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Ellipsoidal vortex in a nonuniform flow:
Dynamics and chaotic advections

by V. V. Zhmur1,2 E. A. Ryzhov3 and K. V. Koshel3,4,5,6

ABSTRACT
Quasi-geostrophic dynamics of an ellipsoidal vortex embedded in a nonuniform flow is studied in

the approximation of the infinitely deep rotating ocean with a constant buoyancy frequency. The vortex
core is an ellipsoid with a constant vorticity different from the background vorticity value. The core is
shown to move along with the flow and to deform under the effect of it. Regimes of the core’s behavior
depend on the flow characteristics and the initial values of the vortex parameters (the shape and the
orientation relative to the flow). These regimes are (i) rotation (along with the eccentricity oscillation),
(ii) oscillation about one of the two specific directions (along with the eccentricity oscillation), and
(iii) infinite horizontal elongation of the core. The localized regimes (rotation and oscillation) of the
core motion are analyzed. It is shown, that zones of the water mass capturing can appear in the induced
velocity field. The mechanisms of fluid particle trajectory chaotization are revealed; in particular, it
is shown that, owing to the double periodicity of the core motion, all the nonlinear resonances appear
as pairs of two resonance islands with the same winding number.

1. Introduction

Synoptic and mesoscale oceanic structures have horizontal velocities U of the order
of 0.1–1 m/s, characteristic horizontal scales L of the order of 10–100 km, and vertical
velocities three or four orders less than the horizontal ones. According to the classification
by Ivanov et al. (1986) (see also Bernstein, 1974; Holland, 1978; McWilliams, 1985; Bane
et al., 1989; Meacham et al., 1994, Danabasoglu et al., 1994) oceanic perturbations are
distinguished by their horizontal scaleL relative to the Rossby deformation radiusLR = N̄H

f

(N̄ is the characteristic buoyancy frequency, H is the depth of the ocean, f is the Coriolis
parameter). Namely, small-scale, mesoscale, synoptic scale, and global scale perturbations
are characterized by L � H , H < L < LR , L ∼ LR , and L � LR , respectively. Note that
the parameter LR varies considerably in the ocean. For instance, it reaches 70–80 km in the
tropic part of the Atlantic Ocean, and is much less in the arctic regions where LR ≈ 5–10 km.
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Dynamics of synoptic and mesoscale vortices can be approximately described by one
equation for the pressure P or for the stream function ψ, which are related by the linear
relation ψ = P

ρ0f
, where ρ0 is characteristic density. The equation expresses conservation

of the potential vorticity q = Δψ + ∂
∂z

f 2

N2
∂ψ

∂z
and has the form (e.g. Monin et al., 1977;

Pedlosky, 1987)

∂

∂t
q + J (ψ, q) = 0 or

dh

dt
q = 0. (1)

In (1) t is the time; z is the axis directed upward; x, y are the horizontal axes; N is the
buoyancy frequency; Δ = ∂2

∂x2 + ∂2

∂y2 and J (A, B) = ∂A
∂x

∂B
∂y

− ∂A
∂y

∂B
∂x

are the horizontal

Laplace and Jacobi operators, respectively; dh

dt
= ∂

∂t
+ u ∂

∂x
+ v ∂

∂y
, where u, v are the

horizontal velocity components. Eq. (1) is derived using the f -plane approximation (f =
f0 = const), and assuming the Rossby number to be small, Ro = U

f0·L � 1. In what
follows, for simplicity we assume the buoyancy frequency N to be constant and neglect the
influence of the β-effect (McWilliams, 1976; Fedorov and Ginzburg, 1986; Ivanov et al.,
1986; Reznik, 1992) on the vortex core deformation and effects related to the deformation.

With a knowledge of the stream function ψ(x, y, z, t), one can calculate the horizontal
velocity components (u, v),

u = −∂ψ

∂y
, v = ∂ψ

∂x
, (2)

the vertical velocity, pressure and density fields (e.g. Pedlosky, 1987).
According to observation synoptic/mesoscale eddy consists of a rotating vortex core and

exterior fluid, involved in a rotational motion (Meacham et al., 1994; Zhmur, 1988a, b;
Dahleh, 1992; Kawakami and Funakoshi, 1999; Rom-Kedar et al., 1990; Budyansky et al.,
2004; see also review by Koshel and Prants, 2006). The fluid inside the vortex core is slightly
mixed with the exterior fluid and is transported along with the core. Following Thomson
(1867), the volume of the trapped fluid is referred to as “vortex atmosphere.” Usually the
vorticity inside the core differs greatly from the vorticity of background exterior fluid.

Here we are interested in ellipsoidal vortices considered in a number of works (Zhmur,
1989; Zhmur and Pankratov, 1989, 1990a; Zhmur and Shchepetkin, 1991; Pankratov and
Zhmur, 1991; Meacham, 1992, Meacham et al., 1994; Muyazaki et al., 1999, 2001; Dritschel
et al., 2004; Dritschel, 2010). These papers focus on the dynamics of mesoscale vortices:
their rotation, deformation, interaction, and evolution in exterior flows of different kinds.
The amount of the fluid carried out by the vortices is poorly known despite the apparent
simplicity of the problem. If the induced velocity field is nonstationary, then the Lagrangian
trajectories of fluid particles can be chaotic (Aref, 1990, 2002; Meleshko and Aref, 1996;
Zaslavsky, 2007; Kozlov and Koshel, 1999, 2000; Koshel and Prants, 2006; Kozlov et al.,
2005; Prants et al., 2006). In this case, the vortex atmosphere can entrain or detrain water
mass.
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The focus of this paper is the fluid advection (including chaotic advection) in velocity
field induced by an ellipsoidal vortex. We pay special attention to localized regimes of the
core motion, so we examine in sufficient detail the classification of these regimes obtained
by Zhmur and Pankratov, (1990a,b), Zhmur and Shchepetkin (1991, 1992) and Meacham
et al. (1989).

Chaotic behavior of the Lagrangian trajectories of the fluid particles has been demon-
strated by Polvani and Wisdom (1990); Dahleh (1992); Kawakami and Funakoshi (1999);
Shariff et al.(2006) and Chaplygin (2007) and Kida (1981) for a barotropic elliptic vortex.
These works mainly study particular cases of a strong strain component. Again, the chao-
tization mechanism has not been clarified, with the exception of estimating the Melnikov
integral, which relates only to the separatrix chaotic layer. In this paper we examine all
characteristic types of the localized motion of an ellipsoidal vortex and study the formation
mechanisms of both a separatrix chaotic layer and a strong chaos case (Koshel, et al., 2008;
Izrailsky, 2006, 2008).

2. Model of ellipsoidal vortex

So, we consider the vortex with piece-wise constant potential vorticity (PV) q equal 2α/2β

inside/outside the vortex core (α �= β). The fluid is assumed to be infinite in all directions, i.e.
the influence of the oceanic boundaries (both vertical and horizontal) is neglected (Zhmur,
1989). In this model the vortex dynamics is fully determined by evolution of the boundary
of the vortex core which is conveniently represented by the equation

F(x, y, z, t) = 0.

Let the initial core be an ellipsoid and one of the ellipsoid axes is parallel to the z-axis. The
background flow is assumed to be purely horizontal and linearly dependent on coordinates:

ub = ex − γy, vb = γx − ey; (3)

the parameters e, γ are constant. Thus, we model the behavior of a mesoscale vortex embed-
ded in a large-scale background flow. This problem was considered in a number of papers
(Zhmur, 1989; Zhmur and Pankratov, 1989, 1990a; Zhmur and Shchepetkin, 1991; Pankra-
tov and Zhmur 1991; Meacham et al., 1994). The stream function corresponding (3) has
the form ψb = (x2 + y2)γ/2 − exy, i.e. the background flow is a superposition of the
rotation component γ(x2 + y2)/2 accelerating or decelerating rotation of the vortex, and
the straining component −exy forcing the vortex to elongate. Relative strength of these
components is determined by the ratio e/γ, in the case |e/γ| = 1 the velocity field (3) being
a rectilinear shear flow directed at an angle 45◦ to the x-axis.

Intrinsic dynamics of the vortex and interaction with this exterior flow results in that
the vortex core is deformed in the horizontal plane and simultaneously rotates about the
vertical axis (for more details see Meacham et al., 1994). The boundary of the ellipsoidal
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core remains ellipsoid; the vertical axis of the ellipsoid being constant and the horizontal
axes changing in time. The equation which determines the boundary evolution can be written
in the form:

F(x, y, z, t) = x̃2

a2(t)
+ ỹ2

b2(t)
+ z̃2

c2
− 1 = 0, (4)

where the coordinates (x̃, ỹ) are related to the coordinates (x, y) by equations

x̃ = (x − x0) cos θ(t) + (y − y0) sin θ(t),

ỹ = −(x − x0) sin θ(t) + (y − y0) cos θ(t). (5)

Here the fixed point x0, y0 corresponds to the vortex center, a and b are the principal
horizontal semi-axes of the ellipsoid (by definition, a is the major semi-axis), c is the
principal vertical semi-axis, θ is the angle between a and the x-axis. Dynamics of the core
is described by the equations (see Zhmur and Pankratov, 1989):

ȧ = ae cos 2θ, ḃ = −be cos 2θ,

θ̇ = Ω + γ − a2 + b2

a2 − b2
e sin 2θ, (6)

where Ω is the natural rotation of the core in the absence of background flow,

Ω = gabc̃

∞∫
0

μdμ

(a2 + μ)(b2 + μ)
√

Δ(μ)
= gK

∞∫
0

μ′dμ′

[(μ′2 + ξμ′ + 1)3(K2 + μ′)]1/2
, (7)

and Δ(μ) = (a2+μ)(b2+μ)(c̃2+μ), ξ = a
b
+ b

a
= ε+ 1

ε
, c̃ = N

f
c, K = c̃√

ab
, 2g = 2(α−γ).

The parameter ξ describes the horizontal elongation of the core, K characterizes the vertical
flatness of the core, and ε = a/b is the horizontal aspect ratio of the ellipsoid.

We also need to calculate the stream function. It is convenient to write the stream function
as a sum ψ = ψb +ψV , where ψV is the perturbation due to the vortex. These components
satisfy the equations

Δψb = 2γ, ΔψV =
{

0, r /∈ V,

2g, r ∈ V.

For the vortex part we have (see Zhmur and Pankratov, 1989; Meacham et al., 1994)

ψV (x̃, ỹ, η) = −1

2
gabc̃

∞∫
λ(x̃,ỹ,η)

(
1 − x̃2

a2 + μ
− ỹ2

b2 + μ
− η2

c̃2 + μ

)
dμ√
Δ(μ)

. (8)
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For the fluid particles located inside the core, the parameter λ in (8) should be taken as zero.
For the exterior fluid particles, including the boundary, λ(x̃, ỹ, η) ≥ 0 is the positive root
of the equation

x̃2

a2 + λ
+ ỹ2

b2 + λ
+ η2

c̃2 + λ
= 1. (9)

Horizontal velocity components (ũ, ṽ) in the rotating coordinates (x̃, ỹ) have the form

ũ = − ∂

∂ỹ
ψV = −gabc̃

∞∫
λ

dμ

(b2 + μ)
√

Δ(μ)
ỹ

ṽ = ∂

∂x̃
ψV = gabc̃

∞∫
λ

dμ

(a2 + μ)
√

Δ(μ)
x̃. (10)

There are three dynamical regimes of the core behavior inside the flow in the horizontal
plane: oscillation, rotation, and infinite elongation (Zhmur and Pankratov, 1989; Meacham
et al., 1994). When the oscillation or rotation regimes occur, the horizontal scales and the
orientation of the core alter periodically. When infinite elongation occurs, one horizontal
axis tends to infinity, while the other one tends to zero. Analogous regimes exist in the case
of the barotropic elliptical vortex (Kida, 1981; Meacham et al., 1989).

Below we use Eqs. (3)–(10) written in nondimensional form using the scales L, h, U ,
N̄ , the time scale t∗ = L/U , and the stream function scale ψ∗ = UL. Formally, the nondi-
mensional equations coincide with the dimensional ones since we use the same notations
for the dimensional and the nondimensional variables.

The equations governing the motion of fluid particle have the form

dx

dt
= u = ex − γy − ∂

∂y
ψv,

dy

dt
= v = γx − ey + ∂

∂x
ψv. (11)

We introduce useful notations for elliptic integrals

α0 = abc

∞∫
0

1

a2 + μ

dμ√
Δ̃(μ)

, β0 = abc

∞∫
0

1

b2 + μ

dμ√
Δ̃(μ)

, χ0 = abc

∞∫
0

dμ√
Δ̃(μ)

,

(12)

and expression for the frequency Ω obtained in Zhmur and Pankratov (1989):

Ω = gΩ̄ = −g
β0b

2 − α0a
2

a2 − b2
. (13)
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The last terms in the right-hand side of Eq. (11) are calculated using (5), (10)

∂

∂x
ψV = cos θ

∂

∂x̃
ψV − sin θ

∂

∂ỹ
ψV ,

− ∂

∂y
ψV = − sin θ

∂

∂x̃
ψV − cos θ

∂

∂ỹ
ψV . (14)

To calculate fluid particle trajectories one should solve the systems (6), (11) together with
(4), (5), (9), (10), (13), (14). It readily follows from (6) that a(t)b(t) = const (we recall
that the vertical axis c is assumed to be constant). As a result, we have a dynamical system
with two degrees of freedom for Lagrangian trajectories of fluid particles. It was proven that
such a case of two degrees of freedom is nonintegrable, and the trajectories could manifest
chaotic behavior (Amol’d, 1989; Wiggins, 1990).

3. Regimes of vortex’s core motion

System (6) is conveniently reduced to two equations for ε, θ (Zhmur and Pankratov, 1989)

ε̇ = 2eε cos 2θ, θ̇ = Ω(ε) + γ − e
ε2 + 1

ε2 − 1
sin 2θ. (15)

In its turn, it readily follows from (15) that

d sin 2θ

dε
= 1

ε

(
Ω(ε) + γ

e
− ε2 + 1

ε2 − 1
sin 2θ

)
, (16)

whence we have (Zhmur and Pankratov, 1989):

sin 2θ(ε) = ε

ε2 − 1

⎧⎨
⎩ ε2

0 − 1

ε0
sin 2θ0 + 1

e

ε∫
ε0

τ2 − 1

τ2
Ω(τ)dτ + γ

e

(
ε + 1

ε
− ε0 − 1

ε0

)⎫⎬
⎭ ,

(17)

where θ0, ε0 are some initial values. The integral in (17) may be expressed in a symmetric
form of elliptic integral (Carlson and Gustafson, 1993; Dritschel et al., 2004)

sin 2θ(ε) = ε

ε2 − 1

{
ε2

0 − 1

ε0
sin 2θ0 − g

2eab
[χ0(a, b, c) − χ0(a0, b0, c0)]

+γ

e

(
ε + 1

ε
− ε0 − 1

ε0

)}
. (18)

We now consider phase portraits on the phase plane (ε, sin 2θ) of the system in detail.
Phase trajectories satisfy Eq. (17), but it is more convenient to use (15) for the analysis of
stagnation points. The initial position (0,1) gives a hyperbolic point. The axis ε = 1 is the
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Figure 1. Ω(ε) (solid lines), κ1(ε) (dashed lines), and κ−1(ε) (dot-dashed lines) as functions of ε at
specified values of e and g for K = 1. The black circles show graphical solutions of equations (20).

first branch of the separatrix for this point. The second branch can be described by equation
(18) for θ0 = 0, ε0 = 1 (Zhmur and Pankratov, 1989):

sin 2θ(ε) = − g

eab

ε

ε2 − 1
[χ0(a, b, c) − χ0(a0, b0 = a0, c)] + γ

e

ε − 1

ε + 1
. (19)

It is obvious that ε̇ = 0 when sin 2θ = ±1; also, when g is negative, θ̇ may be zero in
one or two points when sin 2θ = −1, and only in one point when sin 2θ = 1. When g is
positive and sin 2θ = 1, there are one or two stationary points, and when sin 2θ = −1, the
stationary points are absent. Coordinates of the stationary points satisfy the equations

e
ε2 + 1

ε2 − 1
= Ω(ε) + γ, sin 2θ = 1; −e

ε2 + 1

ε2 − 1
= Ω(ε) + γ, sin 2θ = −1. (20)

Below we normalize g, e by γ, i.e., by g and e, we mean g/γ and e/γ. Figure 1 represents
the solutions of (20). It shows Ω(ε), κ1(ε) = e ε2+1

ε2−1
− 1, and κ−1(ε) = −e ε2+1

ε2−1
− 1 as
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Figure 2. The regions for different regimes of vortex core motion on (gK, e)-plane. The solid lines
correspond to K = 1. The dashed lines correspond to K = 0.01, and the dot-dashed lines, to
K = 10. The white background corresponds to e > 1 with motion types of 1-3,5,6; the gray
background corresponds to e ≤ 1 with motion types of 4,7,8.

functions of ε. The intersection of the frequency line Ω(ε) with the line κ1(ε) gives the
stationary points for sin 2θ = 1, and that with the line κ−1(ε) for sin 2θ = −1.

Let us analyze dependence of the number of stationary points on the parameters g, e.
We start with the case e > 1, g > 0. When g > 0, the frequency lines begin with a finite
value of Ω(1; K, g) and tend to zero when ε increases as |Ω(ε)| ∼ ln ε/ε1/2 (Carlson and
Gustafson, 1993). Thus, the frequency lines may intersect only the lines κ1(ε). It is seen
from Figure 1 that given e, the frequency lines corresponding to too small g lay below the
corresponding line κ1(ε); i.e., there are no stationary points in this case. With increasing g

the frequency line becomes tangent to the curve κ1(ε), and then, with further increase of
g, either one (as, for example, for g = 6, e = 1) or two (as, for example, for g = 8.64,
e = 1.5) stationary points appear, for all these points sin 2θ = 1.

Figure 2 shows the curve g(e), corresponding to the case of tangency; the line sepa-
rates regimes 1 (no stationary points) and 2 (two stationary points). As the frequency line
decreases slower than the dashed line, we have only one intersection when e = 1; i.e., the
line separating regimes 1 and 2 starts from the initial position g = 0, e = 1.

In the case e > 1, g < 0 the frequency lines are negative and cannot intersect the positive
dashed lines κ1(ε), i.e. there are no stationary points when sin 2θ = 1. The case of lines
κ−1(ε) and negative g is analogous to the case of lines κ1(ε) and positive g. When the
absolute value of g is small, the frequency line lays above the dot-dashed line (for example,
g = −15, e = 0.6); i.e., there are no stationary points for sin 2θ = −1. With increasing
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absolute value of g given e, at first, a tangency point (for example, for g = −16.97, e = 0.6),
and then two intersection points, appear. The line, corresponding to the tangency, is shown
in Figure 2, where it separates regimes 1 (above), and 5 (below).

Figure 3a illustrates the phase portrait on the plane (ε, sin 2θ) for the vortex core motion
in regime 1 (no stationary points). The separatrix, which starts at (0,1), asymptotically tends
to the limit 1/e with increasing ε, and it may have a maximum (minimum) when g is positive
(negative). The phase trajectories are confined to the strip sin 2θ = ±1 and begin either at
the boundary sin 2θ = 1 or at the boundary sin 2θ = −1.

There is no stationary points on the boundaries sin 2θ = ±1 in the regime 1, therefore
all trajectories run to infinity when ε increases. Thus, in this case, we have an infinitely
elongating vortex core, and there are no localized motions. Figure 3a shows the separatrices
for zero and negative g, which demonstrate that the phase trajectories may be slightly
deformed, but there are still no localized motions.

The stationary points on the upper or lower boundaries of the physical space exist in
the regimes 2 and 5. These points correspond to two intersections of the frequency lines
with the dashed and dot-dashed lines as shown in Figure 1. Figure 3b demonstrates a phase
portrait when g is positive (regime 2). The second stationary point (marked by cross) corre-
sponds to a maximum of phase line lying above the separatrix. It is not a hyperbolic point,
so it corresponds to tangency of phase line and boundary of physical region, but not an
intersection of two phase trajectories. We call this phase line pseudoseparatrix because it
separates phase trajectories corresponding to different regimes of the core motion (oscilla-
tion, elongation, and, for some special cases, rotation). The pseudoseparatrix is tangent to
the upper boundary of the physical region; the phase trajectories which begin on the left
to the tangency point intersect the upper boundary twice, and there is an elliptic stationary
point in any case. This point corresponds to zero angular velocity of the vortex core, the
angle θ being given by the equation sin 2θ = 1. The vortex motion along the phase trajecto-
ries that intersect the boundary sin 2θ = 1 twice occurs with rebounding; i.e., we have the
oscillation regime in the region left to the pseudoseparatrix tangency point. So, in this case
we have oscillation regimes above and left of the pseudoseparatrix, and elongation regimes
above and right of it. Between the separatrix and the pseudoseparatrix, the elongation starts
from the upper boundary, the pattern of the elongation coinciding with the pseudoseparatrix.
Below the separatrix, the elongation starts from the bottom boundary sin 2θ = −1 but does
not approach the upper boundary, the limiting angle of rotation θ0 is given by the equation
sin θ0 = 1/e.

Figure 3c represents a phase portrait of the regime 5 (g < 0). This regime is analogous
to the regime 2 with the difference that the separatrix has a minimum (not maximum),
and therefore the pseudoseparatrix is tangent to the bottom boundary, which results in
that the localized motions (oscillations) take place in the vicinity of the angle θ satisfying
sin 2θ = −1.

In the above regimes 1, 2, 5 the separatrix does not approach the boundaries sin 2θ = ±1.
When the absolute value of g increases given e > 1, the separatrix at first becomes tangent
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Figure 3. Phase trajectories on the plane (ε, sin 2θ) for K = 1, e = 1.5 > 1. (a) g = 8.75, regime 1;
(b) g = 11, regime 2; (c) g = −32, regime 5; (d) g = 13, regime 3; (e) g = −40, regime 6. The
bold lines are separatrices. The horizontal line marks the level of 1/e. All trajectories that do not
intersect the line sin 2θ = ±1 tend to the level 1/e.
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to the upper or lower boundary and intersects the boundary with further increasing g. When
the separatrix intersects the boundary, the pseudoseparatrix is tangential to the boundary
on the right of the separatrix. Figure 2 shows two lines of g(e), which correspond to the
tangency of the separatrix with the upper boundary (the line separating regimes 2 and 3) or
the lower boundary (the line separating regimes 5 and 6).

Figure 3d represents a phase portrait of the regime 3. Like the regime 2, there are two
stationary points on the upper boundary but in this case, separatrix intersects the boundary
and the intersection point is located between these stationary points. Thus, the oscillation
regime about the elliptic point takes place left and above the separatrix. The phase trajectories
between the separatrix and the pseudoseparatrix start at the lower boundary and finish at
the upper one. Finally, in the domain above the pseudoseparatrix and on the right of the
second stationary point (cross), and in the domain below of the pseudoseparatrix, the phase
trajectories go to infinity. The phase portrait of the regime 6 (g < 0) shown in Figure 3e is
analogous to the regime 3 if one exchanges the upper and the lower boundaries.

We now consider the case e < 1. In this case the asymptotic limit of all trajectories 1/e lies
outside the physical region; i.e., all phase trajectories intersect either the upper or the lower
boundary sin 2θ = ±1 and no trajectories go to infinity. For positive g only one stationary
point on the upper boundary exists because the dashed lines in Figure 1 asymptotically tend
to the negative limit e − 1. If g is negative and small enough in absolute value, then the
negative frequency lines in Figure 1 lie above the dot-dashed lines and intersect the dashed
lines (as for example, for g = −7, e = 0.1); i.e., there is only one stationary point on the
upper boundary in this case. We will refer to this regime as the regime 4 (see Fig. 2).

An example of the phase portrait for the regime 4 is shown in Figure 4a. The separatrix
intersects the upper boundary and the phase trajectories in the domain above and on the
left of the separatrix corresponds to the oscillation regime. On the right of the separatrix all
phase trajectories start at the lower boundary and finish at the upper one, so we have only
rotation regime here.

For comparison, we show the separatrix with negative g = −10, which has a minimum
at negative sin θ. With increasing absolute value of g this minimum shifts to the lower
boundary which finally results in an arising pseudoseparatrix tangent to this boundary as
shown in Figure 4b. This figure represents the regime 8 which is separated from the regime
4 by continuation to the domain e < 1 of the line separating the regimes 1 and 5 in Figure
2. Like the regime 4, the motion can be only localized in the regime 8 since all phase
trajectories start and finish at the boundaries. This regime is characterized by rather large
negative g and e < 1. The corresponding negative frequency line in Figure 1 intersects
the dot-dashed line in two points and the dashed line in one point. Thus there are two
stationary points on the lower boundary and one stationary point on the upper one. As
a result the regime 8 is characterized by the oscillation regime above the separatrix, the
rotation regime between the separatrix and the pseudoseparatrix, another oscillation regime
on the left of and below the pseudoseparatrix, and another rotation regime on the right of the
pseudoseparatrix. Amplitude of the oscillations of the vortex near the direction sin 2θ = 1
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Figure 4. Phase trajectories on the plane (ε, sin 2θ), when K = 1, e = 0.5 < 1. (a) g = 4, regime 4;
(b) g = −16.7, regime 8; (c) g = −18, regime 7. The bold lines are the separatrices.

(upper boundary) can greatly exceed the corresponding amplitude of the oscillations near
the direction sin 2θ = −1 (lower boundary). The phase trajectories between the separatrix
and the pseudoseparatrix describe an interesting regime of motion when the system passes
through half of an oscillation period, then a revolution occurs, after which another half of
the oscillation period takes place.

As in the case e > 1, further increasing absolute value of the negative g given e < 1
results in that the separatrix, at first, becomes tangent to the lower boundary and then
intersects the boundary which characterized the regime 7 shown in Figure 4c. In Figure 2
the line separating the regimes 5 and 6 prolongs to the region of e < 1, where it separates
the regimes 7 and 8. The regime 7 differs from the regime 6 in that all the trajectories above
the pseudoseparatrix start and finish at the upper boundary (not shown in Fig. 4c).
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Figure 5. Fluid particle trajectories in the velocity field induced by a vortex core (K = 1, e = 1.5)

located in the elliptic point shown in (a) Figure 3b, g = 4, ε0 = 2.28 and (b) Figure 3c, g = −32,
ε0 = 1.78. The bold lines correspond to the separatrices, and the bold dashed lines correspond to
the vortex core boundary. The mean rotation frequencies of fluid particles are given on the right.

We now consider the case e = 1 which corresponds to a purely shear flow directed along
the line y = x. It is seen from Figure 1 that for positive g, only a stationary point exists on
the upper boundary so this is the fourth regime. The separatrix intersects the upper boundary
at some finite ε and the intersection point goes to infinity as g → 0. When g is negative
κ1(ε) > 0 and we have the first, fifth, and sixth regimes for e = 1.

Let us briefly discuss the influence of parameter K on the motion regimes. Absolute
value of the frequency decreases with the decreasing of K; hence, the maximal value of
the lines separating the fourth, eighth, and seventh regimes also diminishes with decreasing
K . Therefore, the lines separating the first, second, and third regimes shift upward, and
consequently the slope of these lines increases. In general, changes in the motion regimes
will occur at greater absolute values of g. Figure 2 demonstrates plots of Kg(e) for K = 0.01
(the dashed lines) and K = 10 (the dot-dashed lines).

4. Velocity field induced by the ellipsoidal vortex

We now analyze the velocity field induced by an ellipsoidal vortex embedded in a nonuni-
form flow and Lagrangian trajectories inside the field. The analysis is confined to the cases
of localized motion of the vortex (i.e., oscillations and rotations), and the regimes of chaoti-
zation of the Lagrangian trajectories are of special interest. Below we show that the rotation
regimes induce velocity fields analogous to those induced by the oscillation regimes.

We start with a steady-state case which corresponds to the elliptic stationary point in the
phase portrait (e.g. Fig. 3b). Figure 5 displaces the streamlines in this case for e > 1 when
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the background strain dominates over the background rotation. The streamline field consists
of the central vortex part with closed streamlines surrounded by four domains where the
motion is not localized and the streamlines start and finish at infinity. In Figure 5b the vortex
amplitude is larger than in Figure 5a; therefore, the streamline pattern in Figure 5a is more
elongated along the x-axis.

If e < 1 (background rotation dominates over background strain) the streamline pattern
is very different from the above one, as shown in Figure 6. In this case the streamlines are
always closed, and their shape depends on the sign of g determining the relative strength
of the vortex and the external rotation. In the case g > 0 all trajectories are limited and
surround the vortex core as shown in Figure 6a. When g is negative the dynamics change
(Figs. 6b and 6c). Near the vortex core the motion is determined by the core rotation;
however, far away from the core the fluid particle dynamics is dominated by the external
flow and the particle trajectories tend to ellipses determined by the external flow. When the
effects of the core and of the external flow are in balance, stationary points and, therefore,
a separatrix emerges.

Frequency of rotation of a fluid particle around the vortex core is of use for the analysis
of trajectory behavior within the external nonstationary flow. Motion of the particle is,
generally, nonuniform and therefore we determined this frequency as averaged angular
velocity ω(y0) = 2π/T , where T is the period for the fluid particle trajectory in the
coordinates x, y, and y0 is an initial position of the particle. Figures 5 and 6 show the
rotation frequencies as functions of the initial positions.

The frequencies are constant inside the core; here the solid-state rotation with double
rotating frequency of the vortex core shape takes place (Zhmur and Pankratov, 1989).
When e > 1, the frequencies rapidly decrease from the core boundary to the separatrix.
When e < 1, the rotation frequencies tend to the frequency determined by the external flow
ω∞ = √

γ2 − e2 with increasing |y0|. For positive g the frequencies decrease monotonically
from the core boundary to the level ω∞. For negative g the situation is more complicated.
As mentioned above, the frequencies are positive and are determined by the external flow
at large distances from the core, while they are negative and are determined by the core
motion in the vicinity of it; furthermore, the frequencies are zero at the separatrices. Such
distribution of the frequencies results in that there are a few trajectories that have the same
frequencies, the fact that is crucial for chaotic dynamics formation (Koshel et al., 2008).

5. Nonstationary regimes of vortex motion and chaotic advection

If the motion is nonstationary, for example, the vortex oscillates in the vicinity of ellip-
tical point, solutions of (15) depend on time and the particle trajectories are described by
nonautonomous dynamic system (11). Such systems are known as systems with one and
a half degrees of freedom, and they admit arising dynamical chaos (Zaslavsky, 2007). If
amplitude of the oscillations is small and there is a separatrix in the stationary velocity field,
then a stochastic layer arises near the separatrix in the corresponding nonstationary velocity
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Figure 6. Fluid particle trajectories in a velocity field induced by a vortex core (K = 1, e = 0.5)

located in the elliptic point shown in (a) Figure 4a (g = 4, ε0 = 1.41); (b) 4a (g = −10, ε0 =
7.46, sin 2θ0 = 1), (c) 4b (g = −16.7, ε0 = 1.66, sin 2θ0 = −1).
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Figure 7. Poincare sections for parameters same as in Figures. 3b and 5a (K = 1, g = 11, e = 1.5),
and the initial values of ε0 : (a) ε0 = 2.241; (b) ε0 = 1.4

field. Also nonlinear resonances may appear in such a nonstationary field and separatrices
of the nonlinear resonances may generate chaotic behavior. With increasing the oscillation
amplitude the nonlinear resonances start to overlap, resulting in appreciable chaotization in
the area of overlapping. Analysis of nonlinear resonances in geophysical flows is discussed
in a number of papers (see for example, del-Castillo-Negrete and Morrison, 1993; Gudi-
menko, 2007; Izrailsky et al., 2006, 2008; Koshel et al., 2008; Ryzhov and Koshel, 2010;
Ryzhov et al., 2010).

To estimate the size of the area in which the nonlinear resonances arise, we show in
Figures 5 and 6 the frequency Ω of oscillations of the core when it slightly deviates from the
elliptic point. The level ω = Ω intersect frequency line ω(y0) at the point y0 corresponding
to a resonance trajectory with the winding number of 1:1. The levels of half-frequency
ω = Ω/2 are also shown. Intersection of these levels with the frequency lines corresponds
to the resonance trajectories with the winding number of 1:2.

We now consider the appearance of nonlinear resonances when the core slightly deviates
from the elliptic point. We start with the case shown in Figure 5a. Here the resonance
trajectories are located near the separatrix therefore the chaotization is rather weak but the
mechanism of arising chaos is seen clearly. Figure 7 demonstrates Poincare sections which
show the positions of a trajectory once per period of the vortex core oscillation. According
to Figure 5a, one can see the appearance of a pair of resonances 1:1 near the separatrix. To
show that these are exactly the resonances 1:1, we use different gray scales to mark two fluid
particles that start from different stability islands. One can see that the marker from one
stability island cannot be caught by another one. Since the resonances are located near the
separatrix they are partially destroyed, and the fluid outside the stability islands flows out to
the exterior flow domain because of chaotic advection. An interesting feature of Poincare
sections in Figure 7a is a narrow stochastic layer between the resonances and core vicinity.

With increasing amplitude of the core oscillations the nonlinear resonances more and
more lap over the separatrix stochastic layer and when the amplitude is nearly maximal,
the resonances are completely destroyed. Additionally, owing to a decrease in the rotation
frequency, the resonances or the area of their destruction move toward the separatrix layer.
The maximal chaotization (with regular area near core boundary ∼0.1 width) is reached
when the amplitude of the oscillation is almost maximal. In the regime 3 of the vortex
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Figure 8. Poincare sections for parameters same as in Figures 6a, b (K = 1, e = 0.5), and initial
values of ε0 : (a) ε0 = 1.31, g = 4; (b) ε0 = 7.25; g = −10 (c) ε0 = 7.0, g = −10.

motion we see analogous dynamics. As seen from Figure 5b, in this case the resonances
are closer to the separatrix than in the preceding case and, therefore, the regular zone in the
vicinity of the core is larger when the maximal chaotization occurs (see Fig. 7b).

Much more diverse effects of the chaotic advection arise in the case of e < 1. For positive
g the rotation frequency decreases slowly with increasing distance from the core. Therefore
the nonlinear resonances are separated by sufficiently large distances and the resonance
widths decrease (Koshel et al., 2008), so there is only a pair of 1:1 resonances and a narrow
separatrix layer (see Fig. 8a). When g is negative, the recirculation zones arise and the
frequency lines become more complicated (see Figs. 6b,c); the frequency of the vortex
oscillation (rotation) is less than the maximal frequency of a fluid particle since the vortex
is slowed down by the external flow.

One can see from Figure 6 that four pairs of 1:1 resonances can be expected: one between
the core boundary and the separatrix, two inside the recirculation zones (one pair per zone);
and one in the flow exterior outside the separatrix. Figure 8 represents an example of the
motion regime 4 for negative g. We see all resonance pairs corresponding to the frequency
line, except for the pair which is nearest to the core boundary. This pair is completely
destroyed even in the presence of such a weak perturbation. On the whole, since the res-
onances are quite close to the separatrix, all of them are partially destroyed which results
in the appearance of a large chaotic zone with strong mixing. Due to closeness of the sep-
aratrix to the core boundary and the existing nonlinear resonances in this narrow domain,
the boundary of the chaotic zone is located near the core boundary. Maximal chaotization
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Figure 9. The frequencies of fluid particle rotation as functions of the initial position of the particle
on the semimajor axis. Ω is the mean oscillation frequency of the core. The dashed line marks
the rotating frequency of a fluid particle in the absence of the core

√
γ2 − e2. The parameters

correspond to Figure 4c.

takes place when the perturbation amplitude is almost maximal; in this case, the widths of
resonances increase but they come closer to the separatrix because of a decrease in the oscil-
lation frequency with increasing amplitude. Minimal width of the regular region is ∼0.014.
Figure 8c shows the dynamics of the regime 8, which is analogous to that of the regime 4
for negative g. Velocity field induced in the vicinity of the stationary point at sin 2θ = −1
for the regime 7 is analogous to that for the regime 8; therefore, we examine only the regime
7 that allows us to study both the oscillation and the rotation types of the vortex motion. An
important point is that with increasing absolute value of g the frequency of the vortex core
oscillation (rotation) also increases. Figure 9 shows the frequency curve for this case. For a
large absolute value of g the maximal oscillation frequency exceeds the maximal frequency
for recirculation zones and even the maximal rotation frequency determined by the external
flow. Thus for small perturbations the widest resonances 1:1 can appear only in the domain
between the core boundary and the separatrix. In the absence of the widest resonances one
can see narrower resonances with fractional winding numbers (Koshel et al., 2008).

An example for small perturbation amplitude in regime 7 is represented in Figure 10a.
The domain of chaotization is bounded by four boundaries: one is in the vicinity of the core,
another is in the external flow, and two are inside the recirculation zones. In all cases the
location of the boundary is determined by the last undestroyed resonance. In the external
flow these are the resonances 1:2 (one of them is marked by a blue marker, and another
by a dark blue marker), which are located quite close to the separatrix (see Fig. 9). In
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Figure 10. Poincare sections with parameters corresponding to Figure 4c (K = 1, g = −18, e =
0.5, sin 2θ0 = −1) for different amplitudes of vortex oscillations, ε0: (a) ε0 = 1.307, (b) ε0 = 1.27,
(c), ε0 = 1.1 (d) ε0 = 2.7 (rotation). The vortex core is at rest when, ε0 = 1.507.

the core vicinity these are very narrow (Ryzhov and Koshel, 2010; Ryzhov et al., 2010)
resonances 1:1 (red and magenta). In the recirculation zones all resonances are destroyed
except for the resonances 5:6 (orange in one zone and brown in the other) and 4:5 (green
and yellow). Following (Koshel et al., 2008; Izrailsky et al., 2008) one can analyze the
chaotization evolution when the amplitude of the core oscillation (rotation) increases. On
the one hand, with increasing amplitude widths of the resonances also increase, i.e. the
extent of overlap grows. On the other hand, the oscillation frequency decreases resulting
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in resonances approaching the separatrix, which means that the boundaries (both internal
and external) of the chaotization domain approach the separatrix. As a result the mixing is
intensified but the chaotic zone does not grow.

Figure 10b represents an example where the amplitude is quite large so that the frequency
is slightly less than the maximal rotating frequency in the recirculation zones. The nonlinear
resonances 1:1 emerge in the recirculation zones near the elliptic points (see Fig. 9); the
resonances are marked by green and orange in one recirculation zone and yellow and brown
in the other one. We note that in each recirculation zone two separatrices merge into one
separatrix which does not envelop an elliptic point but has a hyperbolic point in the place of
elliptic point of the unperturbed recirculation zones. This means that the frequency is almost
equal to the maximal rotation frequency at the elliptic point and effects of the resonances are
related to its finite width in the frequency (Koshel, et al., 2008). As compared with Figure
10a, the chaotic zone widens slightly in the external flow due to a partial destruction of the
resonances 1:2 (blue and dark blue) and in the vicinity of the core due to full destruction
of the resonances 1:1; and, more strongly, inside the recirculation zones due to destruction
of the fractional resonances (Ryzhov et al., 2010; Koshel et al., 2008; Izrailsky et al.,
2008). In this case the chaotic zone approaches very close to the vortex core (the regular
domain width here is of order 0.04). Widening of the chaotic zone in the external domain also
approaches its maximum: here, with further increasing oscillation amplitude, the zone either
remains unchanged (if widening of the resonances compensates the frequency decreasing)
or decreases.

Another effect is that with further increasing oscillation amplitude the resonances 1:1
approach the separatrix inside the recirculation zones. When these resonances and the
stochastic layer start to overlap, the resonances are partially destroyed with chaotization
of the area, including the centers of recirculation zones and the hyperbolic point domain.
Figure 10c gives an example of the evolution. With a decrease in the oscillation frequency,
the chaotic region slightly decreases. The domains of undestroyed resonances in the recir-
culation zones are minimal. The Poincare sections clearly show hyperbolic points inside
the recirculation zones which is related to the fact that the vicinity of the hyperbolic point
is effectively ventilated, i.e., markers do not stay here too long (Budyansky et al., 2004;
Kozlov et al., 2005).

Figure 10d shows the rotation motion regime along the phase trajectory far from the
elliptic point in Figure 4c. The resonances 1:1 (the same colors as on frames b, c) absorbed
by the stochastic sea move away from the centers of the recirculation zones, and each such
zone is a rather large domain of regular behavior with central elliptic point (Ryzhov and
Koshel, 2010; Koshel et al., 2008; Izrailsky et al., 2008). Small stability islands can be seen
in Figure 10d; the positions of the islands corresponding to the frequency rotation equal to
0.768. In the outer region, one can see small patches of undestroyed 1:3 resonances (blue
and dark blue).

Figure 11 demonstrates evolution of the Poincare sections in time for the regime of
rotation; the time shift is equal to 1/8 of the period T of core rotation and the marker colors
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Figure 11. Poincare sections with the parameters corresponding to Figure 10d with a time shift equal
to 1/8 of the period of vortex rotation: (a) tn = T/8+nT ; (b) tn = T/4+nT ; (c) tn = 3T/8+nT ;
(d) tn = T/2 + nT .

are as in Figure 10d. Sequence of these sections shows the motion of the characteristic zones
during one-half revolution of the vortex core. Figure 10d shows the trajectory positions at
the moments nT, and Figure 11a - at the moments T/8 + nT . Comparison of Figures 10d
and 11 show that the vortex core has an anticyclonic direction of rotation. The fluid in a
vicinity of the core also rotates in the same direction. Inside the recirculation zones the
fluid rotates about stationary elliptic points in a cyclonic direction (it may be seen by the
motion of residual stability islands 1:1). In the external flow the fluid also rotates in a
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cyclonic direction about the area that includes the core and the recirculation zones. All
particles located in the chaotic zone may perform the motion in any of the three regimes
since they may appear in any place of the chaotic sea due to separatrix destruction. Figure
11b corresponds to particle positions at the moments T/4+nT , corresponding to the upper
boundary of the phase portrait in Figure 4c.

We now give a more precise definition to the phase portraits. Generally speaking, the
portraits in Figures 3 and 4 should be considered on a torus which can be constructed in
the following way. Since the rotation (or oscillation) frequency of the vortex core is half
the frequency of the eccentricity alteration, the phase portrait is a cylinder consisting of
four rectangles similar to ones shown in Figures 3 and 4. These rectangles correspond
to −π/4 < θ < π/4 (as in Figs. 3 and 4), π/4 < θ < 3π/4, 5π/4 < θ < 7π/4,
and 3π/4 < θ < 5π/4. All rectangles are connected by the top and bottom boundary,
respectively. The first two rectangles are connected with each other by the lines θ = −π/4
and θ = 3π/4, and the other two, by the lines θ = 3π/4 and θ = 7π/4. Then the cylinders
are linked by the lines. Additionally, it is necessary to append a part of the cylinder for
0 < ε < 1 and finally close all the parts to form a torus, so that the ends of the resulting
cylinder will be connected when ε = 0, and ε = ∞. Thus, Figure 11b corresponds to the
bottom boundary of the rectangle −3π/4 < θ < −π/4, and the eccentricity reaches its
minimal value on this boundary and on the upper boundary of the phase portrait in Figure
4. Since the eccentricity alteration period is half the rotating period of the core, there are
nonlinear resonance pairs with the same winding numbers. Figures 11c and 11d show the
Poincare sections at the moments 3T/8 + nT and T/2 + nT , respectively.

Finally, we consider an example of how chaotization depends on the depth. Zhmur and
Pankratov (1989) yield estimates showing that the influence of the vortex decays quite
rapidly with increasing depth. Figure 12 illustrates the Poincare sections for the case shown
in Figure 10c for different depth horizons. One can see in Figure 12 that the chaotization
decreases with depth that may be explained by a decrease of amplitude of the nonstationary
perturbation, while the perturbation frequency does not depend on the depth. The regular
region is minimal in the vicinity of the core slightly below the core boundary. Chaotization
effects almost disappear in the horizon z = 3.0 (see Fig. 12d). The core has no influence
at the level z = 4.0; this is in agreement with estimates by Zhmur and Pankratov (1989).
Such dynamics is typical for all motion regimes described above. These results confirm the
legitimacy of the model of infinitely deep ocean in this case since the core influence does
not extend to distances of the order of typical oceanic depth. Fluid mixing is appreciable
within a distance equal to the core’s vertical semi-axis from the core bottom boundary.

6. Conclusion and discussion

We considered possible regimes of the dynamics of an ellipsoidal vortex embedded
into external deformation flow. Special attention was paid to regimes of localized motions
of the vortex core: oscillations and rotations. The oscillation regime was shown to lead
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Figure 12. Poincare sections with parameters corresponding to Figure 10d at different horizons of
the depths: (a) z = 0.6; (b) z = 1.0; (c) z = 1.3; (d) z = 3.0; (e) z = 3.7; f) z = 4.0.

to chaotization of fluid particle trajectories outside the core. Extent of the chaotization
depends on the amplitude of the core oscillation which is taken to be the maximal deviation
of eccentricity of the core from its value in stationary state of the vortex. By increasing
the amplitude from zero, the chaotization first also increases but next it may decrease. This
effect occurs due to the fact that when the amplitude increases, the frequency of oscillation
(rotation) decreases. As shown by Izrailsky et al. (2006, 2008) and Koshel et al. (2008) the
finite amplitude boundary of the chaotic zone is determined by overlapping of the widest
nonlinear resonances. When the perturbation frequency decreases the resonances approach
the separatrices and in doing so they reduce the chaotic zone. Thus, we have an optimal for
chaotization amplitude of perturbation instead of the optimal frequency in Izrailsky et al.
(2006, 2008) and Koshel et al. (2008).
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Another interesting effect is that the nonlinear resonances appear as pairs due to the
double periodicity of core motion. As a result the chaotization becomes stronger since the
resonances may overlap not only with resonances of a different order, but also with pair
resonances of the same order. Dependence of the chaotization on the depth relative to the
vortex center was examined also. The chaotization was shown to be considerable on the
depths up to two vertical semi-axes of the ellipsoid and the influence of the vortex disappears
practically on the depths exceeding four the semi-axes.

We consider mesoscale and submesoscale eddies; i.e., the perturbations with horizontal
scales lying in the range between the ocean depth H and the Rossby deformation radius
LR (Ivanov et al., 1986). Typical values of the buoyancy frequency, Coriolis parameter, and
the ocean depth are N̄ = 2 · 10−3 s−1, f = 10−4 s−1, and H = 4 · 103 m, respectively.
Therefore we have LR = HN̄/f = 8 · 104 m. Let the horizontal scale be L = 10 km, the
velocity scale be U = 0.1 m/c, in this case the Rossby number is small R0 = U

f L
= 0.1. For

the same U and f but L ≈ LR it is small too R0 ≈ 0.01. We suppose that the dimensionless
value of the buoyancy frequency is unity, and the Burger number must be O(1) or less. If
B = N̄h

f L
= 1 for L = 10 km we obtain the vertical scale h = f

N̄
L = 0.5 km. For the same

B ≈ 1 and L ≈ LR we have h = f

N̄
L ≈ 4 km. If Burger number is small (for example

B ≈ 0.1) but L ≈ LR the vertical scale is h = f

N̄
L = 0.4 km. So suggested theory is valid

for mesoscale and submesoscale eddies. Now we can estimate a, b, c. Horizontal semi axes
a and b should be chosen in the range H < L ≤ LR . Vertical semi axis c may be order
from 100 m to 0.5 km.

The investigated model is rough, but it reproduces many characteristic features of saline
thermocline lenses (Armi and Zenk, 1984; Armi et al., 1989; Meacham et al., 1994;
Filyushkin et al., 2010).

In the absence of viscosity the vortex core boundary is a material surface and fluid
particles cannot intersect it (e.g. Brown and Samelson, 1994). However, as we saw, the
regular domain in the vicinity of the core boundary can be very narrow. Therefore, diffusion
or hydrodynamical instability (Sokolovskiy and Verron, 2000; Sokolovskiy, et al., 2010;
Carton, 2009; Dritschel, 2010; Perrot et al., 2010), can result in vorticity emanation from
the vortex core. At an initial stage the vorticity may be transported like a passive marker
and the structure of chaotic zone can be used as a pattern to study vorticity loss of the
vortex core. Such mechanism could be effective in symmetrization of vortices or formation
of three-vortex structures (Pingree and Cann, 1992; van Heijst et al., 1991).
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