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Secondary instability of salt sheets

by Satoshi Kimura1,2 and William Smyth1

ABSTRACT
In the presence of a vertically varying horizontal current (background shear), the salt-fingering

instability is supplanted by the salt-sheet instability. Previous direct numerical simulation (DNS)
experiments on salt sheets revealed that flow becomes turbulent via secondary instabilities. We call
these instabilities zig-zag and tip modes. Here, we investigate the physics of these modes using linear
normal mode stability analysis. As the primary instability (salt-sheet instability) grows, the zig-zag
mode emerges, which denotes undulation of growing salt sheets at the center of fingering regions.
This mode is shown to be an extension of secondary instability of unsheared two-dimensional salt-
fingering. The zig-zag mode is amplifed almost uniformly at all horizontal wavelengths exceeding
O(1 m). This mechanism may, therefore, account for the tilted laminae seen in shadowgraph images
of microstructure in salt fingering regions. Subsequently, the tip mode appears at the tips of undulating
salt sheets introducing streamwise dependence that leads the flow into turbulent regime.

1. Introduction

Salt-fingering instability can occur when gravitationally stable stratification is maintained
by heat, while salt is unstably distributed. Buoyancy anomalies are amplified because the
diffusion of heat is more rapid than the diffusion of salt. Where evaporation and surface
heating maintain the requisite salinity and temperature gradients (Schmitt, 2003), salt-
fingering instability can act to mix heat and salt downward into the ocean interior. Since
vertically-sheared, horizontal currents are ubiquitous, it is important that we understand
their effects on salt fingering.

Linear theory suggests that salt-fingering can take various planforms, such as sheets,
squares, and rectangles (Stern et al., 2001; Schmitt, 1994; Proctor and Holyer, 1986). In the
presence of background shear, all planforms with dependence on the streamwise coordinate
are damped, so that salt-fingering takes the form of vertical sheets aligned parallel to the
flow, the “salt-sheet instability” (Linden, 1974; Smyth and Kimura, 2007). Our focus here
is the secondary instabilities that lead salt sheets toward the turbulent state (Kimura and
Smyth, 2007).
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Instabilities of salt sheets are expected to bear some similarity to those of salt fingers,
which have been investigated in several previous studies. The secondary instability of salt-
fingering was first proposed by Stern as collective instability (Stern, 1969), an oscillatory
instability which is an amplification of internal waves on scales much larger than the salt-
fingering. Effects of perturbations of all wavelengths were studied in two dimensions by
Holyer (1984). Holyer found a small (finger-scale) stationary secondary instability that
grows faster than the collective instability. This two-dimensional approximation is of partic-
ular relevance here, since the primary salt sheet instability is also two-dimensional. Holyer’s
calculation treated the vertical velocity induced by salt fingers as a fixed parameter. Stern
and Simeonov (2005) assumed instead that the vertical velocity of the finger grows expo-
nentially in time (Stern, 1960, 1975) and found a super exponential mode. Most recently,
Traxler et al. (2011) utilized the framework of a mean field theory to identify salt-fingering,
collective, and layering instabilities.

The secondary stability analyses cited above have not considered the effect of sheared
horizontal currents. These studies have also assumed a vertically unbounded fluid domain
with uniform stratification. Here, we will employ direct numerical simulations (DNS) and
secondary stability analysis to study the transition to turbulence in the presence of vertically
varying horizontal current on a localized fingering layer. We will show how Holyer’s (1984)
mode is altered by the presence of background shear, and also explore the distinct instability
that we call tip mode.

Section 2 reviews the DNS model and describes the sequence of secondary instabilities
that leads to turbulence in DNS experiments. In Section 3, two distinct instabilities, the zig-
zag and tip modes, are identified using linear normal mode stability analysis. Results from
secondary stability analysis and DNS are compared in Section 4. In Section 5, instability
mechanisms are investigated via the perturbation kinetic energy budget. Conclusions are
summarized in Section 6.

2. Direct simulations

The Boussinesq equations are cast in a nonrotating Cartesian coordinate system {x, y, z}.
Buoyancy is assumed to be a linear function of temperature and salinity. The resulting field
equations describe the time evolution of the instantaneous velocity field �u(x, y, z, t) =
{u, v, w}, the thermal component of buoyancy, bT and the saline components of buoyancy,
bS as

D�u
Dt

= −∇π + bk̂ + ν∇2 �u, (1)

∇ · �u = 0, (2)

DbT

Dt
= κT ∇2bT , (3)
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DbS

Dt
= κS∇2bS, (4)

b = bT + bS. (5)

The variable π represents the reduced pressure (pressure scaled by the uniform characteristic
density ρ0). The buoyancy force is parallel to the vertical unit vector, k̂. Buoyancy is defined
as b = −g(ρ − ρ0)/ρ0, where g is the acceleration due to gravity in accordance with
Boussinesq approximation. The kinematic viscosity of sea water is represented as ν. The
variables κT and κS are the molecular diffusivities of heat and salt, respectively.

The initial profiles of background velocity and stratification represent a stratified double-
diffusive shear layer:

u

Δu
= bT

ΔBT

= bS

ΔBS

= tanh
( z

h

)
. (6)

Here, Δu is the half-change of background velocity across a transition layer of half-depth h.
ΔBT and ΔBS are the half-changes in thermal and saline buoyancy, respectively. The half-
change in total buoyancy is then ΔB = ΔBT + ΔBS . Boundary conditions are periodic in
the horizontal with periodicity intervals Lx and Ly in the streamwise (x) and spanwise (y)

directions, respectively. Upper and lower boundaries, located at z = Lz/2 and z = −Lz/2,
are impermeable (w = 0) and flux-free (∂u/∂z = ∂v/∂z = ∂bT /∂z = ∂bS/∂z = 0). Lz is
the domain height.

Computational resource needs are sensitive to the choice of the diffusivity ratio, τ =
κS/κT . In the ocean, the molecular diffusion of salt is two orders of magnitude slower than
that of heat, i.e., τ = 0.01. Historically, larger values of τ have been used in order to ease
resource requirements (e.g. Stern et al., 2001; Gargett et al., 2003; Smyth et al., 2005).
Only recently has three-dimensional DNS with τ = 0.01 become possible (Kimura and
Smyth, 2007). Secondary stability analysis is even more computationally expensive than
DNS.3 When τ = 0.01, salt sheets develop gradients too sharp to be resolved in secondary
stability analysis with the available memory. Accordingly we will choose τ = 0.16 for this
experiment.

The numerical code used to solve (1)–(5) is described in Winters et al. (2004) with
modifications as discussed by Smyth et al. (2005) and Kimura and Smyth (2007). Salinity
is resolved on a fine grid with spacing equal to one half the spacing used to resolve the other
fields. The resulting array dimensions for the fine grid are (nz, ny, nx) = (768, 20, 576).

The density ratio Rρ = −ΔBT /ΔBS and bulk (minimum) Richardson number Ri =
ΔBh/Δu2 were set to 1.6 and 2.0 respectively. These values were taken from observations
of a thermohaline staircase off Barbados (Gregg and Sanford, 1987). The spanwise period-
icity interval Ly was chosen so as to accommodate one wavelength of the fastest-growing

3. While the memory requirement for DNS scales as N3, where N is a typical array dimension, the matrix
whose eigenvalues and eigenvectors describe secondary instabilities has size N2 ×N2 = N4. Processing time for
DNS scales as N4 (accounting for the Courant-Friedrichs-Leowy timestep limitation), whereas the time needed
for the eigenvalue analysis is ∼ (N2)3 = N6.
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Figure 1. The saline buoyancy is color coded. Values range from−0.21ΔBS (blue) to+0.21ΔBS (red),
with values outside that range rendered transparent. (a): Snapshot at 3030 s shows the primary
instability at finite amplitude. (b): Snapshot at 4132 s shows the zig-zag mode (buckling of the salt
sheets). (c): Snapshot at 5923 s shows the tip mode (ripples with short wavelength at the top and
bottom of the salt sheets).

primary instability (e.g. Stern, 1960, 1975; Smyth and Kimura, 2007). The possibility of
subharmonic secondary instabilities spanning two or more salt sheets can be included via
Floquet analysis. The appropriate value for Lx is not well known a priori. Sensitivity tests
showed no significant dependence of secondary instability characteristics on Lx . We used
Lx = 1.5 m, Ly = 0.04 m and Lz = 1.9 m. Lz is larger than the layer half-thickness,
h = 0.31 m, by a factor of 6, so upper and lower boundaries are expected to have little
influence on the flow evolution.

Figure 1 shows three snapshots of the evolving saline buoyancy field. In Figure 1a, planar
regions of rising and sinking motions generate spanwise gradients in salinity; this is the
primary instability, salt-sheet instability. As the primary instability grows, salt sheets start
to undulate at mid-depth in the y direction. This motion appears to be related to the secondary
instability found in unsheared, unbounded, salt fingers (Holyer, 1984; Stern and Simeonov,
2005). [Both Holyer (1984) and Stern and Simeonov (2005) considered two-dimensional
salt fingers, and their x and z coordinates correspond to our y and z coordinates.] We call
this secondary instability the zig-zag mode (Fig. 1b). At this stage, the x dependence is
relatively weaker than the dependence on y and z, and the basic background states can be
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Figure 2. Evolution of growth rates as defined in Eq. (8) from DNS. The horizontal line indicates
the primary growth rate σLS calculated from primary stability analysis described by Smyth and
Kimura (2007). Vertical dashed lines indicate t = 3030 s and t = 4132 s, the times chosen as base
states for the stability analyses to be discussed in Section 3.

well described as a function of y and z (Figs. 1a and 1b). Finally, secondary instability
introduces quasiperiodic dependence on x (Fig. 1c). The x-dependence has the strongest
signals at the top and bottom tips of the salt sheets; therefore, we identify this motion as
the tip mode. The x-dependence resembles the shear-tilted salt fingers observed by Kunze
et al. (1987), using optical microstructure from a free-fall shadowgraph profiler in the water
column east of Barbados. This secondary circulation leads the flow into the turbulent regime.

Secondary instability growth is now analyzed using an instantaneous exponential growth
rate for the velocity fluctuations. The velocity fluctuations are defined as

�u′(x, y, z, t) = �u(x, y, z, t)− < �u(x, y, z, t) >xy (7)

where the subscripted angle bracket indicates the average over horizontal directions. Expo-
nential growth rates for the velocity perturbation components are defined as

σu = 1

2

d

dt
ln < u′2 >xyz; σv = 1

2

d

dt
ln < v′2 >xyz; σw = 1

2

d

dt
ln < w′2 >xyz . (8)

Angle brackets and subscript denote an average over all three directions.
Evolution of the growth rates is shown in Figure 2. As expected, the initial perturbations

quickly adjust to a state in which all three growth rates approach σLS (horizontal line), the
growth rate of the primary salt sheet instability. After a period of slow decrease, we observe
a peak of the spanwise velocity growth (solid curve in Figure 2, at t ≈ 4400 s), followed by
a peak in the streamwise growth rate (dashed curve in Figure 2, at t ≈ 5600 s). The same
sequence of the events has been reported for the more realistic case, τ = 0.01 (Kimura and
Smyth, 2007). These two distinct peaks indicate the presence of secondary instabilities.
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Secondary stability analysis of salt-fingering by Stern and Simeonov (2005) considered
the effect of the evolving mean flow and found superexponential growth. In our study,
the presence of the mean streamwise velocity makes it difficult to account for the time
evolution of the mean flow in the stability analysis. Instead, for the purpose of the secondary
stability analysis, we assume that the background flow does not change with respect to
time, i.e. we make the frozen flow approximation. Change in the mean flow over time will
eventually affect the evolution of the perturbation but, if that change is sufficiently slow,
the approximation is valid.

The time scales for mean flow evolution and perturbation growth are now compared to
justify the use of the frozen flow approximation. The time scale for mean flow evolution
is defined, somewhat arbitrarily, as the interval over which the largest growth rate is larger
than σLS (Fig. 2). The e-folding time for the perturbation is the reciprocal of the growth
rate. The time scales for the mean flow during the two intervals of secondary instability
growth are 1010 s and 625 s. The e-folding times for the same two intervals are 533 s and
297 s, respectively. In both instabilities, the perturbation growth rate is of the same order of
magnitude as the rate of mean flow evolution. Therefore the frozen flow approximation is
marginally valid, and a practical first step toward a more thorough analysis.

3. Secondary stability analysis

We hypothesize that the growth of the salt sheets to finite amplitude drives the secondary
instability. We therefore define a background flow that includes the salt sheets by applying
an average over streamwise (x) direction to the DNS fields. The velocity, buoyancy and
pressure terms are then separated into two parts, the background state (upper case) and a
perturbation (lower case with primes),

�u = U(y, z)î + V (y, z)ĵ + W(y, z)k̂ + ε �u′(x, y, z, t); (9)

bT = BT (y, z) + εb′
T (x, y, z, t); (10)

bS = BS(y, z) + εb′
S(x, y, z, t); (11)

π = Π(y, z) + επ′(x, y, z, t). (12)

Our objective is to investigate the growth of the perturbations. The mean buoyancy, B(y, z)

is defined as B(y, z) = BT (y, z)+BS(y, z). We substitute (9)–(12) into (1)–(5) and collect
the O(ε) terms:

∂u′

∂t
+

[
U

∂

∂x
+ V

∂

∂y
+ W

∂

∂z

]
u′ +

[
v′ ∂

∂y
+ w′ ∂

∂z

]
U = −∂π′

∂x
+ ν∇2u′, (13)

∂v′

∂t
+

[
U

∂

∂x
+ V

∂

∂y
+ W

∂

∂z

]
v′ +

[
v′ ∂

∂y
+ w′ ∂

∂z

]
V = −∂π′

∂y
+ ν∇2v′, (14)
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∂w′

∂t
+

[
U

∂

∂x
+ V

∂

∂y
+ W

∂

∂z

]
w′ +

[
v′ ∂

∂y
+ w′ ∂

∂z

]
W = −∂π′

∂z
+ b′

T + b′
S + ν∇2w′,

(15)

∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z
= 0, (16)

∂b′
T

∂t
+

[
U

∂

∂x
+ V

∂

∂y
+ W

∂

∂z

]
b′

T +
[

v′ ∂

∂y
+ w′ ∂

∂z

]
BT = κT ∇2b′

T , (17)

∂b′
S

∂t
+

[
U

∂

∂x
+ V

∂

∂y
+ W

∂

∂z

]
b′

S +
[

v′ ∂

∂y
+ w′ ∂

∂z

]
BS = κS∇2b′

S. (18)

A diagnostic equation for the pressure,

∇2π′ = −2
∂v′

∂x

∂U

∂y
− 2

∂w′

∂x

∂U

∂z
− 2

∂v′

∂y

∂V

∂y
− 2

∂v′

∂z

∂W

∂y
− 2

∂w′

∂y

∂V

∂z
− 2

∂w′

∂z

∂W

∂z

+ ∂b′
T

∂z
+ ∂b′

S

∂z
, (19)

is obtained by applying ∇· to (13)–(15) and using (16). Note that (13) decouples from the
other equations, so that the sytem to be solved is (14), (15), (17), (18) and (19).

The perturbations are assumed to have the same spanwise periodicity as the salt sheets,
and take the normal mode form:

φ(x, y, z, t) = eσt+ikx

(N−1)/2∑
n=−(N−1)/2

M∑
m=0

φ̂n,mFm(z)e
i
(

2nπ
Ly

+μ 2π
Ly

)
y; (20)

The variable φ stands for any of the perturbations, u′, v′, w′, b′
T , b′

S , and π′, where k is the
real streamwise wavenumber and σ = σr + iσi is the complex exponential growth rate of
the perturbation. The vertical structure functions are given by

Fm(z) = cos

(
mπ

Lz

(
z − Lz

2

))
for u′, v′, and π′; (21)

Fm(z) = sin

(
mπ

Lz

(
z − Lz

2

))
for w′, b′

T , and b′
S . (22)

Boundary conditions for the vertical structure functions are flux-free (u′
z = v′

z = π′
z = 0)

and impermeable (w′ = b′
T = b′

S = 0) at the upper and lower boundaries.
The Floquet parameter μ is used to account for subharmonic modes. A matrix eigenvalue

problem is obtained by combining the equations (14), (15), (17), (18) and (19) with (20):

σx̂ = Ax̂, (23)

where σ is the eigenvalue, A is the stability matrix and x̂ is the concatenation of the dis-
turbances, v̂n,m, ŵn,m, b̂T n,m and b̂Sn,m. The parameters M and N determine vertical and
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spanwise resolution levels, respectively. The eigenvalue problem in (23) is solved using
the LAPACK subroutines (Anderson et al., 1999), as provided in the MATLAB software
package.

The background flow, U , V , W , BT and BS was defined from spanpshots of the DNS
results. To account for the evolution of the background flow (which is assumed to be slow
compared with instability growth), we perform the stability analysis at two separate times:
t = 3030 s and t = 4132 s (see Fig. 2). The primary salt-sheet instability has reached the
finite amplitude at t = 3030 s. The subsequent undulation of the salt sheet is relatively
uniform in streamwise direction until t = 4132 s (Figs. 1b and 2).

An accurate representation of the mean flow is (M, N) = (384, 11), matching the
coarse grid resolution of the DNS; however, calculation of multiple growing modes at
this resolution is impractical. Instead, the calculation of multiple modes was done with
(M, N) = (192, 11). The maximum relative error between the high and low resolution was
7%. For the subharmonic modes, we have varied μ = 0, 1

2 , 1
3 , and 1

4 .
We found two distinct modes corresponding to the zig-zag and tip modes identified in

Section 2. When the stability analysis is performed at t = 3030 s, the fastest-growing mode
(FGM) is the zig-zag mode. The zig-zag mode is nonoscillatory (σi = 0) and has maximum
growth rate when k = 0 and μ = 0. The real part of the growth rate diminishes very little
between k = 0 and k = 2π/Lx (Figs. 3a and 3b). This range includes the gravest mode
of our DNS domain, and we are therefore not surprised to find x-dependence with that
wavelength in the DNS expression of the zig-zag mode (Fig. 1b). The amplification of the
zig-zag mode at all horizontal wavelengths exceeding O(1 m) (Fig. 3a) may account for
the tilted laminae seen in shadowgraph images of microstructure in salt-fingering regions
described in Kunze et al. (1987).

When the flow field from DNS at 4132 s was used as a background flow, growth rates
peak at k = 52 m−1 for both cases μ = 0 and μ = 1/2 (Fig. 4a). Both modes are strongly
oscillatory, with σi = 39×10−3 s−1, an order of magnitude larger than σr . The phase speed
of these modes is, −σi/k = −7.5 × 10−4 m s−1. This is between zero and −Δu

2 , indicating
a critical level in the lower half of the shear layer. Not shown here is the complex conjugate
mode, which has equal growth rate, and opposite phase velocity, relative to the mode shown
and is focused in the upper half of the layer.

At k = 52 m−1, FGM of μ = 0 has a slightly larger growth rate than that of μ = 1/2
(see Fig. 4a); the relative difference between these two growth rates is 4%. Because the
maximum relative error caused by this resolution is 7%, FGM of μ = 0 and μ = 1/2 are
indistinguishable in our secondary stability analysis. We next compare the spatial structures
of the eigenmodes with perturbations seen in the DNS.

4. Comparison with DNS

We next compare the spatial structures of the eigenmodes with perturbations seen in
the DNS. Results from secondary stability analysis suggest that the zig-zag mode emerges
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Figure 3. Real parts of growth rates (a) and imaginary part of growth rates (b) versus streamwise
wavenumber for the zig-zag and subharmonic modes. When the background flow from DNS at
t = 3030 s is used, the fastest growing mode (FGM) is the zig-zag mode. The vertical dashed line
on (a) indicates 2π/Lx , the gravest horizontal mode for the DNS.

before the tip mode (Figs. 3 and 4). Accordingly, the zig-zag mode and tip modes are
compared with DNS data at 4132 s and 5923 s.

We compared the spanwise perturbation velocity from DNS at 4132 s with the secondary
stability analysis result at k = 0. Both Figures 5a and 5b show a stack of left and right going
layers that cause the buckling of the salt sheets. The vertical dependence (both wavelength
and envelope) is similar in the stability analysis and the DNS, but the vertical wavelength
of the normal mode instability is variable and is generally larger than that seen in the DNS.
This is likely an artifact of the frozen flow approximation made in the stability analysis.

The spanwise wavelength of ripples at the top edges of salt sheets corresponds to twice
the wavelength of single salt sheet (Fig. 6). This suggest that FGM of μ = 1/2 will dominate
over μ = 0. Streamwise dependence introduced by the tip mode is verified by the DNS data
at the times of peak streamwise and vertical growth seen in Figure 2: 5923 s. The secondary
stability analysis shows maximum growth rate at k = 52 m−1, so the predicted wavelength
is 2π/k = 0.1 m. This wavelength corresponds with the ripples at the top and bottom of
the salt sheets at 5923 s to within a few tens of percent (see Fig. 7). The eigenfunction (not
shown, though see Figures 10a and 10b in the following section) has energy concentrated
near the tips of the salt sheets, as expected.
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Figure 4. Real parts of growth rates (a) and phase speed (b) versus streamwise wavenumber for the
tip and FGM of μ = 0. The background flow from DNS at t = 4132 s is used.

We conclude that the spatial structures of the modes at k = 0 and k = 52 m−1 correspond
well with the zig-zag and tip modes seen in the DNS, given the limitations of spatial
resolution and the frozen flow approximation.

5. Mechanisms of secondary instability

As an initial hypothesis, one might imagine that both zig-zag and tip modes are a com-
bination of shear and buoyancy driven instabilities. The primary salt-sheet instability is the
alternation of rising and sinking motions that varies in the y direction (see Fig. 1a). This
geometry suggests that the undulation of salt sheets is due to a shear instability driven by the
y-dependence of the background vertical velocity. This supposition has underlain attempts
to parameterize fluxes due to salt fingers (e.g. Kunze, 2003). In addition, faster diffusion of
heat relative to salt creates regions of gravitationally unstable fluid at the extremities of the
salt sheets, suggesting convective instability, while lateral buoyancy gradients between salt
sheets may support sloping convection.

A shear instability driven by ∂W/∂y may be described approximately by a solution of
Rayleigh’s equation with a sinusoidal profile of background velocity W = W0 sin(kyy). A
numerical solution for this case (Hazel, 1972) yields a fastest-growing mode with wavenum-
ber equal to ky/1.8. In other words, the z-wavelength of the shear instability is predicted
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Figure 5. (a) Re[v′(y, z)] from the secondary stability analysis. (b) v′(y, z, x = 0) from DNS 4132 s
(c) Mean W × 105 at DNS 3030 s.

to exceed the y-wavelength of the salt sheets by a factor 1.8. In the related case of two-
dimensional unsheared salt fingers, the secondary instability has wavelength in the z direc-
tion 1.7−1.8 times of the original wavelength of salt fingers over a wide range of parameter
values (Stern and Simeonov, 2005). This correspondence with Hazel (1972) is consistent
with the possibility that the undulation of salt fingers is driven by the periodic shear of
the vertical motions of salt fingers. The picture is complicated, however, by the effect of
viscosity. The Reynolds number computed on the scales of the salt sheet is O(1), small
enough to quench shear instability. An alternative possibility to be investigated below is
sloping convection driven by the lateral buoyancy gradients between adjacent salt sheets.

The tips of the salt sheets are regions of vertical convergence, and thus exhibit sharp gradi-
ents of both horizontal velocity and buoyancy. This localized shear layer can be susceptible
to Kelvin-Helmholtz instability, which creates quasi-periodic dependence on x. Alterna-
tively, faster diffusion of heat relative to salt creates regions of gravitationally unstable fluid
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Figure 6. A snapshot of saline buoyancy field from DNS initialized with four salt sheets at t = 5923 s.
Values range from −0.21ΔBS (blue) to +0.21ΔBS (red), with values outside that range rendered
transparent. The growth of salt sheets at the top edges are not uniform in y. Instead, every other
salt sheets has the same height, i.e, the growth of salt sheets create the spanwise disturbance that is
doubled the wavelength of single salt sheet.

at the extremities of the salt sheets. The resulting convective cells could pinch the fluid at
the tips, creating blobs of unstable fluid, which is seen in DNS of unsheared salt fingers
(Shen, 1995).

In an attempt to quantify the relative importance of buoyancy and shear forcing, we
analyzed the sources of perturbation kinetic energy, defined as

Ke(y, z, t) = 1

2
< �u′ · �u′ >x . (24)

The time rate of change in perturbation kinetic energy is obtained by taking the scalar
product of �u′ with the momentum equations (13)–(15). The resulting equation is

∂Ke

∂t
+ ∇ · F = Sh + B + εd , (25)
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Figure 7. Streamwise velocity perturbation, u′(x, y = 0, z, t = 5923 s) × 104, in color from DNS.
Arrows at the tip and bottom indicate the wavelength, 0.1 m, predicted for the tip mode.

where

Sh = −
〈
u′v′ ∂U

∂y

〉
x

−
〈
u′w′ ∂U

∂z

〉
x

−
〈
v′v′ ∂V

∂y

〉
x

−
〈
v′w′ ∂V

∂z

〉
x

−
〈
w′v′ ∂W

∂y

〉
x

−
〈
w′w′ ∂W

∂z

〉
x

; (26)

B = 〈
w′b′

T

〉
x

+ 〈
w′b′

S

〉
x
; (27)

εd = −2ν < ei,j ei,j >x; eij = 1

2

(
∂u′

i

∂xj

+ ∂u′
j

∂xi

)
. (28)

The expressions Sh, B and εd represent the shear production, buoyancy production and
dissipation respectively. The second term on the left-hand side of (25) is the divergence of
a sum of advective, pressure-driven and viscous fluxes. We will not consider this term since
it vanishes when the spatial average is taken.
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The evolution of perturbation kinetic energy budget over time is analyzed using an instan-
taneous exponential growth rate for the velocity fluctuations:

σT otal = 1

2 < Ke >yz

d < Ke >yz

dt
. (29)

The relative importance of the physical processes described by the individual terms on the
right-hand side of (25) is quantified using partial growth rates of the form

σS = < Sh >yz

2 < Ke >yz

(30)

and similarly for the buoyancy, σB and the dissipation, σd . The Ke budget can then be
written as

σT otal = σS + σB + σd . (31)

Because σd is negative definite, the perturbation kinetic energy can only be supplied by the
shear and buoyancy production terms.

Individual terms of σS and σB can be written as

σS = σuv + σuw + σvv + σvw + σwv + σww, (32)

σB = σwt + σws. (33)

These individual terms take the form of (30), where the numerator is replaced by the
individual shear and buoyancy production terms described in (26) and (27).

a. Shear production mechanisms

Since we considered the background velocity of U , V , and W with y and z dependence,
there are six shear production terms described in (32). We will identify the dominant com-
ponent of the shear production term for the zig-zag and tip modes.

In the case of the zig-zag mode, the largest contribution to the shear production is made
by σwv (Fig. 8a). This is consistent with the hypothesis that the zig-zag mode is amplified
by the spanwise variation of the mean vertical velocity, as described at the beginning of
this section. The second-largest term, σuw, describes the growth of streamwise velocity
fluctuations as the mean flow U(y, z) is advected by the zig-zag mode. These two domi-
nant shear production terms have quasiperiodic form within the interior of the salt sheets
(Fig. 9).

In the tip mode, conversion from the mean to perturbation kinetic energy is dominated by
σww and σuw (Fig. 8b). The largest term σww suggests that the straining of the perturbation
vertical velocity by the vertical convergence ∂W/∂z < 0 near the extremities of the salt
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Figure 8. Partial growth rates of individual shear production terms for the zig-zag mode (a) and tip
mode (b).

sheets generates perturbation kinetic energy. In contrast, straining does not play a significant
role in the zig-zag mode. The second largest term, σuw is the interaction between Reynolds
stress, < u′w′ >x and the ambient shear ∂U/∂z. The two dominant shear production terms
have signals concentrated at the bottom edge of the growing salt sheets (Figs. 10a and 10b).
The conjugate mode (not shown here) has signals concentrated at the top edge. None of
the dominant shear production terms in the tip mode has a signal in the interior of the salt
sheets.

b. Buoyancy production mechanisms

An alternative mechanism for instability growth is convection as quantified by the buoy-
ancy production term σB = σwt + σws . The mean buoyancy is unstably distributed at
the tips of salt sheets (Fig. 11a). The zig-zag mode is focused in the regions of strong
lateral density gradients where sloping convection is possible (Fig. 11b). The tip mode
has the strongest buoyancy production in the regions of strong vertical density gradients
(Fig. 11c).

In both cases, the net growth rate σT represents a small imbalance between amplification
by shear and buoyancy and dissipation by viscosity (Fig. 12). In each case, buoyancy
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Figure 9. (a)
〈
−w′v′ ∂W

∂z

〉
x

zig-zag mode. (b)
〈
−u′w′ ∂U

∂z

〉
x

zig-zag mode (c) Mean W × 105 at DNS

3030 s.

production is an order of magnitude stronger than the shear production. The thermal
buoyancy production for the zig-zag and tip modes is negative σwt = −0.014 s−1 and
σwt = −0.013 s−1, while the saline buoyancy production is positive σws = 0.025 s−1 and
σws = 0.021 s−1. Thus, the buoyancy production represents the release of gravitational
potential energy stored in the saline buoyancy.

This is a noteworthy result, especially for the zig-zag mode, whose wavelength cor-
responds so well with that of shear instability. One must suspect that the dominance of
buoyancy production is in some sense an artifact of the assumptions that underlie our
normal mode stability analyses, i.e. that small-amplitude perturbations grow on a frozen
background flow. To check this, we compute the analogous production terms in the DNS
output, where the assumptions of linear normal mode theory are not made. The partial
growth rates due to shear and buoyancy production for DNS are calculated using (32) and
(33), as for the eigenmodes. Figure 13 shows that the buoyancy production dominates over
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Figure 10. (a)
〈
−w′w′ ∂W

∂z

〉
x

tip mode. (b)
〈
−u′w′ ∂U

∂z

〉
x

tip mode. (c) Mean W ×105 at DNS 4132 s.

the shear productions after t = 3030 s. We conclude that the dominance of the buoyancy
production is not an artifact of either linearization or the frozen flow approximation.

6. Conclusions

DNS of salt sheets revealed the secondary instabilities, which we call the zig-zag and tip
mode. We examined the zig-zag and tip mode via linear normal mode secondary stability
analysis. We have also discussed mechanisms of these modes as quantified by the pertur-
bation kinetic energy budget. While our simulation and stability analysis are intended to
shed light on secondary instabilities of oceanic salt sheets, the following caveats should be
noted: the ratio of molecular diffusivity of salt to heat is larger than the ocean; the half-layer
thickness is at least smaller than observed thickness; the equation of state is linear; the
background flow is assumed to be constant in time for our linear normal mode stability
analysis, the frozen flow approximation.
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Figure 11. (a) Mean B × 105 at DNS 3030 s. Red indicates the positive buoyancy and blue is for the
negative buoyancy. (b) < w′b′ >x zig-zag mode. (c) < w′b′ >x tip mode. (d) Mean B × 105 at
DNS 4132 s.

Our main findings are as follows:

• The zig-zag mode is a three-dimensional analogue of the stationary secondary insta-
bility found in two-dimensional analysis of salt fingers (e.g. Holyer, 1984, 1985;
Veronis, 1987; Stern and Simeonov, 2005). Although the zig-zag mode grows fastest
at k = 0, it has nearly equal growth rate from k = 0 to k = 10 m−1 (Fig. 3), sug-
gesting amplification over all horizontal scales exceeding ∼1 m. We suggest that this
accounts for the tilted laminae seen in the shadowgraph images of Kunze (1987).

• The largest contributions to the perturbation kinetic energy of the zig-zag mode are

made by < w′b′ >x and
〈
−w′v′ ∂W

∂y

〉
x
. The buoyancy production < w′b′ >x coincides

with strong lateral density gradients, suggesting sloping convection.
• The tip mode is an oscillatory instability with dependence on the streamwise direction.

The largest contributions to the perturbation kinetic energy of the tip mode were
made by < w′b′ >x and

〈−w′w′ ∂W
∂z

〉
x
. Both the shear and buoyancy production are

concentrated at the tips of growing salt sheets where the vertical buoyancy gradient is
unstable. This mode may represent the three-dimensional analogue of the pinch-off
process described by Shen (1995).

• For both zig-zag and tip modes, perturbation energy growth is driven mainly by the
buoyancy production. Dominance of buoyancy forcing has been confirmed in the DNS
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Figure 12. Partial growth rates of perturbation kinetic energy budget of the zig-zag mode (a) and tip
mode (b).

results, i.e. it is not an artifact of either linearization or the frozen flow approximation.
This may explain why parameterizations based on the disruption of salt fingers by
shear-driven instabilities have had difficulty predicting observed fluxes (e.g. Inoue
et al., 2008).

Secondary instabilities and the development of salt-fingering turbulence in various
regimes of stratification and shear are explored in Smyth and Kimura (2011) and Kimura
et al. (2011) via direct numerical simulations. Shear effects in the regime of diffusive con-
vection remain to be explored.
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Figure 13. Evolution of partial growth rates of shear and buoyancy productions from DNS after
t = 3030 s.
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