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Relative displacement probability distribution functions
from balloons and drifters

by J. H. LaCasce1

ABSTRACT
The focus of relative (pair) dispersion studies in the atmosphere and ocean is often on the mean

square particle separation or the Finite Scale Lyapunov Exponent. Much less attention has been
paid to the probability density function (PDF) of pair separations, despite that this determines the
dispersion. In two-dimensional (2-D), nondivergent, homogeneous flows, the PDF is governed by a
Fokker-Planck equation. Analytical solutions exist for the turbulent inertial ranges, but these have
rarely been compared to observations.

We consider the analytical PDFs for the turbulent inertial ranges and derive a new solution for the
2-D energy range. We then compare the analytical PDFs with those generated with data from three in
situ sets: one from a balloon experiment in the stratosphere and two from surface drifter experiments
in the ocean. For comparison, we also consider PDFs from a numerical simulation of 2-D turbulence
forced at intermediate scales. The results suggest that dispersion at sub-deformation scales is nonlocal,
with pair separations growing exponentially in time. This implies the kinetic energy spectra at these
scales are at least as steep as κ−3. The dispersion at larger scales is harder to characterize because of
the uncertainty in the PDF at larger separations, but the results are consistent with previous inferences.
In general the PDF provides useful information on the spreading which can be difficult to discern
from the dispersion alone.

1. Introduction

Relative dispersion concerns how pairs of particles, initially near one another, separate in
time. It is relevant for the spreading of passive and active tracers, for example spilled oil in
the ocean and volcanic ash in the troposphere. While the displacement of a tracer cloud is
determined by the mean velocity of the particles in the cloud, the spreading about its center of
mass is determined by the relative motion of pairs of particles. Relative dispersion is also of
theoretical interest because pairs simultaneously measure fluid velocities at separate points
in space. In homogeneous flows, the mean square difference between the particles’ velocities
is equivalent to the second order Eulerian structure function, and the latter is related to the
kinetic energy spectrum. Thus relative dispersion can be used to make inferences about the
spectral slopes, with certain limitations (Bennett, 1984; Babiano et al., 1990).
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Relative dispersion has been examined in observational studies in both the atmosphere
and ocean (Morel and Larcheveque, 1974; Er-el and Peskin, 1981; Davis, 1985; LaCasce
and Bower, 2000; LaCasce and Ohlmann, 2003; Ollitrault et al., 2005; Koszalka et al., 2009;
Lumpkin and Ellipot, 2010). Recent reviews are given by LaCasce (2008a) and Salazar and
Collins (2009). Many of these studies suggest the dispersion differs qualitatively above and
below the deformation radius. At the largest separations, where the pair motion is generally
uncorrelated, the dispersion reflects the general circulation. Thus large-scale dispersion in
the lower stratosphere is zonally anisotropic (Morel and Larcheveque, 1974), due to the
zonal shear. In the North Atlantic it is more nearly isotropic (LaCasce and Bower, 2000;
Ollitrault et al., 2005), as dispersion is steered by topography (LaCasce, 2000).

On the other hand, several studies indicate consistent behavior below the deformation
radius, where pair velocities are generally correlated. Studying balloons in the Southern
Hemisphere stratosphere, Morel and Larcheveque (1974) and Er-el and Peskin (1981) found
that pair separations grew exponentially in time (in the EOLE and TWERLE experiments,
respectively). Similarly, LaCasce and Ohlmann (2003) observed exponential growth at sub-
deformation scales at the surface in the Gulf of Mexico, Ollitrault et al. (2005) observed
the same in the eastern North Atlantic and Koszalka et al. (2009) found exponential growth
in the Nordic Seas.

For a two-dimensional, homogeneous flow, exponential growth occurs when the energy
spectrum is “nonlocal,” or steeper than κ−3 (Bennett, 1984; Babiano et al., 1990). So the
aforementioned results imply the energy spectra at sub-deformation scales are at least as
steep as κ−3. Exponential dispersion could reflect 2-D turbulence, as the spectrum under
a 2-D enstrophy cascade has a κ−3 dependence (Kraichnan, 1967; Charney, 1971). But
the spectra could also be steeper. Shepherd et al. (2000) suggest this is the case in the
stratosphere, so that the paradigm of chaotic advection is relevant. Chaos implies a sensitive
dependence on initial conditions, and the exponential dispersion reflects a sensitivity to the
particle’s starting position.

But whether exponential growth occurs at all scales below the deformation radius is
unclear. Lacorata et al. (2004) re-examined the EOLE balloon data using a different mea-
sure (the Finite Scale Lyapunov Exponent or FSLE). While they found exponential growth
at scales below 100 km, the results for the range from 100 km up to the deformation radius,
approximately 1000 km, were more consistent with Richardson’s Law, in which the mean
square pair separation increases as time to the third power (Richardson, 1926). This would
imply an energy spectrum with a κ−5/3 slope, as found in a turbulent energy cascade (Kraich-
nan, 1967; Sec. 2). Similarly Lumpkin and Ellipot (2010), who used the FSLE with surface
drifter pairs from the western North Atlantic, maintained that Richardson dispersion was
occurring below the deformation radius there as well.

The distinction is important because the slope of the energy spectrum affects how we
parametrize the sub-deformation scales in numerical models. In the upper troposphere,
we have independent observations of the Eulerian energy spectra with which we can
compare (Nastrom and Gage, 1985). But the spectra in the ocean are not yet conclusive
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(e.g., Stammer, 1997; LeTraon et al., 2008; Wang et al., 2010). So any information which
can be gleaned from pair dispersion is of interest.

Knowing the spectra also affects how we conceptualize the dynamics at those scales. A
2-D turbulence paradigm (Charney, 1971; Salmon, 1980) would likely involve an enstrophy
cascade below the deformation radius, as noted. But others have suggested that surface quasi-
geostrophic (SQG) dynamics are relevant near the ocean surface and near the tropopause
(Tulloch and Smith, 2006, 2009; LaCasce and Mahadevan, 2006; Lapeyre and Klein, 2006;
Capet et al., 2008; Isern-Fontanet et al., 2008). QG and SQG turbulence have distinct
characteristics,2 so it is worth knowing which one is relevant.

However, relative dispersion by itself isn’t always conclusive. As seen in the examples
considered hereafter (e.g., Figs. 2, 5), it is often possible to fit both an exponential and a
power law to the data, within the errors. So one often cannot distinguish the behavior based
on relative dispersion alone.

Is it possible to do so using other measures? A number of authors suggest that the
FSLE is more effective in this regard (Artale et al., 1997; Aurell et al., 1997; Boffetta
and Sokolov, 2002; Lacorata et al., 2004; Lumpkin and Ellipot, 2010). This is because the
FSLE, which derives from distance-based averages rather than time-based ones, may be
superior at distinguishing the spreading occurring at different spatial scales. However the
FSLE often differs from relative dispersion, for reasons that remain to be fully elucidated.

Relative dispersion is the second moment of the pair separations and derives from the
probability density function (PDF) of the separations. As is well known, the second moment
may not be a good statistical indicator if the PDFs are strongly non-Gaussian. Previous
observations (Er-el and Peskin, 1981; Davis, 1985; LaCasce and Bower, 2000; LaCasce
and Ohlmann, 2003; Koszalka et al., 2009) suggest the separation PDFs are indeed non-
Gaussian, at least at sub-deformation scales. If so, we must consider higher order moments,
or look at the PDFs themselves.

Hereafter we do the latter, using data from various observations. These include the EOLE
balloons and the surface drifters studied by LaCasce and Ohlmann (2003) and Koszalka
et al. (2009). We compare the separation PDFs with analytical solutions of a Fokker-Planck
equation, under different turbulence cascade scenarios, and to PDFs obtained with a turbu-
lence simulation. The results yield a fairly consistent indication of the dispersion occurring
at small scales.

2. Theory

Motivated by observations of spreading smoke plumes, Richardson (1926) proposed a
Fokker-Planck (F-P) equation governing the pair separation PDF under turbulent disper-
sion. Kraichnan (1966) derived a similar equation using his Lagrangian Direct Interaction

2. SQG turbulence possesses two inertial ranges, an inverse cascade for total energy with a κ−1 slope and a
direct cascade for temperature variance, with a κ−5/3 slope (Held et al., 1995).
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Approximation and Lundgren (1981) showed that the same could be obtained with a veloc-
ity field delta-correlated in time; see Bennett (2006) for an overview. For a homogeneous,
incompressible 2-D flow, the equation is:

∂

∂t
p = 1

r

∂

∂r

(
κ2 r

∂

∂r
p

)
(1)

where r is the pair separation, p(r, t) is the PDF and:

κ2 = 1

2

d

dt
〈r2〉 (2)

is the relative (longitudinal) diffusivity. The brackets indicate the average over all available
pairs and the factor of 1/2 is traditional. The equation can be solved via the Laplace transform
or by an appropriate change of variables, with specified initial conditions.

A familiar example is when the pair velocities are uncorrelated. Then the relative dif-
fusivity is constant (and equal to twice the single particle diffusivity, e.g., Babiano et al.,
1990). In this case, the Laplace transformed F-P equation has the homogeneous solution:
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)
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)
(3)

where I0 and K0 are modified Bessel functions of order zero. We assume a delta-function
initial condition:

p(r, 0) = 1

2πr
δ(r − r0). (4)

The pre-factor insures that the probability is normalized, i.e. that:

2π

∫ ∞

0
p r dr = 1. (5)

Note that here, and in the subsequent cases, we assume the dispersion is isotropic. Taking
the inverse transform of the particular solution yields:

p(r, t) = 1

4πκ2t
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(
− r2

0 + r2

4κ2t

)
I0

(
r0r

2κ2t

)
. (6)

In the long time asymptotic limit, in which r � r0 and κ2t � r , this reduces to:

p(r, t) = 1

4πκ2t
exp

(
− r2

4κ2t

)
. (7)

which is proportional to the Rayleigh distribution.
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Using the asymptotic distribution, we can derive the raw moments:3

〈rn〉 = 2π

∫ ∞

0
rn+1 p dr = (4κ2t)

n/2 Γ
(n

2
+ 1

)
, (8)

where Γ is the gamma function. Thus the second moment, the relative dispersion,

〈r2〉 = 4κ2t, (9)

increases linearly in time, as expected for a diffusive process (Taylor, 1921). The kurtosis,
the normalized fourth order moment, is given by:

Ku = 〈r4〉
(〈r2〉)2

= 2. (10)

This is constant, reflecting that the Rayleigh distribution is self-similar (it retains its shape).
Then there are the solutions to (1) for the turbulent inertial ranges. Richardson (1926)

obtained a solution to the one dimensional analogue of (1) assuming:

κ2 = βr4/3, (11)

which he deduced from observations. This pertains to the energy cascade, for which the
energy spectrum is proportional to κ−5/3 (Batchelor, 1950); then β is proportional to the
third root of the energy dissipation rate. The same scaling applies for the inverse energy
cascade in two dimensions, because the spectrum has the same slope.

Richardson’s (1926) is an asymptotic solution, like the Rayleigh solution with a constant
diffusivity. The full solution for a delta-function initial distribution can again be obtained
via the Laplace transform. This is:

p(r, t) = 3

4πβt r
2/3
0 r2/3
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)
(12)

The corresponding result in 3-D is given by Bennett (2006). In the long time limit (r � r0

and βt � r2/3), this reduces to:

p(r, t) =
(

3

2

)5 1

4π(βt)3
exp

(
−9r2/3

4βt

)
. (13)

which is the 2-D analogue to that obtained by Richardson (1926).
Using the asymptotic distribution, it is straightforward to show that:

〈rn〉 = 1

2

(
4βt

9

)3n/2

Γ

(
3n + 6

2

)
. (14)

3. We prefer raw moments to those with the means removed as separations are positive definite.
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Thus the second moment is:

〈r2〉 = 5.2675 β3 t3. (15)

The dispersion increases as time cubed, a signature of Richardson dispersion. Note the
dispersion does not depend on the initial separation, as the expression derives from the
asymptotic PDF. Note too that Eq. (15) provides a way of determining the constant β (and
hence the energy dissipation rate) from data.

In addition, the kurtosis is given by:

Ku = 2
8!

(5!)2
= 5.6. (16)

Like the Rayleigh distribution, the Richardson PDF is self-similar, but the kurtosis is larger
than 2, implying the PDF has a longer tail.

The other inertial range in 2-D turbulence is for the enstrophy cascade, with an energy
spectrum proportional to κ−3. In this case, the relative diffusivity scales as:

κ2 = 1

2

d

dt
〈r2〉 = r2

T
, (17)

where the time scale T is proportional to the inverse cubic root of the enstrophy dissipation
rate (Lin, 1972). The corresponding solution to the F-P equation is log-normal (Lundgren,
1981; Bennett, 2006):

p(r) = 1

4π(πt/T )1/2 r2
0

exp

(
−[ln(r/r0) + 2t/T ]2

4t/T

)
(18)

The separation moments can be shown to be:

〈rn〉 = rn
0 exp

(
n(n + 2)t

T

)
(19)

So the dispersion,

〈r2〉 = r2
0 exp

(
8t

T

)
, (20)

increases exponentially in time. Note the time scale T differs by a factor of 8 from the
e-folding time for the dispersion. Often the two time scales are assumed equal, which follows
from simply integrating relation (17) to obtain the dispersion; but doing so is incorrect
because the RHS of (17) involves the square separation while the LHS involves its mean,
two different quantities. Furthermore the kurtosis is:

Ku = exp

(
8t

T

)
. (21)
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Thus the Lundgren PDF (18) is not self-similar but becomes sharper in time, with an
increasingly extended tail. An important point is that the same PDF applies to spectra
which are steeper than κ−3, as exponential growth occurs whenever the spectra are nonlocal
(Bennett, 1984; Babiano et al., 1990).

Separation PDFs have been examined previously in relation to the Richardson regime.
Sullivan (1971) inferred PDFs from observations of dispersing dye on Lake Huron and
compared the results to the asymptotic Richardson PDF and to an alternate PDF proposed
by Batchelor (1952). Jullien et al. (1999) and Ott and Mann (2000) examined separation
PDFs from particles in laboratory experiments and Boffetta and Sokolov (2002) did so
for particles in simulated 3-D turbulence. While the results of Sullivan (1971) did not
support the Richardson PDF, those of the other three studies did. Separation PDFs for
the enstrophy range were calculated from laboratory simulations by Jullien (2003) and
from numerical simulations by LaCasce (2010). The latter obtained PDFs consistent with
Lundgren’s distribution.

3. Results

Hereafter we examine three data sets, using the same approach. First we fit the observed
relative dispersion with an exponential and a cubic function. This determines the constants
β (for the Richardson PDF) and T and r0 (for the Lundgren PDF). Then we calculate the
PDFs for the data and compare them to the Richardson, Lundgren and Rayleigh PDFs, at
various times.

a. EOLE

EOLE was a large balloon experiment in the Southern Hemisphere during the 1970s
(Morel and Bandeen, 1973). The constant level balloons, many of which were launched in
pairs or clusters, rose to the 200-mb level and were advected by the winds. The relative
dispersion was first analyzed by Morel and Larcheveque (1974) and was re-visited by
Lacorata et al. (2004) using the the FSLE. We examine a set of 426 pairs of these balloons,
with a maximum initial separation of 25 km.

As noted by Morel and Larcheveque (1974), the EOLE dispersion is approximately
isotropic up to separations of 1000 km. This is illustrated in Figure 1, which shows the ratio
of the rms zonal to meridional pair displacements. For the first 2 days the displacements are
comparable, but by day 3 the zonal displacement is much larger. Thus comparisons with
the theoretical PDFs, which assume isotropic dispersion, are most appropriate during the
first 2–3 days.

The relative dispersion for the EOLE set is plotted in Figure 2. Shown are two sepa-
rate curves: one for “original pairs” (pairs launched together) and one for “chance pairs”
(including pairs which were found together subsequently). All pairs have a maximum initial
separation of 25 km. The solid curve is the exponential obtained by a least squares fit of the
original pair dispersion during the first 2.5 days. The dashed curve is another exponential,
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Figure 1. The rms zonal pair separation divided by the rms meridional separation for the EOLE
balloons.

using the parameters of Morel and Larcheveque (1974). The dashed straight line is a cubic
function and the dash-dot line is a linear one.

Fitting the original pair dispersion during the first 2.5 days yields an initial separation
of 57 km and an e-folding time of 0.49 days (corresponding to T = 3.95 days). Fitting the
chance pair dispersion on the other hand yields r0 = 77 km and an e-folding time of 0.4
days (T = 3.16 days). Thus the e-folding times are similar, but the initial separation for the
chance pairs is larger. Note too that both values of r0 are greater than the initial spacing of
the pairs, 25 km.

The initial separation for the chance pairs is close to the 80 km inferred by Morel and
Larcheveque (1974). However, their e-folding time of 1.35 days is substantially larger than
ours. This discrepancy evidently stems from differences in the data sets; ours is more recent
and includes trajectories not analyzed by Morel and Larcheveque (1974) (A. Hertzog, pers.
comm.). However, Lacorata et al. (2004) obtained a dispersion very similar to ours (see
their Fig. 2) and an e-folding time of 0.5 days. So it is likely our data sets are similar.

After one week, the dispersion increases approximately linearly in time, consistent with
Morel and Larcheveque (1974) and Lacorata et al. (2004). The amplitude, approximately
1.0 × 106 km2/day, is the same as that obtained by Lacorata et al. (2004). It is somewhat
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Figure 2. The relative dispersion for the EOLE balloon data. The asterisks show the dispersion for
the original pairs and the dots for the chance pairs. The time spacing is 1/4 of a day. The solid curve
is the exponential obtained by a least squares fit during the first 3 days for the original pairs. The
dashed curve is the exponential obtained by Morel and Larcheveque (1974). The dashed line is the
cubic function proposed by Lacorata et al. (2004). The dash-dot curve indicates linear growth.

larger than that of Morel and Larcheveque (1974) (2.8 × 105 km2/day). However, the
dispersion is noisy during this period and, moreover, is zonally anisotropic. Fitting only the
meridional dispersion yields a coefficient which is ten times smaller.

One can also fit the dispersion with a cubic function. Lacorata et al. (2004) inferred
cubic growth by examining the FSLE, and their amplitude corresponds to β = 3.9 ×
104 km2/3/day. Using that value yields the dashed line in Figure 2. This lies between the
chance and original pair curves and is a plausible fit for either one. So we cannot distinguish
exponential or Richardson regimes based on the relative dispersion alone.

Using the best-fit parameters for the exponential and Lacorata et al.’s value of β, we
construct the Lundgren and Richardson PDFs. We then compare those with the PDFs for
the chance pairs in Figure 3 and the original pairs in Figure 4.4

4. In these and the following figures, we plot for the PDFs the function 2πrp. Thus the sum of this function
with separation is unity.
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Figure 3. The separation PDFs for the EOLE chance pairs. Also shown is the Lundgren PDF from
(18), with T = 4 days and two values of r0 (77 and 50 km), and the Richardson PDF from (12)
with β = 3.9 × 104 km2/3/day and r0 = 50 km. The dash-dot curves in the bottom panels are the
asymptotic Rayleigh distribution in (7) with the same variance as the data. In all cases, we plot
2πrp(r), so that the integral under the curves is unity.

Consider the chance pairs first. The observed PDFs are shown with two versions of the
Lundgren PDF in the upper panels of Figure 3. The latter both have T = 2 days, but different
values of r0. Also shown is the full Richardson PDF from (12). At t = 1 day, the Richardson
PDF lies well below the observed PDF. The Lundgren PDF with r0 = 77 km (the best-fit
value) is somewhat closer, but also lies below. But the Lundgren solution with the smaller
separation, r0 = 50 km, compares favorably to the data to separations of several hundred
kilometers. At t = 2 days, the situation is the same. The Richardson PDF is still well below
the observed PDF and the Lundgren PDF with r0 = 77 km is closer, but the best agreement
comes with the Lundgren PDF with r0 = 50 km.

At t = 5 days, the observed PDF resembles the Lundgren PDF with r0 = 50 km but
also lies somewhat above it, indicating more small-scale separations. The Richardson PDF
continues to lie well below. We also plot the Rayleigh PDF here, and that is substantially
different than the observed. Only at t = 25 days does the PDF (albeit quite noisy) approach
the Rayleigh.
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Figure 4. The separation PDFs for the EOLE original pairs, plotted with two Lundgren PDFs, with
T = 4 days and r0 = 50 km and 25 km, and the Richardson PDF with β = 3.9 × 104 km2/3/day
and r0 = 25 km. The Rayleigh distribution is again shown in the lowest panel.

The asymptotic Richardson PDF, given in (13) (not shown), is quite close to the full
PDF, except at t = 1 day. Then the asymptotic PDF is closer to the Lundgren PDF with
r0 = 77 km, and thus still below the observed PDF. The reason is that the argument of the
exponential in the asymptotic distribution goes to zero with r but does not in the full PDF; so
the maximum value of the asymptotic PDF is roughly twice that of the full PDF. However,
by t = 2 days the two curves are similar, with the maximum of the asymptotic PDF only
about 40% larger than that of the full PDF. By t = 5 days, the difference in maxima is only
about 20%. So the discrepancy with the observed PDF seen in lower left panel of Figure 3
is about the same when using the asymptotic distribution.

The PDFs for the original pairs (Fig. 4) are noisier than for the chance pairs, because
there are only 184 pairs instead of 426. Nevertheless, the results are similar. The Richardson
PDF lies well below the observed PDF and the Lundgren PDF with the best fit value for
r0 is only somewhat better. But the Lundgren PDF with a smaller separation, in this case
r0 = 25 km, is in reasonable agreement.

Thus we would infer exponential growth for both the chance and original pairs during
the first 2–3 days, the period of isotropic dispersion. The PDFs for both chance and original
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pairs have an e-folding time of about 0.5 days, as noted by Lacorata et al. (2004). However,
better agreement is obtained in both cases with an initial separation smaller than indicated
from fitting the dispersion. For the original pairs, the PDFs indicate that the correct initial
separation is the maximum initial separation for the pairs, r0 = 25 km.

This discrepancy in r0 may stem from the difference in initial conditions. As noted, the
theoretical curves assume a delta-function distribution while the actual PDFs are broader
initially (i.e. we use all separations below 25 km). But it may also reflect a difference in how
quickly pairs lose their “memory” of their initial condition, which depends on the correlation
between their initial separation and velocity (Babiano et al., 1990). Chance pairs, or pairs
which approach one another after deployment, have such a correlation. So the adjustment
to the exponential regime is plausibly extended for the chance pairs, and this would appear
as a larger effective r0 during exponential growth. Original pairs on the other hand are
less likely to have correlated velocities and separations. Several authors have noted that
chance pairs do not yield significantly different dispersion than original pairs (e.g. Morel
and Larcheveque, 1974; Er-el and Peskin, 1981; LaCasce, 2008a; Koszalka et al., 2009), but
none have tested the evolving PDF. The present results suggest there is a difference—not
in the growth time scale, T , but in the effective initial separation.

Another point is that the PDFs exceed the Lundgren PDF at small separations by day 5,
for both sets. This occurs because the dispersion occurring at larger scales is slower than
exponential, as seen in Figure 2. The Lundgren PDF presumes an exponential expansion
to infinite separations and thus spreads more rapidly. So it lies farther below the observed
PDF as time increases.

The PDFs suggest exponential growth early on, but over which scales is this occurring?
With both sets of pairs, the agreement with the Lundgren PDF is clearest below 200 km.
At larger scales, it is difficult to say whether the Richardson or Lundgren PDF is preferred.
Morel and Larcheveque (1974) claimed exponential growth up to separations of 1000 km
while Lacorata et al. (2004) suggest it ceases above 100 km. The dispersion (Fig. 2) indicates
exponential growth up to 1000 km, but the growth in the 200–1000 km range is difficult to
distinguish from the PDFs. Thus we cannot rule out either the Morel and Larcheveque
(1974) or Lacorata et al. (2004) scenarios.

b. SCULP

Next we consider pairs from the roughly 700 surface drifters launched during the SCULP
program in the Gulf of Mexico (Ohlmann and Niiler, 2005). Most of the drifters were not
launched in pairs in this experiment, so LaCasce and Ohlmann (2003) extracted a set of 140
chance pairs, with r0 ≤ 1 km. Here we examine a larger set of 188 pairs with r0 ≤ 2 km; we
use the larger set as it yields somewhat cleaner PDFs. As noted by LaCasce and Ohlmann
(2003), the dispersion in the SCULP set is isotropic up to separations of several hundred
kilometers.

The dispersion for the 2-km pairs is shown in Figure 5. Also shown are the exponential
and cubic curves obtained by least squares fits during the first 5 days. The exponential has
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Figure 5. The relative dispersion for the SCULP drifters from the Gulf of Mexico, with the best-fit
exponential and cubic curves. The data has a temporal spacing of one day.

r0 = 3 km and an e-folding time of 1.25 days (T = 10 days); these values are comparable
to those obtained by LaCasce and Ohlmann (2003) for the r0 = 1 km pairs (r0 = 3 km and
an e-folding time of 1.8 days). The cubic has an amplitude of 3.5, which corresponds to
β = 0.87 km2/3/day. The dispersion is similar to the exponential during the first few days,
but the cubic yields a better fit from days 3–11. Thus Richardson dispersion appears more
likely, based on the second moment alone.

The PDFs are compared in Figure 6. At t = 1 day, the observed PDF is noisy, but lies
somewhat closer to the Lundgren PDF. It has more small separations than the latter, because
the initial condition for the Lundgren is a delta function at r0 = 3 km. However, at 5 days
the PDF is fairly similar to the Lundgren PDF. At the same time, it exhibits significantly
more small separations than the Richardson. This similarity persists at day 10. At 20 days,
the PDF is well above the Lundgren curve. However, it is near the Richardson curve at
scales above 50 km.

Thus the PDFs suggest exponential growth at small scales. Note too that unlike with the
EOLE data, we obtain reasonable agreement with the Lundgren PDF using the value of
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Figure 6. The displacement PDFs for the SCULP data. The Lundgren PDF has T = 10 days and
r0 = 3 km, and the Richardson PDF has β = 0.87 km2/3/day and the same value of r0.

r0 obtained from fitting the dispersion. However, as with the EOLE data, it is difficult to
determine over what range exponential growth is occurring. The upper limit could be the
deformation radius, which is approximately 50 km, as suggested by LaCasce and Ohlmann
(2003). But it is also possible the upper range is 10 km; at larger scales the PDF is often
between the Lundgren and Richardson PDFs. The proximity of the latter and the noise in
the observed PDF at the larger scales make it difficult to say which is preferred.

Note too the SCULP PDFs are not close to the Rayleigh distribution at the end. Neither
do we see a final period of linear growth in the relative dispersion. The super-diffusive
spreading persists to the largest sampled scales, as noted by LaCasce and Ohlmann (2003).

c. POLEWARD

In the POLEWARD experiment, 150 surface drifters were launched in the Nordic Seas
over a period spanning 2007–2009 (Koszalka et al., 2009). The drifters were deployed in
pairs and triplets, yielding a number of original pairs. Here we examine the same set of 93
pairs studied by Koszalka et al. (2009), with r0 ≤ 2 km. Of these, 67 were original pairs.
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Figure 7. The relative dispersion for the POLEWARD drifter set in the Nordic Seas with best-fit
exponential and cubic curves. The temporal resolution is 1/4 of a day.

Koszalka et al. (2009) found that the dispersion below the deformation radius, 10 km, was
exponential with an e-folding time of about a half day. The dispersion between 10–100 km
was better fit with a cubic while that at separations larger than 100 km increased linearly
in time. The dispersion was isotropic below 100 km and meridionally anisotropic at larger
scales, the latter reflecting advection by the Norwegian Atlantic Current which is similarly
oriented in the region. They interpreted the intermediate range as resulting from an inverse
energy cascade, having ruled out dispersion by the mean shear.

The dispersion is shown in Figure 7. The dispersion during the first 2.5 days is well fit
by an exponential with an initial separation r0 = 1 km and an e-folding time of 0.425 days
(T = 3.4 days). The best-fit cubic is close to the observed dispersion between days 3 and
10. The amplitude, 5, corresponds to β = 0.98 km2/3/day. After day 12, the dispersion
increases roughly linearly in time.

The PDFs are shown in Figure 8. As with the SCULP data, the observed PDF at 1 day
is noisy and different from the two theoretical curves. But by 3 days, the PDF is quite
close to the Lundgren distribution below 10 km. The result is similar at 5 days, although the
observed PDF is noisy at the larger separations. It is noisier still at 15 days but is near both
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Figure 8. The displacement PDFs for the POLEWARD data. The Lundgren PDF has T = 3.4 days
and r0 = 1 km, and the Richardson PDF has β = 0.98 km2/3/day and the same value of r0.

the Richardson and Rayleigh curves, except at small separations. Koszalka et al. (2009)
showed that the PDF at day 40 clearly resembles the Rayleigh distribution.

Thus these results support the conclusions of Koszalka et al. (2009). The similarity to
the Lundgren distribution at small scales supports exponential growth. However, it is not
possible to distinguish the behavior at the intermediate scales, from 10–100 km, using the
PDFs. This again is due to the uncertainty at these separations. Getting a better result
presumably requires more pairs.

4. Turbulence simulation

A large number of pairs is possible of course with a numerical simulation. In the preceding
examples, we saw evidence of exponential growth below the deformation radius. But it was
difficult to discern the dispersion at larger scales. If energy is being injected at or near the
deformation radius, we would expect to see an enstrophy cascade to smaller scales and
an energy cascade to larger (Salmon, 1980). Here we examine separation PDFs for such
a case, using a 2-D turbulence simulation forced at intermediate scales. With this we can
have a larger number of pairs, perhaps permitting us to capture the Richardson dispersion
at intermediate scales.
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As noted, Boffetta and Sokolov (2002) compared separation PDFs to the asymptotic
Richardson distribution using particles in simulated 3-D turbulence and LaCasce (2010)
tested the Lundgren distribution in simulations of a 2-D enstrophy cascade. But none have
examined the evolving PDFs with the forcing at intermediate scales, in which both cascades
are occurring simultaneously.

For the simulation, we used the numerical code used by (Flierl et al., 1987; LaCasce
and Brink, 2000; LaCasce, 2008b, 2010). The code solves the barotropic vorticity equation,
given by:

∂

∂t
ζ + J (ψ, ζ) = F − D (22)

where ψ is the velocity streamfunction, ζ = ∇2ψ the relative vorticity, J (, ) the Jacobian
function andF andD are the applied forcing and dissipation. The domain is doubly-periodic,
with 5122 grid points.

The forcing was isotropic and applied in the wavenumber range κ = [30, 35], with
random phases in space and time. The forcing amplitude was adjusted to yield a final
(dimensionless) kinetic energy of around 1.0. We used linear (Rayleigh) dissipation,

D = −Rζ (23)

with R = 0.1. The model also has an exponential cut-off filter which removes enstrophy at
the smallest scales (LaCasce, 1996).

The time-average spectrum from the simulation is shown in Figure 9. The enstrophy
cascade extends from the forcing range to roughly wavenumber 200, where the filter is act-
ing. The enstrophy flux in this range (not shown) is positive (downscale) and approximately
constant. Nevertheless, the spectral slope is roughly −4 and thus greater than the theoretical
value of −3. This is due to the Rayleigh damping; simulations with damping acting only at
larger scales yield slopes closer to −3 (LaCasce, 2010). Nevertheless, because the slope is
greater than −3, one still expects exponential growth for pair separations. The slope in the
energy cascade range is near κ−5/3, albeit over slightly less than a decade of wavenumbers.

Once the model reached a statistical steady state, we deployed 2000 particles on a uni-
form grid and advected them with a fourth-order interpolation scheme. The initial particle
separation was r0 = 0.01, which is comparable to the model grid size. Note the forcing
range corresponds to separations of r = [0.25, 0.3].

The dispersion is shown in Figure 10. The curve is very similar to that in Figure 7 for the
POLEWARD drifters. The initial period is well-fit with an exponential, with an e-folding
time of 0.55 and an initial separation of 0.009. The intermediate range can be fit with a cubic,
with an amplitude of 0.2. The latter implies an energy dissipation rate which is comparable
to that observed for the run. The dispersion in the late period can be fit with a linear function
with an amplitude of 2.0.
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Figure 9. The kinetic energy spectrum for a 2-D turbulence simulation forced in the wavenumber
range κ = [35, 40].

The PDFs from the data are compared with the (full) Richardson and Lundgren distri-
butions in Figure 11. At an early time, t = 0.2, the particle PDF resembles the Lundgren
PDF. Note in this case, the actual initial distribution is also essentially a delta-function.
At t = 0.4, the observed and Lundgren PDFs are very similar over the range of scales
below the forcing scale of r ≈ 0.3. At t = 1, the PDF still resembles the Lundgren PDF
below the forcing range, but also indicates more small separations. At separations greater
than about 0.4, the PDF is closer to the Richardson curve. At t = 2, the PDF is closest
to the Richardson curve, except at the smallest separations. At the largest separations, i.e.
r > 1.5, the PDF appears to shift toward the Rayleigh distribution. The dispersion (Fig. 10)
also shifts to linear growth between r = 1 and r = √

10, which is consistent.
Thus there are several similarities with the in situ cases. The PDFs clearly resemble the

Lundgren PDF at small scales, and at later times there are more small separations than
indicated by the Lundgren solution. As time progresses, the Lundgren curve falls below
the observed PDF, because the growth at scales exceeding the deformation radius is slower
than exponential.
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Figure 10. The relative dispersion in the turbulence simulation, for 2000 particles. Also shown is a
best-fit exponential, a cubic and a linear function.

However, the difference here is that there is a better indication of Richardson growth
at intermediate scales. We see a clear shift toward the Richardson PDF, particularly at the
later times. Thus while there are many similarities with the in situ data sets, particularly
the POLEWARD set, the transitions are more clearly observed here. This is because there
are more pairs: five times the number of particles as in the EOLE set and twenty times the
number in POLEWARD.

5. Summary and discussion

We have examined PDFs of particle pair separations from in situ data and from a tur-
bulence simulation. We compared these PDFs with three analytical solutions which derive
from a Fokker-Planck equation describing the evolution of the separation PDFs. One solu-
tion is the Rayleigh distribution, which applies for uncorrelated pair motion. The other
two are for the inertial ranges in 2-D turbulence. One, for the enstrophy cascade, is due to
Lundgren (1981). The other is a new solution, for the energy cascade. This asymptotes to
the 2-D analogue of Richardson’s (1926) solution.
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Figure 11. The separation PDFs for the turbulence simulation. Also shown are the Lundgren PDFs
(solid), Richardson PDFs (dashed) and Rayleigh PDFs (dash-dot) using parameters derived from
the fits shown in Figure 10.

The turbulence simulation was for a 2-D fluid forced randomly in a wavenumber band
at intermediate scales. So there was an enstrophy cascade below the forcing scale and an
energy cascade above. Consistent with expectations (e.g. Bennett, 1984; Babiano et al.,
1990), the relative dispersion grew exponentially below the forcing scale and as time cubed
above, until the pairs reached the domain scale when the dispersion increased linearly in
time. The separation PDFs evolved consistent with the solution of Lundgren (1981) at small
scales. At intermediate scales, the PDFs were similar to the Richardson PDF and at large
scales, to the Rayleigh distribution.

The results in the three in situ data sets were similar at the smallest scales. In particular,
the PDFs resemble the Lundgren solution, and differed significantly from the Richard-
son PDF. The behavior at intermediate scales was harder to discern, due to uncertainty at
large separations. Typically though, the PDF lay between the Lundgren and Richardson
distributions.

Thus the data sets are consistent in their indication of nonlocal dispersion at small
scales, with pair separations growing exponentially in time. The results thus support similar
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assertions made by Morel and Larcheveque (1974), Er-el and Peskin (1981), LaCasce and
Ohlmann (2003), Ollitrault et al. (2005) and Koszalka et al. (2009). However, the results are
less clear with regards to the range of scales over which exponential growth is occurring.
It is possible the exponential growth proceeds to the deformation radius, as suggested by
the previous authors. However, the similarity with the Lundgren distribution is clear only
at smallest scales.

Nonlocal dispersion implies a wavenumber energy spectrum of κ−3 or steeper. Velocity
measurements from commercial aircraft in the upper troposphere suggest a κ−3 spectrum
from the deformation radius down to roughly 500 km; at smaller scales, the spectrum has
a κ−5/3 slope, as in an energy cascade (Nastrom and Gage, 1985). Lacorata et al. (2004)
suggest that Richardson dispersion is occurring in the 100–1000 km range, consistent with
the shallower spectrum. But their results and ours point to a steeper spectrum at scales
below 100–200 km. How this can be reconciled with the aircraft spectra is unclear. However,
the EOLE and TWERLE measurements are from the lower stratosphere in the Southern
Hemisphere while the aircraft measurements were made in the upper troposphere in the
Northern Hemisphere; so it’s not certain the results need agree. Previous authors have
concluded the spectra are steep in the stratosphere (e.g. Shepherd et al., 2000), and this
would yield exponential dispersion. Tests of the dispersion in the upper troposphere would
be beneficial in this regard.

Eulerian spectral estimates for the ocean are few, and the results at sub-deformation scales
are particularly uncertain (Stammer, 1997). LeTraon et al. (2008) suggest the spectra are
consistent with a κ−5/3 energy spectrum, albeit with limited resolution of sub-deformation
scales. But a recent result, derived from ADCP measurements from the merchant vessel
Oleander in the Gulf Stream region, indicates a κ−3 spectrum for both kinetic and potential
energy below roughly 100 km (Wang et al., 2010). The present results are thus consistent, at
least at small scales. However, our data come from the Gulf of Mexico and the Nordic Seas.
The existing relative dispersion studies in the Gulf Stream region instead favor Richardson
dispersion (LaCasce and Bower, 2000; Ollitrault et al., 2005; Lumpkin and Ellipot, 2010).
So the Gulf Stream region also deserves further attention.

The PDFs are generally more effective at gauging the dispersion at small scales than at
larger ones. The reason is that the small separations are more frequent, while the larger
separations correspond to “extreme events.” Thus the wings of the PDF are noisier, com-
plicating the identification of the dispersion regime. The best is to have more pairs. Then
the behavior is clearer, as in the turbulence simulation considered here.

PDFs are also useful in quantifying dispersion when the latter itself is equivocal. The
initial dispersion in the SCULP set is arguably a better fit with a cubic than an exponential,
but the PDFs are closer to the Lundgren distribution. Since the PDFs are non-Gaussian, the
dispersion can be a misleading indication of the behavior. Thus it is desirable to use higher
order moments, or the PDF, in addition to dispersion.

An important issue for experiments is the initial pair separation, which is limited by the
spatial resolution of the instruments. The resolution of 1 km in the POLEWARD experiment
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permitted only one decade of sampled scales below the deformation radius of 10 km. If
exponential growth is occurring below the deformation radius, then sampling the dispersion
overn e-folding time scales requires that the initial separation be r0 = Ld/ exp(n/2). Having
an initial spacing one tenth the deformation radius corresponding to 4.6 e-folding times, a
relatively short period.

Another issue for experiments concerns chance and original pairs. Previous studies found
no significant differences when using either one (Morel and Larcheveque, 1974; Er-el and
Peskin, 1981; LaCasce, 2008a; Koszalka et al., 2009). However, Haza et al. (2008) found a
difference in simulations of trajectories in the Adriatic, due to inhomogeneities in the flow.
The EOLE results (Sec. 3a) indicate that the chance pairs have a longer initial adjustment
prior to the exponential growth phase. This may occur because chance pairs have initial
positions which are correlated with their velocities (e.g. Babiano et al., 1990). Thus at the
early times, the chance pair dispersion was greater than that for the original pairs, and the
fits to the Lundgren PDF indicated an initial separation for the chance pairs which was twice
that for the original pairs. The results for the POLEWARD set were the clearest of the three
examined here, and over 2/3 of those pairs were original. So the present results suggest
original pairs are superior for characterizing relative dispersion. This argues in favor of
deploying drifters or floats in pairs or clusters in experiments.

In all the cases examined here, the separation PDFs were non-Gaussian. This has been
noted previously (Er-el and Peskin, 1981; Davis, 1985; LaCasce and Bower, 2000; LaCasce
and Ohlmann, 2003; Ollitrault et al., 2005). Batchelor (1952) proposed an F-P equation with
a Gaussian solution under an energy cascade, and Sullivan (1971) found support for this with
dye measurements at the surface of Lake Huron. But the present results do not support this;
so long as the pair velocities were correlated in our examples, the PDFs were non-Gaussian.
Indeed, we observe that the non-Gaussian PDFs persist even after the pair velocities cease
to be correlated, indicating a “memory” of the initial dispersion.
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