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The relation between the duration and shape of internal
wave groups

by S. A. Thorpe'~

ABSTRACT

This paper discusses the effect of the shape of internal wave groups on their “duration” or
“lifetime”—how long they retain their form before their component waves disperse. The methodol-
ogy devised by Smith and Brulefert (2010) to study the dispersion of surface wave groups is extended
to examine the dispersion of internal wave groups. To provide tangible examples, it is supposed that
wave groups of ellipsoidal shape, symmetrical about a vertical plane, are generated in a uniformly
stratified thermocline by moving periodic disturbances perturbing the base of an overlying mixed
layer. The dispersion relation for internal waves is used to determine the group duration, taken as the
time required for the volume of the group to approximately double through the fastest separation of
its component waves. As well as allowing the orientation (inclination of their larger, major axis to the
horizontal) and aspect ratio (that of the minor to major axis in a vertical plane) of wave groups to
vary, their lifetimes are compared in two particular cases: Case A in which the length of the initial
minor axes in the vertical plane of the groups is the same, and Case B in which groups are initially
composed of the same number of waves. Two-dimensional groups and “three-dimensional groups”
(the latter predominantly two-dimensional but of limited extent in one horizontal direction) are
considered. As has been found for surface waves, the duration of internal wave groups does indeed
depend upon their shape. In both Cases, groups with relatively small aspect ratio and, in Case B,
groups with many waves usually have greater lifetimes than relatively large aspect ratio groups with
few waves. Two-dimensional groups have greater lifetimes than three-dimensional groups. In many
cases, the groups with the longest lifetime have their longer (major) axis inclined at an angle to the
horizontal that is close to the inclination of the group velocity vector; in these cases the lines of
constant phase of waves composing the groups are not (as is found for some surface wave groups)
slanted with respect to the major axis of the groups, but parallel. Some long-lifetime groups are found
to have their major axes inclined to the horizontal at an angle that is very close to that of the front of a
packet of waves generated by the moving periodic disturbance at the foot of the mixed layer. In
Appendix B it is shown that the ratio, n,,/n or n,,/n, of the number of waves that would be recorded as
the group passes a fixed point or a vertical mooring, to the number of waves contained, instanta-
neously, within a wave group, depends on the shape of the group and on the ratio of the dominant
wave phase speed to the group velocity of the group. A simple model described in Appendix C
suggests how such slanted wave groups can be generated in the thermocline by moving, but transient,
disturbances. The orientation of “scars,” regions left by waves breaking in the wave groups, is
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examined in Appendix D. Except for near inertial waves with small aspect ratio, scars are generally
close to being horizontal.

1. Introduction

Wave groups are composed of component waves spanning a limited, but finite,
bandwidth in wavenumber. Traveling with different group velocities, these component
waves generally result in an increase in the size of groups unless the process of dispersion
is suppressed by nonlinear effects. Neglecting nonlinearity, the rate of increase in the
dimensions of surface wave groups has recently been shown to depend on the shape of the
groups, groups with a particular shape or orientation relative to the downwind direction in
which the waves are propagating having the longest duration before their area is doubled
and their shape changed substantially. Our objective is to discover whether groups of
internal waves have similar properties.

Using a long-range phased-array Doppler sonar, Smith and Brulefert (2010) have
observed surface wave groups in deep water that are slanted, so that the angle between the
longer (or major) axis of the groups and the wind direction is about 60 deg. The crests of
waves within groups travel down-wind but are orientated at an angle with respect to their
group envelope, resulting in an echelon-shaped pattern of wave crests. The width of the
slanted groups is very small, equal to about one wavelength. The groups consequently have
an appearance rather like that of a set of waves in one half of a ship’s wake. Such groups of
waves are found to be of fairly common occurrence, appearing about 15-20 times per hour,
in data collected at a fixed location between the Hawaiian islands of Kauai and Oahu.

Smith and Brulefert use the linear dispersion relation to examine the time taken for the
waves in such groups of slanted waves to disperse. Since the methodology is to be followed
later, a brief description is appropriate here. The analysis is, however, somewhat involved
and, for ease of reference, further details are given in Appendix A. In accordance with
observations, the waves are supposed to travel downwind with crest lines at right angles to
the wind direction. The mean speed of wave groups is chosen to be a value that corresponds
to that observed, 5 m s~ ', half the phase speed of the deep water waves and, during the
period of their observations, also about half the wind speed. The value of the mean
wavenumber of the waves is therefore fixed (by the dispersion relation). It is assumed that,
initially at least, groups have an elliptical shape or plan-form and the ratio of the minor and
major axes of the groups is set equal to the observed value (about 0.2). Smith and Brulefert
allow the orientation of the minor axes with respect to the wind direction, ¢g say, to vary,
seeking the angle at which the dispersion of the waves forming a group is least, or the
duration of the group is greatest. The duration or lifetime of groups depends on the time
taken for waves of wavenumbers slightly different from their mean to disperse, a time
determined by the variation of group velocity with wavenumber as explained in Appendix
A, and is defined as the time required for the area of the water surface covered by a wave
group to approximately double. The duration is found to be greatest when the orientation of
the group is close to that at which the variation of group velocity in the direction of the
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minor X-axis is zero (i.e., Ac,x = 0, where Ac,x is defined in Appendix A), so there is no
dispersion of waves in this direction. This occurs at bg =~ 27 deg., so that the angle between
the longer (or major) axis of the groups and the wind direction is about 60 deg., as
observed. Although the greatest duration of groups increases as the relative length of their
major axes increases, both the lifetime and the orientation of the groups, ¢g, predicted to
have the longest duration compare very favorably with observations. The slanted wave
groups are predicted, and observed, to have longer durations than have groups of waves
with axes aligned across and down-wind (i.e., when ¢bg = 0), by a factor of about 2.8, even
though the variation of the group velocity in the direction of the major Y-axis, Ac,y, is
zero when ¢g = 0 (Appendix A).

These remarkable observations and supporting theory (even though linear!) suggest that
types of waves other than surface waves may be formed, and might commonly be
observed, because they have a structure that allows them to persist longest and travel
farthest. Such groups are, in a sense, the most “stable.” The purpose of this note is to
explore the implications that this may have for internal waves. Internal waves traveling
along a narrow thermocline in midwater have dispersion properties similar to those of
surface waves and will therefore have similar group dispersion properties.> Unlike Smith
and Brulefert’s waves, however, waves traveling on a seasonal thermocline often have
wavelengths much greater than the thermocline’s depth and so more closely correspond to
shallow-water, rather than the deep-water, surface waves examined by Smith and Brulefert.
Such internal waves are nondispersive, at least in the limit in which their wavelength
divided by the depth of the thermocline tends to infinity. Internal waves traveling through a
uniformly stratified region have, however, very different dispersion properties from those
of surface waves, and it is groups of such internal waves that are considered here.

Little is known of internal wave groups in the ocean, although they are evident, with
associated density overturns, in data analyzed by Alford and Pinkel (2000) obtained using a
CTD that is rapidly lowered from R/P FLIP. It is not yet possible to follow wave packets as
they propagate through the ocean. Groups may be formed in at least three ways: by the
occasional random superposition of waves propagating with similar wavenumbers and
therefore frequencies within the body of the ocean; by the “Benjamin-Feir” type of
instability of an existing internal wave train (Borisenko et al., 1976; Thorpe, 1977); or by
radiation from transient moving disturbances or regions of instability, within or at the
boundaries of the ocean. (It is by the last of these mechanisms that groups are supposed to
be generated in Section 2.) Groups composed of two wave trains that interact nonlinearly

3. The dispersion relation for interfacial waves is 0> = gk(p, — p)tt/(pot; + pito), where o is the
frequency, k the wavenumber, p, and p, the densities in the upper and lower layers of depths 4, and h,,
respectively, and t; = tanh(kh;) fori = 1, 2 (Hunt, 1961). In deep layers, kh; tends to infinity and t; to 1, for both
i =1and2,s00>= gk(p, — p;)/(p, + p,). This has the same form, o> = gk, as the dispersion relation of
surface gravity waves in deep water, but with a reduced acceleration due to gravity. If, however, ki, tends to
infinity (deep lower layer) and kh, is small (wavelength >> h,), then o tends to gk’(p, — p;)h,/p, and ¢* =
o?/k* = g(p, — p)h,/p,: the phase speed, c, is related to water depth in the same way as is that for surface
waves in shallow water. The group velocity, do/dk is then independent of k and the waves are nondispersive.
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may be relatively stable, or of “permanent form” (Thorpe, 2002a), but only if the
interacting component wave trains lie in the same vertical plane. The effects of rotation
contribute positively to such stability. Sutherland (2001, 2006) has examined the stability
of packets of finite amplitude internal waves. He examines two-dimensional groups, those
that vary in only one of the horizontal directions, and disregards the effects of the Earth’s
rotation. He examines groups that are horizontally periodic but of limited vertical extent
and groups with axes of symmetry that are vertical and horizontal (a group orientation later
denoted by ¢ = m/2 or 0, neither of which are here found generally to be groups with the
greatest possible duration). Among other results, Sutherland finds that groups are stable if
their velocity of propagation (the wave group velocity) is inclined at an angle to the
horizontal (later denoted by 0) that is less than 54.74 deg., and unstable otherwise. The
spatial distribution of patches of water mixed by the breaking of internal waves traveling in
groups is known to depend on the shape of the groups (Thorpe, 1999); wave groups can
therefore affect the structure of mixing in the ocean and it is of some interest to know more
of their possible properties.

Rather than examining the stability of waves or wave groups, which inevitably involves
some nonlinear aspects of their behavior, we here address the simpler problem of how the
time over which wave groups retain their form, i.e., their duration or lifetime, depends on
their shape. The spreading of internal waves belonging to a group is assessed using the
dispersion relation and following Smith and Brulefert’s method of analysis. (The disper-
sion relation for internal waves propagating in a fluid of constant buoyancy frequency and
zero shear is exact; no nonlinear terms are ignored as in the Smith and Brulefert’s analysis.)
For simplicity, the many possible interactions that may occur between waves within a
group, with other external waves or with the steady or variable mean flows through which a
group is passing, are disregarded.

Section 2 describes the dispersion of internal wave groups for which calculations are
made in Section 3. Results are discussed in Section 4 where reference is made to the
different, but related, problem of the dominant frequency of waves radiating from a
turbulent layer. The difference between the number of waves, n, observed instantaneously
in a group, and the number that would be recorded as the group propagates past a fixed
point, n,,, or a vertical mooring, n,,, is discussed in Appendix B. The ratios, n,/n and n,,,/n,
depend on c/c, and on the shape of the group. A simple model of internal wave group
generation is described in Appendix C. The orientation of “scars,” regions that have been
mixed and left by waves breaking in the wave groups, is examined in Appendix D.

2. Analysis

Although groups or “packets” of internal waves may be generated by any of the transient
processes that produce internal waves (some of which are described by e.g., Thorpe, 1975),
to provide a specific example we assume here that groups are generated as lee waves in the
thermocline forced by moving, quasi-periodic, modulated, transient disturbances at the
base of the overlying mixed layer. These disturbances might be a consequence of
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Kelvin-Helmbholtz billows (Pham et al., 2009), of convection (Ansong and Sutherland,
2010), or of Langmuir circulation cells being advected across the wind direction by Ekman
drift (Thorpe and Hall, 1982; Polton et al., 2008). Both billows and Langmuir circulation
cells are known to be variable and unsteady, occurring in packets with modulated
structures. Billows are observed to amalgamate with neighbors in “knots” that occur
typically at distances along the billows of about 4 times the billow wavelength (Thorpe,
2002b). The corresponding coherence scales of wind-aligned Langmuir circulation cells is
undetermined although their pattern is known to be irregular (Thorpe, 1992), neighboring
cells amalgamating in “Y junctions” (Farmer and Li, 1995), the variable structure being
described by McWilliams ez al. (1997) as “Langmuir turbulence.”

The quasi periodic disturbances (Fig. 1a) are supposed to have a mean horizontal wave
number k, in a horizontal direction, x, and move in this direction at a mean speed, U, above
the stationary deep layer of constant buoyancy frequency, N, although, in view of the
variability of billows or Langmuir cells, k and U are later allowed to have some variation
about these means and disturbances to be of limited extent in the second horizontal
direction, y. The magnitude of k and U, their modulations or change of amplitude in time,
determine the shape of internal wave groups that are generated (Fig. 1b), in particular their
orientation, defined below by the angle ¢, and the ratio of their minor and major axes.

The z-axis is taken to be vertically upwards. Rotation is included and the Coriolis
frequency is f. The properties of the internal waves are related to the periodic forcing
disturbances. The lee waves have wavenumber (k, /, m) (the [ component is included to
allow for the modulations of the forcing disturbances in the y direction) and wave
frequency, o, where, from the exact dispersion relation,

o = [(N(K + P) + fm2) (K + 1+ m?)]",

o (1)

where x = kU/N (<1), since the horizontal phase speed of the waves, o/k, matches that
of the forcing, U. This dispersion relation is valid for waves of finite amplitude; e.g.,
Thorpe (1994), and, rearranging, leads to

m = [k + P)(1 = x)/(x* = F)]", 2)

where F = f/N. Near-inertial waves with o near f are generated when x ~ F, while the
wave frequency is close to the buoyancy frequency, N, when x ~ 1. The group velocity is
c, = (ch, Cays cgz) where

Ce
colk, I, m) = d0/ok = N(1 — F)km*/K’K, = Nk(1 — x*)/xK>,
ok, 1, m) = d0/0l = N(1 — F*)Im’IK’K, = NI(1 — x*)/IxK>,

and
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THERMOCLINE

\N = const.

Figure 1. Internal waves, their surfaces of constant phase marked by tilted lines, generated by a
localized, spatially periodic disturbance, such as the Langmuir cells sketched in (a), of wavelength,
N = 2m/k, moving (at right angles to their wind-aligned axes) in the x-direction at speed U in a
mixed layer above a uniformly stratified region of buoyancy frequency, N. (a): lines of constant
phase are inclined at angle, 6, to the horizontal. The phase velocity, ¢, and the group velocity, c,
(parallel to lines of constant phase) are shown. (b): a group of waves with its major (X) axis
inclined at angle ¢ to the horizontal. Its dimensions in the vertical X-Z plane are Ly and L,; Ly >
L. Modulations may also occur to the disturbance in the y-direction, and consequently the internal
waves may be modulated (and the forced internal wave groups may be limited in their extent) in

the Y-direction. The group advances in the direction c,.

¢k, I, m) = do/dm = —N(1 — F)m(k* + P)/K’K,

= NGE — F)(1 )L~ PRy ¥

with K* = k* + I + m?, =k + 1)(1 — F?)/(x* — F?) using (2), and K, = [(K* +
%) + m?F*]""2. The group velocity is at right angles to the phase speed vector, ¢ =
(o/K*)(k, I, m), since c. ¢, = 0.

The modulus of the group velocity is denoted as c,,:
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¢, =N(1 = x)"(x* — F)"IKx. (4)

If the horizontal wavenumber of the forcing disturbance in the y-direction is [ = 0, wave
groups travel at an angle tan~ '(—c¢ ¢/ Cgx) = kim to the horizontal, given by

0 = tan” {[( — F)/I(1 — x)]"% S

(see e.g., Thorpe, 2005), as sketched in Figure la. This direction depends on F and x (or,
for given N, on the product kU). The direction is normal to the phase velocity and therefore
parallel to lines of constant phase. Modulations in the wavenumber and advection speed of
the disturbance causing the generation of internal waves therefore lead to variations in the
group velocity, c,, and the propagation direction, 6, of the component waves of a wave
group and, as we shall see later, to its spreading or dispersion.

The vectors ¢ and Ce lie in the same vertical plane and if the x and z axes are chosen in
this plane, it can be shown that

¢ + ¢, = (N/xK)(sinb, F’cosh), (6)

the consequences of which will be apparent when wave breaking is discussed in Section 4.

Although the shape of a wave group will depend on how it is generated (an issue to
which we return to in Section 4 and Appendix C), for generality we suppose an ellipsoidal
shape, defining its orientation by choosing axes X and Z aligned along its longer (major)
and shorter axes in the vertical plane containing the x and z axes, as in Figure 1b, with the
major X axis inclined at an angle ¢ to the horizontal. The Y axis is in the y direction. The
dimensions of the group in these directions are L, Ly and L, and the wavenumbers of the
waves in the group are ky, kv, and k,, respectively, where (by rotation of axes)

k = kysing + kxcose, m = kycose — kysing and [ = ky. @)
The three components of the group velocity in the X, Y and Z directions are

Cox = CoxCOSQ = Cy,SINQP, Coy = Cpy AN Cpz = €, SINQ + €,,COS8Q. (8)

Two angles characterize wave groups generated by disturbances in the mixed layer. The
angle 0 defines the direction in which a group propagates, and there is a further angle, ®,
that defines the orientation of the front of a set of waves generated by a two-dimensional
wave disturbance moving steadily in the x direction. As illustrated in Figure 2, waves
generated at time t = 0 from a point A at x = 0 will have traveled to B, a distance ¢ Jtatan
angle 0 to the horizontal at a time, t, when waves are subsequently about to be generated at
a point C where x = Ut. The line CB defines the front of the waves produced by a steadily
moving disturbance of limited extent and is inclined at angle —® to the horizontal, where a
negative sign is ascribed to ® to make it consistent with the chosen sign of ¢ in Fig. 1b.
Using the sine rule in triangle ABC we find

Ut/{sin[w — (6 — ®)]} = ¢,t/sin(—P),
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Figure 2. A packet of internal waves forced by a spatially periodic disturbance, CD, moving in the
x-direction at speed, U. The line, CB, and the angle, ®, defines the front of the advancing wave
packet. The back of the packet is the line, DE. The point, A, marks the initial location of C.

which leads to
tan® = sin6/(cos® — Ulc,).
Substitution for 6 and c,, using (4), (5) and (1) gives
tan® = —[(¢ = F)2(1 =) 2Y(F + ' = 2CF). ©

The angle 0 defines the direction of propagation of wave groups radiating from a stationary
periodic oscillation (Mowbray and Rarity, 1967) whilst @ defines boundary lines of the
front, CB (and back, DE), of a group generated by the movement of a disturbance, CD,
moving steadily for a finite time. Figure 3 gives ® and 0 as functions of y when F = 102,

Appendix A describes how Smith and Brulefert calculate the duration of a surface wave
group. Extending to internal waves in three-dimensions, we suppose that the wavenumber
components ky, kv, and k, are modulated as ky = Aky/2, =Aky/2 and k, = Ak,/2,
where the amplitude of the wavenumber variations are related to the dimensions of the

group:
Aky = 2m/Ly, Aky = 2m/Ly, and Ak, = 2/L,. (10)

By specifying the modulations in this way, groups have been selected that consist of waves
that are of restricted extent in all three (x, y and z) directions but are periodic only in x and
z. The groups considered here are specific to the periodic forcing by quasi two-dimensional
disturbances and will differ from groups forced by, say, moving disturbances localized in x
and y, (e.g., the pressure and stress caused by localized gusts of wind or those groups
forced as lee waves around an isolated region of topography in a slowly varying flow).
Groups with Aky = 0, formed when the forcing has infinite extent in the y-direction i.e.,
I = 0, are referred to as “two-dimensional groups,” otherwise they are “three dimen-
sional.” The wavenumber spectrum of waves in a wave group consists of a three-
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Figure 3. The angles 6 and ® (shown in Fig. 2) as a function of the forcing parameter, x = kU/N,
when F = 1072,

dimensional region of high energy per unit wavenumber centered at ky, ky (=0), and &,
and with dimensions ky = Aky/2, =Aky/2 and k, £ Ak,/2 defining the range of
wavenumbers of which the group is composed. The directional spectrum will generally be
narrow, with a peak near the direction of the wavenumber (ky, 0, k) or of the phase speed,
¢, and at right angles to the direction, 0 of the group velocity.

As shown by (3), unlike surface waves the group velocity of internal waves is not
isotropic or, more significantly, monotonic in wavenumber, and the maximum speed of
separation of a pair of waves belonging to a group (a speed that determines the group’s
lifetime) is not necessarily that of waves having the greatest separation in wavenumber.
Instead of making a calculation as in (Al) of Appendix A, we calculate the difference
between the group velocity components, Ac,x, Ac,y and Ac,,, over all pairs with
wavenumbers, (kx + 8Aky/2, £Aky/2, k, + €Ak,/2), belonging to a group, where
—l=8=land—1=e=1:

Acx = coxlky + 8, Aky/2, Aky/2, k; + € Ak,/2)
— Coxlkx + 8,Aky/2, —Aky/2, ky + €,Ak,/2), (11)

where 8, and €, 8, and ¢€,, all lie within —1 and 1 and define the wave pairs. The
differences in Y and Z group velocities, Ac,y and Ac,, are defined similarly. Following
Smith and Brulefert, the duration of a group, supposed ellipsoidal in shape, is defined as

T,= (T + Ty’ + T;7) 17, (12)

where Ty = Ly/|Ac,x|, Ty = Lyl/|Ac,y| and T, = L,/|Ac,,| represent the dispersal
times in the three directions. This is a (biased and ad hoc) measure of the time required for
the volume of a group to double which provides a useful measure for comparison. Because,



72 Journal of Marine Research [68, 1

for example, the width of the group in a direction normal to the dominant wave crests
within it may not double in this time—depending as T, does on the difference in the group
velocity components in the three directions, X, Y and Z—the number of waves within the
group will not necessarily double in time, 7, We seek the group velocity difference
components that give the minimum 7,. Smaller group velocities lead to greater times
before a group disintegrates through wave dispersion. The objective is to find the largest
difference in group velocities, weighted as in (12), to determine the shortest time or group
duration, before its component waves disperse or spread apart to a scale comparable to the
initial dimensions of the group. In practice to make computational times sufficiently small,
the differences in group velocity components are calculated as the values §; and €;,1 =1, 2,
are varied between —1 and 1 in steps of 0.1.*

Since the wavenumber components in the (X, y, z) coordinates are related to those on the
(X, Y, Z) coordinates (by (7)), variations Aky, Aky and Ak, lead, via (1), to variations in
X = kU/N (and in o), changes in the bandwidths and motion of the forcing disturbances
must occur and correspond to the wavenumber variations within the groups. Physically, it
is the variations in the forcing disturbances that lead to the structure of the internal wave
groups. There is no component of group velocity normal to the lines of constant phase (or
wave crests) of the dominant waves forming an internal wave group but, because there are
variations in X = kU/N (and in o), there is a (relatively small) dispersion in this direction
for the internal wave groups.” (We return to this point in Section 4.) It follows, however,
that the length of wave crests may increase (relatively rapidly) and, consequently, the
shape of wave groups may change in time.

Egs. (11) (and similar equations for Ac ¢y and Acgz) and (12) can be expressed in terms
of the X, Y and Z wavenumber components using (8), (3) and (7). Taking N\ = 2w/k (the
wavelength of the forcing disturbance) and N~ ' to nondimensionalize length and time
scales, we can determine N7, in terms of a set of parameters:

X = kU/N (the parameter of the forcing, related by (1) to the frequency of the dominant
waves in the group),

q = L /L (the aspect ratio of the group in the X-Z plane),

S, = k/Ak, = L, /\ (the ratio of the dimension of the wave group in the Z direction to
the disturbance wavelength, or a nondimensional measure of the width, L, of the group),

r~' = Ly/\ (the modulation scale in the y or Y direction divided by the disturbance
wavelength; the inverse is taken so that » = 0 for “two-dimensional groups” with infinite
extent in the y direction),

¢ (the orientation of the wave group), and

4. It is found in many cases that d; and €; are equal to 1 or —1, implying that the wave pair leading to the
greatest weighted differences in group velocity are indeed waves that are separated in wavenumber components
as far as is possible within a wave group.

5. In the case of a surface wave group, there is no component of group velocity along the direction of the wave
crests of the dominant waves, but (except when dg = 0) some dispersion of the group in this direction owing to
the finite bandwidth of the waves of which the group is composed.
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F = fIN (a measure of the effect of the Earth’s rotation).

Values of these parameters must be chosen to conform with physical constraints. The
value of x must lie between F and 1 for m in (2) or 8 in (5) to be real, so that freely radiating
(rather than evanescent) lee waves are generated by the moving disturbance. The parameter
r is later selected equal to O or to 0.25 to correspond most closely to the case when the
forcing is by Kelvin-Holmholtz billows modulated in the y-direction at a scale of 4 times
the billow wavelength.

The parameter 9, is related to the number of waves, ny and n,, in the lengths, Ly and
L, in the X and Z directions of groups at any moment of time. Referring to the geometry of
Figures 4a and b, the wavelengths, AB, are found from the sine rule applied to triangle
ABC: AB = Asinf/cos(6 — ¢) in (a), which implies that the mean number of waves in L is

ny = |3,cos(6 — @)/sind)|, (13)
since 8, = L,/\. Similarly from (b), AB = Asin6/sin(6 — ¢) and ny is given by
ny = |8,sin(6 — ¢)/gsind)|, (14)

using ¢ = L,/Ly. For given forcing ¥, these values depend on F only in so far as 6 does
through (6); they do not depend on the parameter, r, describing the effect of three-
dimensionality. The number of waves in the X direction is zero when ¢ = 6, i.e., when the
X-axis of the group is parallel to the lines of constant wave phase. (Examples of the
variation of ny and n, with ¢ for fixed 8, and ¢ are given in Figure 6.)

The mean number of waves contained in a group, n, may be found if the shape of the
group is supposed to be an ellipse with major and minor axes Ly and L. It can be shown by
simple geometry that the extent of the wave group in a direction normal to the wave crests,

the distance D in Figure 4c, is equal to [L%sin*(0 — ¢) + LZcos*(® — ¢)]"/?, and so the
number of waves of wavelength \ sinf is D/\ sin6, or
n = 8,[sin’(6 — @) + g*cos* (8 — ¢)]"*/(¢sinb), (15)

using 8, = L,/\ and ¢ = L,/Ly. Eq. (15) provides a relation between 8, and the number
of waves in a group. The difference between the number of waves, n, observed instanta-
neously in a group, and the number that would be recorded as the group propagates past a
fixed point, n,,, or a fixed vertical mooring line, n,,,, is addressed in Appendix B. The ratios,
n,/n and n,,/n, depend on c/c, and on the shape of the group.

If T = 2m/o is the wave period, the nondimensional duration, N7, is related through
(1) to the duration divided by the wave period, or T,/T (the number of wave periods for
which a group retains its structure), by

TJT = NT,(x/2). (16)
From (3), the vertical group velocity is when [ = 0:

o = —NOC — F)2(1 = X)) kx(1 = F)]. a7
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(b)
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Figure 4. The number of waves in a group and their length. (a) and (b): the wavelength of waves in
the Z and X directions, respectively. The wavelengths, A, and A, equal to AB, are found from the
sine rule applied to triangle ABC. In (c) the group is represented as an ellipse with major and minor
axes Ly and L, the width of which, D, is equal to the distance between the two tangents at angle
(6 — &) to the major axis. The mean number of waves in the group is D/\,, where N\, = Asinf is
the wavelength.
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For fixed k, the maximum of —c,, is found (by differentiation with respect to x) at x> =
[1 + (1 + 3F»"2]/3, so, for small F, x ~ (2/3)"? ~ 0.816 and from (5), 6 ~
54.74 deg., the angle found by Sutherland to separate stable and unstable waves—see
Section 1. (If, on the other hand, U is fixed, the maximum c,, is found when x ~ 2~ 12 ~
0.707, or 6 ~ 45 deg.)

The vertical distance, z,,,,, through which a group travels downwards during its lifetime,
T, is equal to —c,,T,. It may easily be shown using (17) that

Zoad N = (LT = F2(1 = )1 = F)]; (18)

for given values of x and F, the nondimensional measures, NT;, z
therefore proportional to one another.

/N and T,/T, are

max

3. Results

Since there are 6 parameters, X, ¢, 9., r, ¢ and F, required to specify the shape and size
of groups, some selection is needed in order to provide a simple comparison of the duration
of groups of different shapes and orientations. The parameter F is chosen as 102, typical
of the upper ocean. The value of r is taken to be zero for two-dimensional groups or 0.25
for three-dimensional groups. The lifetimes of groups are now found and compared in two
particular cases. In the first, Case A, the extent of a group in the Z direction, L, is confined
to a given fraction of the disturbance wavelength, \: a set of values of 8, is chosen, each
keeping the nondimensional group width, L/\ = &, constant. (The number of waves, n,
in the groups will then vary.) In Case B, n is fixed to selected values and (15) is used to
determine .

Figure 5 shows how, in Case A, the logarithm of the nondimensional duration, NT;, of
groups with aspect ratio, ¢ = 0.2, varies with their orientation, ¢, and with the forcing
disturbance, defined by x and r, when nondimensional width is 8, = 1. In Figure 5a, r = 0
so the forcing disturbance is uniform in the y-direction producing two-dimensional groups.
Five different values of x = kU/N, are selected. There are generally two peaks in group
duration, 7,;. The durations vary by a factor of about 5 depending on the groups’
orientation, ¢. The durations, and in particular the maximum durations, decrease as the
forcing frequency parameter, ¥, increases (i.e., as the group propagation direction, 9,
increases, as the wave frequency increases or the wave period decreases). The maximum
duration occurs at a value of ¢ that varies with x and is within 2 deg. of the group
propagation direction, 0, given in Table 1, the exception being at x = 0.8 when the
maximum duration is at a value of ¢ that is 5 deg. less than 6. The group duration for the
values ¢ = 0.2, r = 0 and &, = 1 shown in this figure does not show any particular
behavior at an alignment corresponding to the front orientation, ® (shown in Table 1).
Here, and in later examples including those where the maximum duration is close to where
¢ = @, the maximum values of T, occur close to values of ¢ where |Acgz| is small, i.e.,
where T, = LZ/|Ach| is very large. When ¢ = 0 and [ ~ 0, it follows from (3) and (8)
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Figure 5. The nondimensional times, plotted in nondimensional form log(NT,), as functions of
group orientation, ¢, for Case A when g (=L,/Ly) = 0.2, F (=fIN) = 10" 2,8, = L,/A = 1, and at
various labeled values of the forcing parameter, x (=kU/N; see Table 1), when (a) r = 0: the
two-dimensional case when the group has infinite extent in the y- or Y-direction); and (b) » = 0.25. The
maximum values of log(NT,) are marked by arrows labeled with the corresponding values of x.

that ¢, = 0, and consequently Ac, is small (but not necessarily zero, since the directional
spectrum of the waves within the wave group, and therefore of the waves contributing to
Ac,y, is of finite width; not all component waves have group velocity exactly in direction
0): a maximum of 7, for ¢ near 0 therefore occurs close to where |Ac gZ| is small.
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Table 1. The variation of the angles § and ® with y when F = 102

X = kUIN 0 (deg) d (deg)
0.05 2.81 —48.00
0.10 5.71 —78.58
0.20 11.52 —717.78
0.40 23.57 —66.35
0.60 36.87 —53.13
0.80 53.13 —36.87

The value of the parameter, r = N/Ly, inversely proportional to the width of the group in
the y or Y direction, is taken to be 0.25 in Figure 5b, corresponding most closely to the case
when the forcing is by Kelvin-Holmbholtz billows in or at the lower boundary of the mixed
layer. As is seen by comparing Figures 5a and 5b, the effect of allowing dispersion in the y
direction has little effect when x > 0.2, but reduces the variation in NT,; with ¢, and
reduces the maximum duration of the groups, when x = 0.2.

The total number of waves in the groups, n, given by (15), and the number of waves, nyx
and n,, measured in the X and Z directions determined using (13) and (14), are shown in
Figure 6 at three values of x. Being independent of r, the numbers of waves are the same
for parts (a) and (b) of Figure 5. The group size, measured by the number of waves it
contains, varies with the orientation, ¢, but, on average, decreases with the forcing
parameter, x. The groups containing the greater number of waves (those with the smaller
X) also have the largest maximum duration.

The general effects seen in Figure 5 are also apparent when the relative extent of the
wave group, L, is increased by a factor of 4, as shown in Figure 7 where &, = 4. Group
durations are increased through the increase in 8,. The relative numbers of waves in the
groups are proportional to 8, by (13)—(15), and are therefore 4 times greater than in Figure
6. The most obvious difference in trends is found by comparing Figures 5b (r = 0.25, 9, =
1) and 7b (r = 0.25, 8, = 4). The increase in &, (or L,) greatly reduces the range of
variation of NT; as ¢ varies, and although the maximum values of NT, decrease for x =
0.4, the maximum at x = 0.8 is greater than that at x = 0.4.

It is the maximum group durations or lifetimes of groups of set properties that are of
greatest significance and importance in this study. Figure 8 shows, for Case A, the results
of seeking the maximum duration of two-dimensional groups (» = 0) as the orientation, ¢,
is varied at set values of the group width, §,, and forcing, x. The orientation of the longest
duration groups, &,,,.,» sShown at the top of each part of the figure, has positive values that
are very close to the propagation direction, 0, as noted earlier in relation to Figure 5a. There
are also negative values of ¢,,,, near ®@, corresponding to longest-lived groups that are
tilted as are the wave fronts of Figure 2, possibly making them of a form more readily
generated by moving disturbances, as described in Appendix C. The orientation also shows
some tendency to increase (notably for values of ¢ near 0.5 in Figure 8 parts b and c) as the
aspect ratio, ¢ = L,/Ly, of the groups increases (i.e., as the groups change from being
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Figure 6. The number of waves in the groups, n (marked by crosses), and the number of waves, ny
and n, in the X and Z directions in Case A plotted as functions of ¢ when (as labeled) x = 0.05,
0.2 and 0.8 and when ¢ (=L,/Ly) = 0.2, F (=fIN) = 10728, = L,/\ = 1.

-90

relatively long and thin to being more circular in form), but some abrupt changes with g of
about /2 occur in ¢, €.g2., near g = 0.2 and 1.0, resulting from jumps between the pairs
of peaks of NT, like those of Figures 5a and 7a. (As shown in Figure 3, the angles 6 and ®
are separated by approximately w/2 when x is greater than about 0.2.) The lower sections
of each part of Figure 8 show duration measured by the logarithms of N7, the number of
wave periods, 7,,/T, and the maximum vertical distance over which they propagate, z,.,../\,
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Figure 7. The nondimensional times, plotted in nondimensional form log(NT,), as functions of
group orientation, ¢, for Case A as in Figure 5 but with &, = L,/A = 4. (a) r = 0, and (b) r = 0.25.
The number of waves, n, ny and n,, in groups are 4 times those shown in Figure 6.

given by (18). All these nondimensional measures of duration decrease as ¢ increases and
as the group width, L,/\ = &, decreases; the longest-lived groups have small aspect ratio,
q = L,/Ly, and (perhaps not surprisingly) the wider the group, the longer is its duration.
Similar results are found for three-dimensional groups with r = 0.25 as shown in Figure 9,
although the nondimensional lifetimes of the groups, now shown on linear scales, are
substantially smaller; it is again apparent that the effect of dispersion in the y direction is to
reduce the lifetime of groups.

Effects of varying x in three-dimensional groups when the width of groups is kept
constant at &, = 4 are shown in Figure 10. Values of ¢,,,, vary monotonically neither in ¢
nor in x, and (as already apparent in Figure 9) are not always near 6 or ®: the maximum
propagation distance increases monotonically with x when ¢ is less than about 0.5, but has
a maximum when ¢ > 0.6 at a value of x that decreases as ¢ increases. This maximum is



80

0.2 0.4q0.6 0.8 1.0

log (NTq)

T (a

02 of4q0f6 08 1.0

log (Zmaxy,)

Journal of Marine Research

90r
Omax
(deg.)
0=
ok

o x
. . .
0.2 0'4q0'6 08 1.0

log (Tq;7)

log I(NTd) J

02 of4qof6 08 1.0

log (zmax,)

log (Tap)

S S S f—
0.2 0.4q0.6 08 1.0

log I(NTd)

41

02 of4q0f6 08 1.0

[68, 1

log (zmax,)

(©)

Figure 8. The variation of (top) the orientation of groups, ¢ = &,,..,» When their duration, 7, is
greatest, and (bottom) the ratio of the maximum duration of the groups divided by the wave period,
T,/T, on a log scale, with the group shape parameter, ¢ = L,/Ly, of two-dimensional (r = 0)
groups in Case A at values of 8, = L,/\ = 4 (dotted points), 2 (crosses) and 1 (circles), when F =
1072 and (a) x = 0.1, (b) x = 0.2, and (c) x = 0.4. Values of 0 and ® (given by Table 1) are

marked by arrows on the &

max

shown, inferred from 7 /T using (16) and (18).

axis. Scales for the values of log(NT,) and log(z,,,./\) are also

perhaps not unexpected since (as mentioned in Section 2) internal waves have maximum
vertical group velocity when x = 0.707 or 0.816, depending on whether U, or (as here) &,
is kept constant. A dependence on the shape of groups (a variation with ¢) was not,

however, foreseen.

In the second case, Case B, the number of waves in a group, n, is fixed. Valuesn = 2, 4,
8 or 16 are chosen and r is taken to be 0.25 in Figure 11, which shows the variation of
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Figure 9. As in Figure 8, but for three-dimensional groups in Case A with r = 0.25, and with linear
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Figure 10. The variation of ¢,,,,, and z,,,,,/\ (with a linear scale) with ¢ for values of x ranging from
0.2 to 0.9 (as labeled) when &, = L,/\ = 4 for three-dimensional groups with » = 0.25 in Case A
as in Figure 9.

log(NT,) with ¢ for a (labeled) set of values of x when ¢ = 0.2, the values selected earlier
in Figures 5b and 7b. There are only two waves in a group (i.e., n = 2) in part (a). Values
of T, vary with ¢ by factors of about 100. The values, &,,..» Where T, reaches its
maximum value increase with x and, again, are near the group propagation direction, 6.
Corresponding curves for n = 8 are shown in part (b). The maxima of 7, are greater than
those when n = 2, but it is evident that the largest group durations do not vary
monotonically with x. Figure 12 shows values of ¢,
for comparison with the earlier Figure 9 for Case A. Groups with few waves (i.e., n = 2)
generally have longest durations when their orientation is near 6. The longest duration
groups with many waves, n = 16, have ¢,,,, < 0 when x = 0.2 and 0.8, although no
longer clustering near ®. The durations N7, and T,/T, and the vertical propagation
distance, z,,,,,/\, generally (but not always, e.g., for n = 16 in Figure 12b) decrease as g
increases and as n decreases, and increase as x increases.

and maximum durations for Case B

4. Discussion

The main conclusion is that, as for surface waves, the duration of wave groups depends
upon their shape. The longest lasting groups of equal relative widths, 8, = L_/\, are those
with small values of aspect ratio, ¢, and (as shown in Figures 8, 9 and 12) are commonly
inclined at an angle to the horizontal, & = ¢, (defined in Fig. 1b), that is very close to the
propagation direction, 6 (defined in Fig. 1a), or near the front angle, ® (defined in Fig. 2).
That the duration may be greatest near ¢ = 6 may be foreseen because ¢, = 0 at this angle



82 Journal of Marine Research [68, 1

0.2 0.8
0.1 l 0.4 v

()

-90 -60 -30 0 30 60 90
¢ (deg.)

log (NTg)

-90 -60 -30 0 30 60 90
¢ (deg.)
Figure 11. The nondimensional times, plotted in nondimensional form log(NT,), as functions of
group orientation, ¢, when ¢ (=L,/Ly) = 0.2, F = 10~ 2, and at various values of the forcing
parameter, X, in case B when the number of waves in the three-dimensional (r = 0.25) group is
(a) 2 and (b) 8. The maximum values of log(NT,) are marked by arrows labeled with the

corresponding values of x.
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Figure 12. The variation with the group shape parameter, ¢ = L,/L, of (top) the orientation of groups,
& = &, When their duration, 7, is greatest, and (bottom) the ratio of the maximum duration of the
groups divided by the wave period, 7,/T, in Case B when the number of waves in the three-dimensional
(r = 0.25) group is set at 2, 4, 8 and 16, as labeled. Values of the forcing parameter, , are (a) 0.05, (b)
0.2, and (c) 0.8. The curves n = 4 are marked by dots, n = 8 by circles and n = 16 by crosses. Values of
6 and ® (given by Table 1) are marked by arrows on the ¢, axis. As in Figure 8, values of NT, and

/N have been inferred from 7 /T using (16) and (18).

max
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so Ac,z and T, ! are relatively small, making 7, (12) relatively large. But, just as in the
case of surface waves where there is no group velocity component along wave crests
(suggesting—incorrectly—that ¢g = 0 may give the maximum duration, even when, for
surface waves, Aky = 0; Appendix A), this is not necessarily the direction for longest
duration.

Wide groups (measured by &,; Case A) or groups with many waves (measured by n;
Case B) generally have greater durations than relatively narrow groups with few waves.
When ¢ ~6, the groups contain waves with lines of constant phase aligned along the major
axes of the groups, and are like one of the (four) wave groups produced in the laboratory
experiments by Mowbray and Rarity (1967) when their horizontal cylinder is oscillated in
a uniformly stratified fluid a few times at a frequency less than N. In this case, and unlike
Smith and Brulefert’s surface wave groups, these waves are not slanted relative to the axes
of the group.

Although the results in Cases A and B provide information about the inherent variation
of the lifetime of internal wave groups with their shape, the assumption that 8., or n will be
constant for groups of waves radiating from a moving turbulent mixed layer is untenable. A
simple model is described in Appendix C that addresses the variations of 8, or n, as well as
suggesting one way in which slanted groups with ¢ negative and near ® might be formed.
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The relation of groups and wave breaking was referred to in Section 1. Internal waves
may break through many mechanisms (Staquet and Sommeria, 2002; Thorpe, 2005), for
example by locally enhancing the shear and reducing the Richardson number below some
critical value for a period long enough for billows to overturn (Troy and Koseff, 2005) or if
they are steep enough to produce regions of static instability (Thorpe, 1994; Lombard and
Riley, 1996). Suppose that waves traveling through a group break within some volume, V,
that is advected within the group. The locus of the centre of the breaking region mapped out
as the waves and group advance defines the region affected by wave breaking and mixing.
A series of waves leaves behind a pattern of “scars” (i.e., regions mixed by the breakers).
When V has a circular shape with an aspect ratio of unity, the scars are inclined to the
horizontal at an angle ¢, = o where

a = —tan” ' (F’cotf), (19)

in the direction of ¢ + ¢, given by Eq. 6 (Thorpe, 1999). (The angle, «, is positive
downwards when c, is downwards as in Fig. 1.) For typical values of f/N, a is close to
zero, so the scars are almost horizontal and the breaking waves result in horizontal mixed
layers. An exception is when 0 is small and ¢ ~ f (i.e., for near-inertial waves) when |y|
can be appreciable. The volume, V, is however likely to have a shape and axis-orientation
similar to the wave group, and so in general, when g # 1, the aspect ratio of V will not be
unity. The orientation of scars produced by two-dimensional wave groups is found in
Appendix D. Scars produced by the longest duration, elliptically shaped groups are almost
horizontal except for near-inertial waves when scars of groups with small aspect ratio, ¢,
may be inclined at some 10 deg. (Fig. A4). Although small-scale active turbulence may be
generated through the breaking of waves as a group travels through the fluid, it is unlikely
to persist for the one wave period, T = 2w/o, between the onset of breaking in successive
waves of a group (Thorpe, 1999) except for waves of frequency near N; turbulence
collapses after a time, 7, typically of order ION ' (Staquet and Godeferd, 1998), so that
7/T ~ 1.50/N which is <1 when /N is less than about 0.7. Turbulence generated at the
beginning of wave breaking in one “scar” will rarely be sustained until the next wave starts
to break. (Horizontal vortices created when turbulence imparts momentum to the fluid and
small-scale density fluctuations may, however, persist for greater times; Thorpe, 2005.)
One important feature of the wave groups radiating downwards from the mixed layer is
their transport of extreme values of wave slope or low Richardson number. Their duration
and the vertical component of group velocity determine the depth to which such extremes
are propagated or to which mixing produced directly by radiation of energy from the mixed
layer in the form of wave groups can occur. As shown in Figures 9, 12 and A2, however,
three-dimensional wave groups do not persist for very large times or propagate far except
perhaps in the possibly rare cases in which groups contain many waves, n, have small
aspect ratio, ¢, or have relatively large x and consequently large propagation angles, 6, or
when there is some nonlinear process that allows them to remain compact. The number of
wave periods, T,,/T, for which three-dimensional groups even of the optimal shape persist



2010] Thorpe: Duration and shape of internal wave groups 85

(and few groups may be generated with optimal form) are generally moderate. So too is the
vertical propagation distance, z,,,, before they cease to remain compact, measured in
terms of the disturbance wavelength, A. To provide a specific example: the mean
(across-wind) distance between convergence regions of Langmuir cells in deep water is
about 3 times the thickness of the mixed layer (Smith et al., 1987). For a mixed layer 40-m
thick, the corresponding disturbance wavelength, N = 2m/k, is therefore about 120 m. If
N = 10?5, a drift velocity, U, of about 3.8 cm s~ ' transporting the Langmuir cells
normal to the wind direction, gives x = kU/N ~ 0.2. Wave groups with the maximum
duration for x = 0.2 are shown in Figure 9b, and have 11.0 < 7,/T < 16.3 and 2.2 <
Zmax! N < 3.4 for &, ranging from 1 to 4 and so, since A = 120 m, 264 < z,,.(m) < 408.
Corresponding values for Figure 12b are 2.5 < T,/T < 13.9 and 0.44 < z,../\ < 2.8 for
n ranging from 2 to 16, giving 53 < z,..(m) < 334. The maximum durations are not very
large in terms of the period of the waves within the groups. Groups of waves generated in
the manner selected here may therefore only rarely travel to substantial depths, and will
propagate through the full water depth to reach and reflect from the seabed only where the
water depth is much less than the mean depth of the ocean (about 3800 m).

A further factor prevents groups remaining coherent whilst propagating over large
vertical distances. In the real ocean the buoyancy frequency varies in depth, and the
dispersion relation of internal waves on which the analysis depends will (unlike that of
surface waves in deep water) be dependent on location (Mathur and Peacock, 2009).
Groups that have an “optimal” shape that leads to their having a maximum duration in the
stratification of the upper themocline (or just above a benthic boundary layer mixed by
Kelvin-Helmbholtz billows, to which the analysis also applies), will change in shape
through refraction as they propagate and become “nonoptimal.” Nevertheless, the point
made here is that the groups that persist longest (and may travel deepest) before dispersing
may have a small aspect ratio, g, and inclination near 6 or ®, and that, like the slanted wave
groups observed by Smith and Brulefert, the wave groups of greatest duration have a form
that is unexpected.

It should be emphasized that the question addressed here concerns the duration of groups
and the vertical distance over which wave groups retain their identity, rather than the depth
to which internal waves of a given frequency transport energy from a turbulent region.
Although both questions involve the vertical component of group velocity, the latter relates
to the observation by Linden (1975) and Sutherland and Linden (1998) that waves
generated in or at the boundaries of turbulent regions are found to radiate into their
stratified, non-turbulent surroundings predominantly at angles, 6, of about 45 to 60 deg to
the horizontal (see also Sutherland, 2001; Dohan and Sutherland, 2003, 2005; Taylor and
Sarkar, 2007; Gayen et al,, 2010). That problem involves not only the rate of vertical
transfer of energy, but the spectral distribution of wave energy generated by turbulence as
well as the dissipation of wave energy, a feature not addressed in the present discussion.
Waves will continue to propagate (retaining their frequency), to interact with other waves
(possibly changing wave frequency), and to transfer energy even after the group structure
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imposed during their generation at the base of the mixed layer has been lost through their
relative dispersion. The present study is therefore linked, but not directly related or offering
an answer, to the questions posed by Linden and Sutherland’s observations.

It may be expected that the lifetime of groups of other types of waves, such as Rossby or
Kelvin waves, also depend on their shape. The results draw attention to the need to
discover more about internal wave groups: their shape, how persistent they are, and how
they are produced.
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APPENDIX A
Smith and Brulefert’s method of calculating the duration of surface wave groups

A wave group is, classically (e.g., Lighthill, 1978; Section 3.7), formulated as a sum of
two waves of slightly differing wave numbers and frequencies so, for example, the wave
amplitude is expressed as

{ = aexp{i[(k + Ak)x + (o — Ao)t]} + aexp{i[(k — Ak)x + (o — Ao)t]},
2aexpli(kx + ot)] cos(Akx + Aat]},

representing a wave of the mean wavenumber and frequency, k and o, modulated by the
cosine term that has wavenumber and frequency, Ak and Ao, and which advances in the x
direction at speed Aa/Ak, or, in the limit of small Ak and Ag, at the group velocity. The
modulation represents the wave group with a length 27w/Ak. Extending to two-dimensions,
Smith and Brulefert suppose that the wavenumber components ky and &k are modulated as
ky £ Aky/2 and ky £ Aky/2, where the amplitude of the wavenumber variations are
related to the dimensions of the group, Ly and L+:

Aky =2m/Ly and Aky = 27/Ls.

The duration or lifetime of a group is determined by the time taken for a pair of waves
belonging to the group to disperse. For the surface waves in deep water considered by
Smith and Brulefert, the group velocity decreases monotonically with wavenumber and,
since the dispersion relation is independent of direction, the group velocity is isotropic. The
maximum rate of separation of two waves belonging to the group is therefore found from
the difference in group velocities for the pair of waves that have the greatest and smallest
wave numbers. For surface waves in an X-Y plane,

Acyx = coxlh + Akyl2, ky + Aky/2) — coxlhy — Aky/2, ky — Aky/2), (A1)

and Ac, is defined similarly. For an elliptically shaped group Smith and Brulefert show
that the duration of a group before waves disperse may be defined as

Td — (T)7(2 + 7;2)71/2’
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where Ty = Ly/|Ac,x| and Ty = Ly/|Ac,y| represent the dispersal times in the two
horizontal directions.

Observations show that the eccentricity of the wave groups is large so that Ly << L, and
Smith and Brulefert therefore put Ak, = 0. This implies that when the major axes of wave
groups are aligned across-wind, parallel to the wave crests and in direction Y, ky, = 0, there
is no across-wind dispersion and Ac,y = 0.

APPENDIX B

The number of waves observed in a group

The number of waves that are, instantaneously, in a group of dispersive waves, n, and
the number recorded as the group passes a fixed point, n,,, generally differ.

A group of surface waves of length L, in the (downwind) direction in which the waves
travel, passes a fixed point in time L,/c,, where c, is the group velocity. (The effects of
dispersion and group elongation in the relatively short time taken for the group to pass the
fixed point is neglected.) The number of waves of period, 7, passing the point in this time is
n, = L/Tc,. If the wavelength is \, the average number of waves in the group is n =
L./\. Hence n,/n = NTc, = clc,, since the phase speed, ¢ = N/T. For waves in deep
water, ¢, = ¢/2, and so n,/n = 2; approximately twice as many waves are recorded at a
fixed point as are actually present in a group.

A similar calculation can be made for an internal wave group, again ignoring dispersion.
Suppose we take a point, A, through which the centre of an elliptical group illustrated as in
Figure 4¢ propagates. The width of the group in the propagation direction, c,, is found by
simple geometry to be W = LyL,/[Lxsin*(8 — @) + L3cos*(8 — ¢)]""%. The time taken to
pass point A is therefore LyL,/[L%sin’(0 — @) + L3**(0 — ¢)]"/c,, where c, is the
group velocity of the group, e.g., as given by (4). If the wave period is T, the number of
waves passing A in this time is

n, = LxL,/[Lxsin*(0 — ¢) + Licos*(6 — ¢)]"Tc,.
But the number of waves in the wave group, n, is given by (15). This can be written as
n =[Lisin*(0 — @) + Licos* (8 — @)]"?K/2m,
where K is the wavenumber, and so
n,/n = 2mwLyL,{[Lysin*(0 — ¢) + Lycos* (6 — @)]KTc,},
or
n,/n = (clc,) LxL,/[Lisin*(0 — @) + Licos*(6 — ¢)],
since the phase speed, ¢ = 2w/KT. The ratio can be written

n/n = (clc,)(W/LgLy).
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The number of waves observed as the group passes a fixed point, n,,, is therefore related
to the number of waves within a group, 7, multiplied by a term that depends both on ¢/c,,
as for surface waves, and also on a term that is a function of the group’s shape.

Similar reasoning can be applied to find the number of waves recorded as an internal
wave group passes a fixed vertical mooring line. The width of the elliptical group in the
horizontal direction is W = [Lcos®@ + L2sin’e]"?, and the speed of the group in this
direction is c,cosb. The time to cross the vertical mooring line is therefore 1 = W/c,cosb.
The speed of the waves in the group in the horizontal direction normal to the mooring line
is csinB and their length in this direction is 27/Ksin6, where K is the wavenumber of the
waves. The number of waves, n,,, crossing the mooring line as the group passes it in time ¢
is therefore ctsinB/(2m/Ksin®), or n,, = (c/cg)(sinzﬂ/cose)(WK/ZT:). Using (15) we can
write

n,/n = (c/c,)(W/D)(sin*6/cosb),

where W/D = {[L%cos’@ + Lzsin’@]/[Lisin*(8 — @) + Licos*(0 — ¢)]}"~
In general the ratio depends on the shape of the wave groups.

APPENDIX C
Generation of wave groups by a moving turbulent disturbance

Superimposed groups of waves are supposed to be generated as in Figure 1 by the
motion of a disturbance of length L containing a variety of wavenumbers (i.e., a
narrowband disturbance representing frozen turbulence) moving at a speed U for a time
T.., and that the disturbance components centered at wavelength \ generates a radiating
internal wave group, one of which is shown in Figure Al and described in the figure
caption. Neglecting dispersion of the wave pattern over the time T, the group boundaries
are, as shown, inclined to the horizontal at angle —®, being generated as in Fig. 2. The
number of waves of length X produced is

n=(L+ UT*)/\, (A2)
and so, defining x = kU/N as before,
n=(1+s)x/2mp, (A3)

since N = 2w/k = 2wpL/x, where s = UT,/L, the distance traveled by the disturbance
divided by its length L, and p = U/NL, say. The number of disturbance wavelengths in the
moving packet of disturbances is L/N = x/2mp, which must exceed unity. If F = 0, 8 =
tan '[(x/(1 — x»"?] from (5) and ® = —tan"' [(1 — x*)"?/x] from (9), and so D = 0 —
/2, and angle DAO = m/2. Now from the geometry of Fig. Al, if the angle DCA = —¢
defines the group orientation, tand = —DAsin (—®P)/[L + DAcos(—®)]. But DA = UT,,
sinf, and so

& = —tan” '[ssinBcosb/(1 + ssin’0)]. (A4)
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Figure Al. A group of waves generated by a disturbance of length L moving at speed U from O at
x = 0 for a time 7. The group is shown at the moment the disturbance ends. The bottom of the
group defined by the line AB is formed when the disturbance, acting locally as a periodic plunger,
moves at speed U from its initial location, 0 = x = L to UT,.L X UT,, + L. The length of the wave
crests (sketched as thin lines) is subsequently determined by the group velocity, c,, and the
duration of forcing at any location, i.e., by the time L/U in 0 = x = UT,,.. The length of the wave
crests in UT,, = x = UT,, + L (the latter beng point C) steadily reduces with x because the time
over which the disturbance passes any point, x, (i.e., the time for which waves are generated)
decreases to zero. The group is inclined to the horizontal at angle —¢, with the longer, X, axis
given by the line CA. At subsequent times, the group propagates in direction c¢,, moving
downwards below the line z = 0 and separating from the x-axis.

Furthermore, Ly = AC = UT.sin® cost/sin(—¢) and L, = 2Lsin(—¢), and so
g = L,/Ly = 2sin’$/(ssinfBcosh), (A5)
while
8, = LN\ = —2nsind/(1 + s). (A6)

The vertical distance to which the centre of the wave groups reaches before dispersing, is
made of two parts, the initial depth, Z, = Ly sin(—¢)/2 = (sLsinfcosb)/2 =
(sN\xsinBcosH )/4mp as for the group shown in Figure Al, and that corresponding to its
subsequent vertical motion before its component waves disperse, z The total vertical
distance, Z, is therefore given in nondimensional form as

max-*

max?
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Figure A2. Vertical propagation of slanting groups generated by a disturbance in the mixed layer
when p = U/NL = 0.025, F = 0 and at various values of s = UT,/L (labeled). (a) the number of
waves in groups, n: the number of waves in the forcing disturbance are indicated by the dashed
line; (b) the relative width, 8,; (c) the aspect ratio of groups, ¢; (d) the group orientation, ¢j; (e) the
nondimensional duration of wave groups, 7.,/T, expressed as a number of wave periods: and (f) the

maximum depth of the centre of wave groups, Z,,./\ (full line) and the vertical motion, z,,,,./\
(dashed lines), all vs. x and 6.
Znax! N = (sxsinBcos0)/4mp + Z,0/N, (A7)

where z,,,,./\ is given by (18).

These parameter values are used to define wave groups generated by the moving
disturbance over a range 0.4 = x = 1.0 to cover the range in which the vertical component
of group velocity is maximum. The parameter r is chosen to be 0.25, as before. Figure A2
shows values found by selecting p = U/NL = 0.025 withs = UT,/L = 0.5, 1, 2 and 4,
values indicated on the curves in the figure. Parts (a)—(d) show, respectively, the variations
with x (or 0) and with s of: the number of waves in a group, n (with the number of waves in
the forcing disturbance being shown by the dashed line); the relative widths, 3,; the aspect
ratio, ¢; and the orientation, ¢. The number of waves increases linearly with x as in (A3)
and parameter &, given by (A6), increases with s. The aspect ratio, ¢, decreases as x
increase when x > 0.55. Groups have negative orientation (becoming more negative as s
increases), just as do many of wave groups found to have the greatest duration in Section 3
(e.g., in Figs. 8 and 12), but neither 8, nor n remain constant as in Cases A or B. The
duration of wave groups measured as the number of the periods of its component waves,
T,/T, found using (16), is shown in Fig. A2e. Maximum values lie between 12 and 30,
increase with s, and are found between x = 0.7 (6 = 44.4 deg.) and 0.78 (6 = 51.3 deg.).
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The depth to which groups travel are given in part (f), the full lines showing Z,../\ and the
dashed lines the vertical motion, z,,,./\. The total depth, Z,,,., reaches largest values that
increase with s and peak at values of x in the same range as do 7,,/T. Values of z,,,, peak at
about the same values of x as Z,,., and are generally the major contribution to Z,,,,. For
some values of s (and p), however, substantial dispersion will occur to waves during the
time T, before the form of the group reaches the stage illustrated in Figure A2 and, because
of dispersion during the time 7, a factor ignored in this analysis, values of Z;/\—and
consequently Z .. /\—will be overestimated.

max’

APPENDIX D

The orientation of scars produced by two-dimensional wave groups

Figure A3 shows an elliptical area, V, within which internal waves of a surrounding
group are breaking. The area moves with the group velocity, c,, and the waves within the
group break as they pass through V, their crests advancing at speed ¢ (where underlined
quantities denote vectors). As shown in Figure A3(a) the group velocity is inclined to the
horizontal at an angle 8 and the major axis of V is inclined to the horizontal at angle ¢
(assumed to be equal to that of the group containing the breaker region). A given point on a
wave (e.g., the location of its maximum amplitude or where the shear it generates is
greatest), moves with the wave at speed ¢ but the wave is carried by the group at speed c,,,
and the point consequently moves through the fluid at speed ¢, + ¢ (see Eq. 6) at an angle,

a = tan” {F(1 =X/ — F)I", (A3)

to the horizontal, where (5) is used to express 6 in terms of . Because usually F << 1, this
angle is generally very small except for near inertial waves when x =~ F (or o/f =~ 1).
However, the central point of the length of a wave crest that is breaking (referred to, for
simplicity, as the “breaking point”’), which defines the center of a mixing region or “scar”
left by the breakers, moves on a trajectory through the elliptical area, V, (i.e., relative to the
ellipse, which itself moves with speed c,) between the points at which the waves enter and
leave V. This trajectory is a straight line joining the points at which lines of slope 6 (dotted
in the figure and defining the orientation of lines of constant phase) touch the ellipse, V.
The inclination, vy, of this line to the major axis of V is given by

tany = g*cot(angle OHG), (A9)
where ¢ is the ratio of the minor and major and minor axes of V, respectively, assumed to

be the same ratio as has the wave group containing the volume V within which the waves
are breaking. But from triangle OHG, angle OHG = 6 — ¢, so

v = tan” '[(g*cot(0 — d)]. (A10)
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Figure A3. The trajectory of a breaking region. (a) The dashed elliptical line is the area, V, of a group
within which waves break. Its major axis is inclined at angle ¢ to the horizontal, and it propagates
with the group at the group velocity, c,. Individual waves, their constant phase lines parallel to c,,
propagate in the direction and the speed of ¢. The dash-dotted line marks the trajectory of the
breaker point through the volume, V. (b) The motion of the breaker point from A to C in a time Jt.
In this time the wave has moved from AB to FDC and V has advanced a distance AB (or DC) equal
to c,dt. The line AD is parallel to the breaker trajectory relative to V. E is the projection of C onto
the line AD.
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Figure A4. Near-inertial waves. The variation of the inclination to the horizontal of the scars, ¢, and
of the major axes of the groups, & = ¢, With the group shape parameter, ¢ = L,/Ly, for
two-dimensional (r = 0) groups in case A when their duration, 7, is greatest, at values of 3, =
L,/\ = 4 (dotted points), 2 (crosses) and 1 (circles), as in Fig. 8, when F = 10~ ?and x = 1.0017 X
10~2. Values of the direction of the group velocity, 6, and the direction « of the vector ¢ + Cy (A8)
are marked by arrows on the ¢, and ¢, axis, respectively.

max

Figure A3b shows how a breaking point moves from A to C in a time dt as a line of constant
phase in a wave, initially denoted by the line AB aligned in the direction c¢,, moves a
distance cdt to its new location, FDC, where AF = ¢3&t. The line AD is the trajectory of A
through V, and is inclined at angle ¢ — <y to the horizontal, as in part (a). The area V is
however moving at speed Cgs SO that, in a time dt, the line AD within V moves to BC,
where AB = DC = ¢,0t, and C is the new location of the breaking point. The trajectory,
AC, of the breaking point inclined at some angle, ¢,, to the horizontal, defines the
orientation of scars left by breaking waves as they pass through the breaker area, V.

By simple geometry, angle BAD = 6 — ¢+v = angle ADF, and so, since angle AFD =
/2, AD = AF/sin(angle ADF) = ¢d¢/sin(6 — & + +y). Also if E is the projection of C onto
AD, angle CDE = angle BAD, and so CE = CD sin(angle CDE) = ¢t sin(6 — b+v)
and DE = CD cos(angle CDE) = ¢t cos(6 — ¢+). It follows that since angle CAE =
&, — ¢ + v, and tan(angle CAE) = CE/AE = CE/(AD+DE),

¢, = tan” '{2¢,sin*(0 — & + y)/[2¢ + ¢,sin(2(0 — b + Y} + & —v. (Al

Now using (4), (1) and (5), c¢,/c = tanb (1 — FH)/[tan®0 + F?] for two-dimensional
groups when [/ = 0, and the scar inclination is therefore
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&, = tan" ' {2tan0(1 — F*)sin®*(0 — ¢ + vy)/[2(tan’0 + F?)
+ tan®(1 — F)sin20@ — b+ )+ b — v, (Al2)

where vy is given by (A9).
When the major axis of V, and the group, is inclined at angle 6 to the horizontal, ¢ = 6,
so (A10) gives y = /2 (for all ¢), giving

b, = tan”! {2tanB(1 — F*)/[2(tan’0 + FH)]} + 6 — 7/2, (A13)

and if F = 0, ¢, = 0; the scars are horizontal. Again, if alternatively ¢ = 6 + /2, as in
the group sketched in Figure 2, it follows that ¢, = 0.

The scar angles, ¢, are all found to be less than 2 deg for the two-dimensional groups of
maximum duration, T, and inclination, ¢ when x = 0.1, 0.2 and 0.4 as found in Fig. 8.
For near-inertial waves, however, with ¢,,,, # 6 much larger scar angles are found. Fig.
A4 shows &, and &, for x = 1.0017 X 10”2 when F = 10~ 2, corresponding to § =
0.0334 deg and a/f = 1.0017.

max?>
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