1 and R2 in Figure 4 are R1 = 632.292 and R2 = 1592.258. Consider the
case λ1 = √

R1. Setting β2 = 1 and solving the system of the first four equations (42) we
find

β3 = −1/7, β4 = −9.89, β5 = 69.78, β6 = −407.72. (46)

The corresponding solution of the (25) with boundary conditions (26) has the form

v(r) = v1(r) =
6∑

i=2

βiY
(1)
i (r). (47)

To avoid the errors inherent in the differentiation of discrete numerical solutions and
to make the further calculations more convenient, we used a spline approximation of the
numerical solution v(r) by 4th order polynomial. Figure 6 represents the behavior of v(r)
(solid line) and its spline approximation (dashed line). As one can see from Figure 6, the
solution v(r) oscillates on the right end of the area of integration. These oscillations can
be either natural or due to computation modes. The answer is still unknown, so further
investigations are required.

The spline approximation with λ1 = √
R1 is

v(r) = 0.0018r4 + 0.0799r3 − 2.9781r2 + 28.6880r − 86.5452 (48)

and that with λ2 = √
R2 is

v(r) = −0.1418r4 + 5.1216r3 − 68.7190r2 + 405.8902r − 890.2810. (49)

Substituting (48), (49) into the second equation (20), we find the function u(r) in (18), and
then the function w(r) from the first equation (19). These functions are plotted in Figure 6.

Knowing u(r), v(r), w(r) one can find from (18) the radial, tangential and the verti-
cal velocities ur , uθ and uz, respectively. The corresponding trajectories of particles are
determined from the system

dr

dt
= ur(r, z)

r
dθ

dt
= uθ(r, z)

dz

dt
= uz(r, z)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Figure 7 showed the space trajectory of a particle starting from the initial point (7.5, 0, 0.2).
As one can see, the particle moves along a torus.

Note that particle trajectories on the vortex tori in Figures 7–9 are constructed in the
absence of the main flow (9). In fact, the vortex tori are superimposed onto the main
current (9).
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Figure 6. Radial distributions above the ledge of seamount of the functions w(r) (1), v(r), (2: the
solid line is the numerical solution (42), the dashed line is the spline approximation), u(r) (3). (a)
The first eigenvalue λ1 = √

R1; (b) the second eigenvalue λ2 = √
R2.

8. Conclusions

The main result of this work is that the bifurcation of Taylor-Couette flow above a ledge
of a seamount leads to generation of torus-like circulation and as a consequence, to an
intense vertical water exchange above the seamount. According to the classical theory for
Taylor-Couette flow (i.e. without external rotation; e.g. Yudovich, 1966), given α one can
find Reynolds numbers for which the bifurcation will take place. In the case of Taylor-
Couette flow above a seamount the eigenvalues are related to the Ekman numbers whose
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Figure 7. The trajectory of a fluid particle in a topographic eddy with a secondary vortex above the
ledge of a seamount in the case of bifurcation at the first eigenvalue λ1 = √

R1, R1 = 632.29 for
α = π. The particles rise along a spiral on the inner side of the torus and come down along a spiral
on the outer side of the torus.

Figure 8. The same as in Figure 7 but for λ2 = √
R2, R2 = 1592.258. Contrary to the case of the

first eigenvalue (Fig. 7), the particles rise along a spiral on the outer side of the torus and come
down along a spiral on the inner side of the torus.

typical values for the ocean are well-known. This means that it is not enough to prove the
existence of the spectrum {λi}, but one has to calculate this spectrum and to make sure that it
corresponds to the real values of Ekman numbers. In the case of the Taylor vortex with one
cell we have R1 = 632.292, R2 = 1592.257, that corresponds to λ1

∼= 25.15, λ2
∼= 39.9

i.e. to the Ekman numbers E1
∼= 4 ·10−2, E2

∼= 2.5 ·10−2. The real oceanic Ekman numbers
are somewhat smaller, of the order of 10−3 ÷ 10−4, and we see from Figures 4, 5 that the
values λ = 1/E ≈ 103 ÷ 104 are in the spectrum area.
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Figure 9. The same as in Figure 7 but for α = 2π, λ1 = √
R1, R1 = 1581.4. Particles move along

two tori.

Unfortunately, there are neither direct observations nor laboratory experiments demon-
strating existence of toroidal vortices above seamounts. The existence of such vortices can
only be supposed based on the intense water mixing above seamounts. One example of water
temperature and salinity distributions above Kashevarov Bank in the Sea of Okhotsk was
given in Figure 1; similar columns of well-mixed water can be seen above other seamounts
in oceans. Thus, strictly speaking, the toroidal vortices in the ocean can be regarded as a
theoretical result with indirect confirmations.

As mentioned in Section 4, the turbulent friction contributes largely to the stability loss
and formation of vortex tori on times 4L/U < t < TS . At the next stage t � TS the
vorticity within closed streamlines tends to become a constant because of friction; i.e.,
the fluid within the vortex tends to rotate as a solid body (Prandtl–Batchelor theorem;
Jamagata and Mathuura, 1981). This means that any relative motions of the fluid, including
vertical motions and toroidal vortices, should stop and the vortex domain becomes a stagnant
zone above a seamount. However, observations of motions above oceanic seamounts give
opposite evidence – intense vertical mixing takes place in these domains. Some pumping
mechanisms of energy are required to provide this mixing. There are three possible sources
of energy: input wind, background current (which spins up the topographic eddy) and
residual tidal currents above the seamount. These later are anticyclonic too.

In our model the fluid is assumed homogeneous. The real ocean is always stratified; the
effect of water stratification needs further investigations.
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