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Sensitivity of plankton biomass and productivity to
variations in physical forcing and biological parameters in

Chesapeake Bay
by Ming Li1,2, Liejun Zhong1,3 and Lawrence W. Harding, Jr.1

ABSTRACT
A coupled three-dimensional hydrodynamic-biogeochemical model is used to simulate plankton

dynamics in Chesapeake Bay and examine its sensitivity to variations in biological parameters and
physical forcing. The coupled biophysical model captures observed seasonal cycle and regional
distributions of plankton in Chesapeake Bay and predicts the “phase lag” between the spring
chlorophyll maximum and the summer primary productivity maximum. This lag traces to the
delivery of dissolved inorganic nutrients in the winter-spring freshet from the Susquehanna River
that fuels the spring bloom, whereas regenerated nutrients support high primary productivity in
summer. The model shows that episodic wind events commonly associated with frontal passages in
summer inject nutrients into the euphotic layer, leading to short periods of elevated primary
productivity. Quantitative comparisons between the predicted and observed annual time series of
euphotic-layer chlorophyll and primary productivity show that the model possesses reasonable skill.
Sensitivity analyses of model simulations for different biological parameter values and alternative
formulations of biogeochemical processes suggest that model predictions are robust. To understand
the impacts of climate variability and change on Chesapeake Bay, we examine how the plankton
system responds to variations in river runoff, wind forcing, temperature and light level. Annual mean
chlorophyll (AMC) and annual integrated production (AIP) increase by about 70% for a doubling of
river runoff, but only reduce by 30% and 13% for 50% reduction of river runoff, suggesting a
nonlinear response of plankton system to changes in river runoff and nutrient loading. Doubling of
wind stress results in a small increase in AMC but 28% increase in AIP. For 2°C warming AMC
increases from 25.4 to 30 mg m�2 and AIP increases from 180 to 246 g C m�2 yr�1.

1. Introduction

The Mid-Atlantic coast of the United States is indented by a number of large and
productive estuaries, connecting varied landscapes to receiving waters of the coastal ocean.
These estuaries display strong seasonal to interannual variability of key ecosystem
properties and processes, reflecting both anthropogenic and climatic influences. Over the
past 50 years, nutrient enrichment has led to increased phytoplankton biomass as chloro-
phyll a (chl-a hereafter) in large estuaries such as Chesapeake Bay (Harding and Perry,
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1997), and tributaries such as the Neuse River draining into the Albemarle-Pamlico Sound
(Paerl et al., 2006). Recent analyses of shipboard and remotely sensed chl-a for Chesa-
peake Bay, however, show that seasonal to interannual variability of phytoplankton
biomass in the last two decades is strongly linked to climate variability (Harding et al.,
2002; Adolf et al., 2006; Miller and Harding, 2007).

Chesapeake Bay is a partially mixed estuary. The Susquehanna River at the northern
extreme of the Bay provides approximately 60% of the total freshwater input but over 80%
of allochthonous nutrients (Malone et al., 1988). A spring phytoplankton bloom develops
from April to mid-May, representing the annual peak of phytoplankton biomass (Malone,
1992). By mid- to late-May, strong density stratification develops, isolating the surface
mixing layer from the bottom layer (Carter and Pritchard, 1988). Organic material derived
from sinking phytoplankton provides the substrate to support a robust microbial commu-
nity whose metabolic activities regenerate nutrients to support summer phytoplankton
production (Kemp et al., 1990; Kemp and Boynton, 1992). During summer, integrated,
water-column chl-a is lower than in spring, whereas primary productivity (PP hereafter)
reaches an annual maximum (Malone et al., 1988). This annual cycle consisting of
displaced peaks of spring biomass and summer PP is a notable characteristic of Chesa-
peake Bay (Malone, 1992).

In addition to the strong seasonal cycle, phytoplankton in Chesapeake Bay exhibits large
interannual variability in response to changes in freshwater inflow and nutrient loading.
Malone et al. (1988) showed that flow from the Susquehanna River accounted for a
significant amount of the variance of phytoplankton biomass in 1985–86. A lengthy
time-series from aircraft remote sensing (1989–present) has since confirmed this view,
linking interannual variability of chl-a in the spring bloom to regional climate forcing
(Miller et al., 2006a; Miller and Harding, 2007). Furthermore, Harding et al. (2002) found
that AIP by phytoplankton is strongly correlated to freshwater flow and nutrient loading in
winter-spring. Miller et al. (2010) showed that climate variability forces two- to three-fold
interannual variability of AIP, with lower production in drought years and higher
production in flood years.

These observational studies suggest that climatic processes exert important controls on
plankton dynamics in the Bay (e.g. Boicourt, 1992), but mechanisms linking climate
variability and PP are not well understood. Several fundamental questions concerning
phytoplankton dynamics in Chesapeake Bay remain unanswered: (1) How does winter-
spring runoff control the timing, size, and regional distribution of spring phytoplankton
bloom? (2) How do summer winds influence the re-supply of nutrients to the surface
mixing layer, affecting PP in the Bay? (3) How does climatic variability underlying
drought-flood cycles regulate phytoplankton dynamics in the Bay?

To address these questions, we have coupled a biogeochemical model with a realistic
three-dimensional (3D) hydrodynamic model of Chesapeake Bay that captures responses
of the physical system to climatic and meteorological forcing. The hydrodynamic model is
based on the state-of-art Regional Ocean Modeling System (ROMS) and has been
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validated using time-series of sea level, temperature, salinity and currents at a number of
monitoring stations, and data from 3D synoptic hydrographic surveys (Li et al., 2005,
2006, 2007; Zhong and Li, 2006; Zhong et al., 2008; Li and Zhong, 2009). The model
shows considerable capability to reproduce estuarine dynamics at seasonal and interannual
time-scales (Li et al., 2005; North et al. 2008; Hilton et al., 2008).

The biogeochemical model is a simple five-component model that we have adapted to
simulate plankton dynamics in Chesapeake Bay. Similar modeling approaches have been
taken in other investigations. For example, Moisan et al. (1996) coupled a nine-component
food web model with a 3D model of the California coastal transition zone to investigate
how physical processes affect spatial and temporal distributions of nutrients and plankton.
Fennel (1999) coupled a 3D circulation model with a four-compartment plankton model to
investigate regional and interannual variability of biological variables in the Western
Baltic Sea. Chen et al. (2001) and Franks and Chen (2001) coupled a nutrient-phytoplankton-
zooplankton (NPZ) model with the 3D Princeton Ocean Model to investigate how tidal
mixing affects plankton productivity in Georges Bank and Nantucket Shoals. Fennel et al.
(2006) developed a coupled hydrodynamic-biogeochemical model to study nitrogen
cycling and export in the Mid-Atlantic Bight. Although the biogeochemical models used in
these studies are relatively simple, they have provided important insights into the physical
and biogeochemical processes that control plankton productivity and nutrient cycling in
the coastal ocean.

More complex biogeochemical models, such as the water-quality model commissioned by
the EPA Chesapeake Bay Program (CBP) and developed by the U.S. Army Corp of Engineers,
have been used to assist policy makers and resource managers to design nutrient-reduction
strategies for Chesapeake Bay (Cerco and Cole, 1993; Cerco, 1995). This water quality model
has 22 compartments and over 100 parameters (e.g., Cerco and Cole, 1993; Cerco, 1995),
including dissolved oxygen, multiple forms of algae, carbon, nitrogen, phosphorus and silica.
Given its complexity, this model cannot be easily applied to explore basic questions regarding
the climatic control of plankton dynamics in Chesapeake Bay. Recently, Xu and Hood (2006)
coupled an eight-compartment biogeochemical model to the CBP CH3D hydrodynamic model
(Johnson et al., 1993) and retrieved certain water-quality parameters along the central axis of
the Bay. However, that application of the model had some limitations including the over-
prediction of phytoplankton biomass in shoal regions and the over-prediction of oxygen
concentrations in deep channels.

In this paper we use the newly-developed hydrodynamic-biogeochemical model to
investigate the annual cycle and regional distributions of plankton biomass and productiv-
ity in Chesapeake Bay. Our goal is to gain insights into key physical and biological
processes that control the plankton dynamics in the Bay. The paper is organized as follows.
Section 2 describes the model configuration while Section 3 presents model simulation
results and comparisons with observations. Section 4 examines the sensitivity of key
plankton metrics to changes in physical/climatic forcing and biological rate parameters.
These numerical experiments illustrate how the plankton system might respond to
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climatically-driven variations in river runoff, wind forcing and temperature. Concluding
remarks are given in Section 5.

2. Model description

a. Hydrodynamic model

ROMS is a regional ocean model. It is well suited for coupling with biogeochemical models
as it incorporates advanced numerical schemes for advecting tracers (Shchepetkin and McWil-
liams, 2005), and sophisticated turbulence closure schemes to parameterize turbulent mixing
(Warner et al., 2005b). We have configured the ROMS hydrodynamic model for Chesapeake
Bay, as described by Li et al. (2005). Here we summarize main elements of the model relevant
to this paper. An orthogonal curvilinear coordinate system is designed to follow the general
orientation of the deep channel and the coastlines of the main stem Bay (Fig. 1a, b). The model
has 1 km resolution in the horizontal direction and 20 vertical layers. The stretching parameters
for the vertical grid are �S�2 and �B�0.8, as defined in the S-coordinate system (Song and
Haidvogel, 1994). Vertical eddy viscosity and diffusivity are computed using the k-kl turbu-
lence mixing scheme incorporated into ROMS (Warner et al., 2005b).

The hydrodynamic model is forced by open-ocean tides, freshwater inflows at river heads,
and wind and heat exchange across the water surface. At the open ocean boundary, sea level is
updated using data from stations at Wachapreague, Virginia and Duck, North Carolina
obtained from the National Ocean Service. Salinity and temperature fields at the offshore open
boundary are prescribed using monthly Levitus climatology combined with field data from
Duck, North Carolina acquired by the Field Research Facility of the U.S. Army Corps of
Engineers. At the upstream boundary in eight major tributaries, daily freshwater inflow with
zero salinity and time-varying temperature is prescribed. We select the year of 1997 for model
simulations as annual discharge from the Susquehanna River into the Bay was close to the
historical average. As shown in Figure 2a, the discharge from the Susquehanna River shows a
typical seasonal cycle: high discharge during the winter-spring period, low discharge during the
summer and early fall, and high discharge again in late fall.

CBP collects monitoring data at 88 stations throughout the Bay. We construct a sea
surface temperature (SST) field using temperature measurements from these monitoring
stations. Modeled SST is relaxed toward this temperature field with a fast time scale of 6 h.
Since no heat flux measurements are available over Chesapeake Bay, the relaxation
boundary condition provides a simple but effective way to obtain SST forcing for the
model, as done in other ocean circulation models (e.g. Lima and Doney, 2004). Figure 3a
shows the annual cycle of SST at the mid-Bay station CB5.2 (see Fig. 1c for its location). It
is clear that the model captures the observed seasonal change of SST really well.

To apply the wind forcing over the surface of Chesapeake Bay, hourly wind stress in the
mid- to lower Bay is linearly interpolated from data collected at the Norfolk International
Airport (NIA), Patuxent River Naval Station (PRNS), and Baltimore-Washington Interna-
tional Airport (BWI). North of BWI, the wind stress is assumed to be identical to that at
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BWI. Winds over Chesapeake Bay are episodic with dominant periods of 2–7 days (Wang,
1979a; b). Northwesterly winds dominate in winter months whereas southerly winds of
several days duration are more frequent in the summer. An example of wind-stress time
series is shown in Figure 8a.
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Figure 2. (a) Time series of river runoff (solid line) and NO3 concentration (dashed line) at
Susquehanna River; (b) Time series of surface value of Photosynthetically Available Radiation
(PAR); (c) regionally-averaged light attenuation coefficients obtained from Secchi disk readings.
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Figure 3. (a) Model-derived (black line) and observed (open circles) sea surface temperature at
CB5.2 station; (b) Maximum phytoplankton growth rate as a function of temperature: the
diamonds represent data collected in Chesapeake Bay, the solid line is the linear fit, the dashed line
an exponential fit and dotted line the Eppley’s curve.
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b. Biogeochemical model

A recent review of biogeochemical and water quality models indicates that those of
intermediate complexity tend to have the highest predictive skill (Arhonditsis and Brett,
2004). This analysis led to our selection of a five-compartment (nitrate or NO3, ammonium
or NH4, phytoplankton, zooplankton, and detritus) biogeochemical model based on
Fasham et al. (1990). To apply this model to a shallow-water estuary such as Chesapeake
Bay, we have considered additional biogeochemical processes and made several model
modifications.

The equations for the five-compartment biogeochemical model are given by

d�NO3�

dt
� �tPPmax · QNP · �Phyto�, (1)

d�NH4�

dt
� �tPPmax · QRP · �Phyto� � �tZbmet � Qexcr� · �Zoo� � tDremin · �Det�, (2)

d�Det�

dt
� Qgraze · �1 � AEN� · �Zoo� � tPmort · �Phyto�

� tZmort · �Zoo�2 � tDremin�Det� � Lvd

��Det�

�z
, (3)

d�Phyto�

dt
� tPPmax · �QNP � QRP� · �Phyto�

� tPmort · �Phyto� � Qgraze · �Zoo� � Lvp

��Phyto�

�z
, (4)

d�Zoo�

dt
� Qgraze · AEN · �Zoo� � �tZbmet � Qexcr� · �Zoo� � tZmort · �Zoo�2. (5)

where the parameters include phytoplankton mortality rate tPmort and sinking speed Lvp,
zooplankton grazing rate tZgraz, grazing efficiency AEN, metabolism rate tZbmet, excretion
rate Qexert and mortality rate tZmort, detritus sinking speed Lvd and remineralization rate
tDremin. The functions used in (1)–(5) are:

QNP �
�NO3�

KNO3 � �NO3�
·

1

1 � �NH4�/KNH4
, (6)

QRP �
�NH4�

KNH4 � �NH4�
, (7)

Qgraze � tZgraze ·
�Phyto�2

Kp
2 � �Phyto�2 , (8)

2009] 673Li et al.: Plankton dynamics in Chesapeake Bay



tPPmax � f�PAR� �
Vp · 	 · PAR

�VP
2 � 	2PAR2 . (9)

The growth rate of phytoplankton depends on: temperature (Temp) through the maximum
growth rate VP; photosynthetically available radiation (PAR) and nutrient concentrations
(NO3, NH4). The function f(PAR) represents the photosynthesis-light (P-I) relationship
(Evans and Parslow, 1985), where 	 is the initial slope and VP is the maximum growth rate.
In Chesapeake Bay, 	 increases from 
0.048 in spring to 
0.065 [molC
gChl�1(Wm�2)�1d�1] in summer (Harding et al., 2002).

In the biogeochemical model we lump all phytoplankton groups into one compartment. The
flora of Chesapeake Bay is dominated by diatoms on an annual scale. Other taxonomic groups
that are significantly represented include flagellates and cyanobacteria, but even in summer
diatoms comprise most of chl-a. Responses of the flora to freshwater inputs and nutrient
loading are strongly manifested in the diatom signature and covary with chl-a, as documented
by Adolf et al. (2006). Thus, the plankton responses to physical/climate forcing can be well
quantified with a biogeochemical model that captures variability of chl-a.

The empirical function of VP by Eppley (1972) was originally developed for open ocean
applications and cannot be directly applied to Chesapeake Bay. Figure 3b shows how the
observed maximum phytoplankton growth rate (binned-averaged over 2°C increments)
varies with water temperature in the Bay using chl-a and PP data from Harding et al.
(2002) and assuming C:chl-a � 40. We fit the data with a linear function:

Vp � 0.11465 Temp (10)

with the regression correlation coefficient r2 � 0.967. Alternatively, one can fit an
exponential function:

Vp � 0.32949 e0.090246 Temp (11)

with r2 � 0.848. For comparison, we also fit Eppley’s curve given by:

Vp � 0.32949 � 1.066Temp. (12)

These empirical formulae will be used in the biogeochemical model instead of Eppley’s
original equation. As shown in Figure 3, the temperature increases from 5°C in winter to
25°C in summer, which can lead to a five-fold increase in the phytoplankton growth rate.

Water clarity is affected by chromophoric dissolved organic material (CDOM), sus-
pended particulate material (SPM), and pigments (including chl-a) in the water column. In
Chesapeake Bay, sediment loading is a major factor determining water clarity. We
prescribe surface PAR (Photosynthetically Available Radiation) values using Fisher et al.
(2003) measurements and a light-attenuation coefficient using Harding et al. (2002) optical
measurements. Two time-series of surface PAR are obtained from observations at the
Smithsonian Environmental Research Center (SERC) and Horn Point Laboratory (HPL)
on the western and eastern shores of the mesohaline Bay, respectively. The annual cycle of
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PAR shows a nearly sinusoidal variation over the year (Fig. 2b). We draw on an extensive
data set on light attenuation coefficient, KPAR, estimated from Secchi disk readings
(Harding, unpublished) and calibrated against vertical profiles obtained with a submersible
quantum meter (Li-Cor model 192S). KPAR is linearly interpolated from biweekly to
monthly sampling cruises and aggregated to form averages for six regions of the Bay
defined by Harding and Perry (1997) (Fig. 1c). As the predominant source of CDOM and
SPM is the Susquehanna River at the northern end of the Bay, KPAR attains much higher
values in the upper Bay and decreases toward the lower Bay (Fig. 2c). This north-south
gradient is most pronounced during the spring freshet but is also significant in fall. Optical
measurements from CBP monitoring cruises produce reasonable estimates of KPAR for
most regions of the Bay. However, in the upper Bay regions (5 and 6) close to the estuary’s
head, monitoring data are collected along the center shipping channel where water is
significantly less turbid than other parts of the upper Bay. These stations give low values of
KPAR, but we cannot quantify this bias due to the lack of measurements on the shoal
regions. As a preliminary step, we apply an empirical amplification factor (double KPAR in
regions 5 and 6) to correct for this underestimate of KPAR. Without this factor, the model
overestimates chl a and PP in the upper Bay, as shown in Figures 13 g and h (to be
discussed in Section 4a). In their modeling study, Xu and Hood (2006) also found that their
model overestimated PP in the upper Bay. They subsequently applied an empirical factor
to reduce the maximum phytoplankton growth rate from 3.22 to 0.96 d�1 in regions where
salinity is lower than 3 psu. They suggested consumption by benthic bivalves, senescence
in the transition zone from fresh to saline water, and differences in species composition as
possible causes for the declines in phytoplankton growth rate in the upper Bay. We think
that the under-sampling of KPAR is more likely the cause for the model overestimates of chl
a and PP there. Finally, we note that the model predictions for the middle and lower Bay
are relatively unaffected by those for the upper Bay (see Fig. 13).

Based on the observations by Malone et al. (1996), we consider nitrogen to be the key
nutrient limiting phytoplankton growth in the biogeochemical model. However, it has been
shown that phytoplankton growth may be limited by phosphorus (P) in freshwater and by
nitrogen (N) availability in saline waters of the Bay. Fisher et al. (1992; 1999) found that P
limits phytoplankton growth in the upper Bay during high runoff. Because N and P cycles
in estuarine systems are decoupled in many respects, proper representation of the P cycle in
the Chesapeake Bay requires fairly explicit modelling. In order to avoid this level of
complexity, and considering that P-limitation is significant only during spring and that
there are only small differences in dissolved inorganic phosphorus (DIP) over whole Bay
(Fisher et al., 1992), we use the approach of Xu and Hood (2006), assign a uniform value
for DIP over the whole Bay, and specify how this value varies seasonally relative to a fixed
half-saturation constant for P uptake in the model.

Observations in the Bay suggest that PP in summer is related to nutrient inputs during
winter-spring via organic deposition coupled to temperature-dependent benthic decompo-
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sition and nutrient regeneration (e.g. Kemp et al., 1990; Kemp and Boynton, 1992). Dead
plankton derived from the spring bloom sinks into the bottom layer and is remineralized
into ammonium by microbial activity that is maximal during the warm summer. We devise
a simple parameterization for this nutrient regeneration process by allowing “dead”
plankton (detritus) to sink to bottom waters and apply a temperature-dependent remineral-
ization rate. Lomas et al. (2002) examined how microbial rate processes responded to
temperature and found them to lie in a constrained range of Q10 (the factor increase in a rate
process for a 10°C increase of temperature). Using Q10 � 2.5, we construct an empirical
function for the remineralization rate tDremin:

tDremin � 0.05Q10
0.1�Temp�3� for Temp � 3�C

0.05 for Temp � 3�C
(13)

Lomas et al. (2002) also noted that the upper bounds on all of the microbial rate processes
could be described well by a linear function of temperature. From their Figure 8, we
construct another empirical function given by:

tDremin � 0.05 � 0.45�Temp � 3�/25 for 28°C � Temp � 3�C
0.05 for Temp � 3�C
0.5 for Temp � 28�C

(14)

In the sensitivity analysis presented in Section 4, we find that model results are
insensitive to the detailed functional form, provided that tDremin is temperature-dependent.
To account for the effects of sediment biogeochemistry on the overlying water column, we
specify a denitrification rate as a linear function of ambient NO3 in bottom water,
according to results from laboratory experiments (Kana et al., 1998). Hence, in the NO3

equation for the bottom-most layer, we add a “sink term” proportional to the ambient NO3

concentration. Fennel et al. (2006) developed a more sophisticated benthic model by
setting the remineralization rate for deposited organic matter in the upper part of the
sediment as a bottom boundary condition. Such a model could be modified to include
temperature-dependent effects, but we do not pursue this option here.

As shown in Eq. 8, zooplankton grazing on phytoplankton is represented by a
Holling-type curve with KP as the half-saturation coefficient. Zooplankton populations in
the Bay include both slow-growing meso-zooplankton and fast-growing micro-zooplank-
ton (c.f. Johnson et al., 2003; White and Roman, 1992). Using one zooplankton compart-
ment to represent both size-classes is a modeling simplification we adopted. As a first step
beyond prescribing constant grazing pressure, we use a seasonally varying grazing rate that
is intended to capture higher grazing rates by micro-zooplankton during summer; tZgraze is
0.15 in summer (between day 180 and 240), 0.1 during winter and fall (before 120 day and
after 300 day), and linear variation during the two transition periods. A quadratic mortality
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rate is used to parameterize density-dependent effects in the predation of zooplankton
(Steel and Henderson, 1992).

To run the coupled model, we need to prescribe the boundary and initial conditions for
the biogeochemical model. The boundary conditions for the biogeochemical model include
the prescription of nutrient concentrations and plankton biomass at the river heads and
open boundary as well as the PAR value at the Bay’s surface. Time series for NO3 in the
Susquehanna River show concentrations ranging from 50 to 90 m Mol N m�3 for 1997
(Fig. 2a). High runoff in spring delivers a NO3 pulse to the main stem Bay that supports the
spring bloom. Other tributaries contribute to nutrient loading, but in this paper we focus on
inputs from the Susquehanna because these represent 80% of total nitrogen loading to the
main stem, and it is not straightforward to quantify nutrient loading from other sources.
Boynton et al. (1995) analyzed the total nitrogen (TN) budget for Chesapeake Bay and
found that TN is exported from the Bay. Cerco and Cole (1993) and Cerco (1995) also
noted that most of the nutrient loads into Chesapeake Bay come from the tributaries. Hence
the nutrient input from the shelf is expected to be small. Due to the lack of continuous
nutrient measurements near the model’s open boundary, we set NO3 and NH4 concentra-
tions at the low value of 1 m Mol N m�3 there.

For the initial condition, we prescribe sea level, velocity, temperature, salinity, nutrients
and plankton fields at the beginning of 1997. The initial velocity field is taken to be zero,
and the water surface is set at the mean sea level. To set initial conditions for salinity and
temperature, we run the hydrodynamic model for 1996 and use the model-predictions at
year end. It should be mentioned that the outputs of the hydrodynamic model have been
validated against observations for 1996 (Li et al., 2005). The initial NO3 and phytoplank-
ton fields are interpolated from EPA CBP survey data, whereas the initial fields for other
biogeochemical variables are set at low concentrations due to a lack of sufficient
observations for winter.

3. Seasonal cycle and regional distributions

In this section we show the results from the control run (Run C) and compare model
results with observations. Table 1 gives the definitions of the model parameters, their units
and the values used in Run C.

a. NO3 delivery by freshwater plume and development of spring bloom

First we examine the model-predicted circulation pattern and salinity distribution in
Chesapeake Bay. Figure 4a shows tidally averaged residual surface currents in March
1997. Freshwater originating from the Susquehanna River spreads south as a plume with
currents that reach 0.2 m s�1. The plume covers the whole width in the upper Bay, but is
confined to the western shore in the mid Bay due to the effect of Coriolis force. It expands
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laterally in the lower Bay before exiting as a buoyancy-driven boundary current along the
coast. In a vertical section aligned along the north-south axis of the Bay, residual velocity
shows a two-layer flow with the surface layer moving seaward and the bottom layer
moving landward (Fig. 4b). The depth of no-motion separating the two layers occurs at
5–8 m, similar to the euphotic-layer depth. Strong water-column stratification is estab-
lished following high river discharge in earlier months (Fig. 4c).

The estuarine circulation provides an effective mechanism for transporting terrestrially
derived nutrients seaward in Chesapeake Bay. Figure 5 shows the model-predicted
temporal evolution of surface NO3 and chl-a from February to May 1997. At day 30, a
plume of high NO3 spread down the Bay by the seaward-moving surface current (Fig. 5a),
and by day 75 NO3 was depleted in the lower Bay and a significant part of the mid-Bay
(Fig. 5b). At day 125, high NO3 was restricted to the upper Bay as phytoplankton uptake
had consumed NO3 along the main stem axis (Fig. 5c). Nutrient delivery by the freshwater
plume coincided with seasonal increases of light and temperature (see Figs. 2b and 3a),
creating optimal conditions for phytoplankton growth during the spring. The “NO3

drawdown” was associated with an intense spring bloom that covered the region between

Table 1. Definition of biogeochemical parameters and parameter values used in the control run (Run C).

Symbol Parameter Value Unit

Vp Phytoplankton maximum
growth rate

Temperature dependent
formulas (Eq. 10)

d�1

	 Initial slope of the P-I curve 0.065 molC gChl�1

(Wm�2)�1d�1

KNO3 Half-saturation concentration
for uptake of NO3

1 m mol N m�3

KNH4 Half-saturation concentration
for uptake of NH4

1 m mol N m�3

tPmort Phytoplankton mortality rate 0.01 d�1

tZgraze Maximum grazing rate Seasonally varying d�1

AEN Grazing efficiency 0.7 dimensionless
Kp Half-saturation concentration

for zooplankton grazing
1 m mol N m�3

tZmot Zooplankton mortality rate 0.006 (m mol N m�3)�1 d�1

tZbmet Excretion rate due to basal
metabolism

0.007 d�1

Qexcr maximum rate of
assimilation related
excretion

0.007 d�1

Lvp Phytoplankton sinking rate 0.1 m d�1

Lvd Detritus sinking rate 1 m d�1

tDremin Detritus remineralization rate Temperature-dependent
formulas (Eq. 13)

d�1
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37.5° and 38.6° N. latitude (Figs. 5d–f). The spring bloom commonly occurs in this area
because nutrients become limiting toward the mouth of the Bay, whereas light limits
phytoplankton growth in turbid waters near the head of Bay. By day 125, plankton biomass
had declined significantly.

Snapshots of NO3, NH4, phytoplankton and zooplankton distributions in an along-
channel vertical section provide further insights to spring bloom dynamics. In Figure 6, we
present model outputs for mid-March (day 75) when the bloom reached its peak, as
confirmed by observations presented in Figure 9. In much of the uppermost Bay, water
depths are �5 m and flows were directed seaward at all depths such that NO3 was
essentially exported from the Susquehanna River. Further south, NO3 was carried seaward
by the freshwater plume, but also leaked into the lower layer due to turbulent mixing.
Because of the estuarine return flow, nutrients were mostly retained inside the Bay rather
than being exported to the shelf (see Fig. 4b). In contrast to high NO3, NH4 was low
throughout the Bay in mid-March. This is consistent with the accepted paradigm that
allochthonous nutrients from the watershed dominated by NO3 largely fuel the spring
bloom. Vertical distributions of chl-a show higher concentration of phytoplankton to a
depth of 
10 m, and also reveal a chl-a signal in bottom waters traceable to sinking
(Fig. 6c). As the growth rate of zooplankton is much lower than that of phytoplankton in
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late winter to early spring, zooplankton was at relatively low abundances in March, a
pattern captured by the model (Fig. 6d).

b. Nutrient recycling and summer productivity

Figure 7 shows the model-predicted along-channel distributions of NO3, NH4, phyto-
plankton and zooplankton during the summer (day 210). Comparing Figures 7a and 7b
shows that NH4 greatly exceeded NO3, consistent with observations that summer PP is
largely supported by regenerated nutrients. Phytoplankton reached high concentrations
only in the upper Bay and moderate concentrations in the surface layer of mid-Bay
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(Fig. 7c), and zooplankton grazed on phytoplankton and grew into sizeable populations in
summer (Fig. 7d).

Kemp and Boynton (1992) suggested that dead plankton sinks and is remineralized to
yield regenerated nutrients that support high PP in summer. However, the mechanism for
reintroduction of regenerated nutrients into the euphotic layer under the strongly stratified
conditions that persist in the summer has not been satisfactorily explained. With the
coupled biophysical model, we explored possible physical mechanisms responsible for the
nutrient supply. Figure 8 shows the model-predicted time-depth distribution of eddy

Figure 6. Distributions of (a) NO3, (b) NH4, (c) phytoplankton (chl-a), (d) zooplankton in an
along-channel section at day 75 (mid March), all in units of m Mol N m�3.

Figure 7. Distributions of (a) NO3, (b) NH4, (c) phytoplankton (chl-a), (d) zooplankton for an
along-channel section at day at day 210 (1 Aug), all in units of m Mol N m�3.
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diffusivity and time series of surface NO3 and NH4, euphotic-layer PP, and water-column
integrated secondary productivity at a mid-Bay location that coincides with a mooring of
the Chesapeake Bay Observing System (see Fig. 1c for its location). We also plot the
observed time series of wind stress magnitude for comparison (Fig. 8a). Over the
two-month period (July and August), a series of weather events occurred with wind
stress  �0.05 N m�2. The vertical eddy diffusivity kv inferred from the ROMS model
was high in the bottom boundary layer and showed the expected variations at tidal
frequencies, i.e., fluctuating at semi-diurnal/diurnal frequencies and modulating over the
spring-neap tidal cycle (cf. Li and Zhong, 2009). The diffusivity was weak in the stratified
pycnocline. However, kv increased to large values in the surface layer during those strong
wind events (Fig. 8b). Surface NO3 and NH4 were depleted at most times. However,
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surface NH4 showed several spikes corresponding to the wind events (Fig. 8c), e.g. on days
200, 205, 209, 228, 229. During days 216 and 217, wind stress was relatively low but kv

increases to large values in the surface layer, leading to surges in surface NH4. Turbulent
mixing in the surface layer depends not only on the instantaneous wind speed but also on
current shear in the water column. Strong mixing is generated when the shear is strong
enough to overcome stabilizing buoyancy force. The spikes in surface NH4 in turn led to
short-term surges in primary productivity to over twice background rates (Fig. 8d). Since
zooplankton have a slower growth rate than phytoplankton, the time series of secondary
productivity was less spiky, but also showed broad peaks of enhanced productivity over
cumulative wind events (Fig. 8e).

These model results demonstrate that wind-induced strong mixing events can recharge
the surface euphotic layer with nutrients and lead to enhanced plankton production. Such
short events may contribute significantly to total summer productivity, as documented by
limited observational studies. For example, Yeager et al. (2005) observed elevated PP in
the lower Bay in response to a summer wind event that delivered benthic nutrients to the
surface layer. Similarly, a strong fall bloom was observed in Chesapeake Bay after passage
of Hurricane Isabel in September 2003 (Miller et al., 2006b).

c. Seasonal cycle

Now we examine the seasonal cycle of plankton biomass and productivity. Figure 9
shows the annual time series of euphotic-layer chl-a and PP calculated from the coupled
biophysical model. To facilitate comparisons with observations by Harding et al. (2002),
we apply a unit conversion of 1 m Mol N m�3 to 1 mg m�3 chl-a and C:N of 6.6 to the
model outputs. We also divide Chesapeake Bay into lower Bay (polyhaline, regions 1 and
2), mid-Bay (mesohaline, regions 3 and 4) and upper Bay (oligohaline, regions 5 and 6)
(see Fig. 1c) since they represent three different salinity regimes to average limited
observational data (Adolf et al., 2006). The averaged chl-a over the entire Bay reached a
maximum in March and remained stable at lower concentrations in summer and fall
(Fig. 9a). In contrast, PP showed a broad maximum, corresponding to peaks in PAR and
water temperature in summer (Fig. 9b). NO3 was exhausted in the mid- and lower Bay
during summer, and regenerated nutrients NH4 sustained high PP. Time series of PP
exhibited substantial fluctuations at subtidal frequencies, particularly strong during sum-
mer months. As discussed in Section 3b, these short-term surges in PP were caused by
wind-induced mixing events.

Significant regional differences of chl-a and PP existed between the sub-regions of the
Bay, as shown in Figure 9. These differences included a pronounced spring bloom in the
mid- and lower Bay that was absent in the upper Bay, and a decrease of phytoplankton
biomass during summer in both the mid- and lower Bay, contrasted with an annual
maximum in the upper Bay. These differences arose because the Bay responded to
time-varying nutrient and sediment loading. Whereas the spring freshet supplied nutrients
to the upper Bay, high turbidity/low light suppressed phytoplankton production there.
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Consequently, unconsumed nutrients reached the mid- and lower Bay to support plankton
production in those downstream regions. The mid- and lower Bay benefited from the
nutrient supply while still having sufficient light to support optimal growth. This situation
was somewhat reversed during summer when the freshwater flow was much reduced.
Improvement in water clarity and proximity to the nutrient source (albeit small) resulted in
higher plankton biomass in the upper Bay. In contrast, phytoplankton growth in the mid-
and lower Bay was constrained by both nutrient availability and zooplankton grazing so
that phytoplankton biomass was lower than during the spring bloom.

d. Skill assessment

Now we compare model results with observational estimates of chl-a and PP as well as
measurements of nutrient concentrations. Surface chl-a concentrations were obtained from
ocean-color measurements using radiometers mounted on a light aircraft (e.g. Harding et
al., 1994). Flights were conducted 20 to 30 times a year on a set of tracks covering the
mainstem of the Bay. The euphotic-layer integrated chl-a was computed as the product of
the surface chl-a and euphotic-layer depth, estimated as the 1% isolume from Secchi depth.
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PP was measured in the simulated in situ 14C incubations conducted on ship board during
field cruises or calculated by applying a regionally validated depth-integrated model (based
on Vertically Generalized Productivity Model) to remotely sensed observations, as
described in Harding et al. (2002). These estimates of euphotic-layer chl-a and PP were
then spatially averaged to obtain Bay-wide and regional averages for comparison with
model predictions.

Time series of euphotic-layer chl-a and PP show a general agreement between the model
outputs and observations (Fig. 9). Averaged over the whole Bay, chl-a reached a maximum
during the spring while PP reached its maximum during the summer. Therefore, the
coupled biophysical model captures the major observed features of the annual phytoplank-
ton cycle in Chesapeake Bay. Regional differences in the chl-a time series are also
captured by the model, although the model underestimates the biomass increase in the
upper Bay during spring and underpredicts the summer chl-a concentration in the lower
Bay. The model-predicted time series of PP is in reasonable agreement with the observed
annual cycle, but the model underpredicts spring productivity in the upper Bay and
summer productivity in the lower Bay.

In addition to chl-a and PP, we compare predicted and observed DIN (sum of NO3 and
NH4) concentrations in the Bay. Nutrient concentrations show a strong gradient in the
along-channel direction. Much information would be lost if we aggregate nutrients into the
three regions. Instead we compare the surface DIN distribution along the center axis of the
Bay. CBP samples a number of monitoring stations along this longitudinal transect at
monthly or biweekly intervals. To avoid undersampling in some months and obtain more
robust statistics, DIN is averaged over 3 months to produce seasonal means while the
vertical bars in Figure 10 indicate the standard derivations from the means. Figure 10
shows the model-data comparisons of the along-channel DIN distribution for the four
seasons. The modelled DIN fields follow the observed pattern in space and time reasonably
well, although the model underpredicts DIN concentrations in the upper Bay during
summer and fall.

We can quantitatively assess the model’s skill by using Taylor (Taylor, 2001) and Target
diagrams (Jolliff et al., 2009). A brief explanation of these diagrams is given in the
Appendix. Figure 11 shows the Taylor and Target diagrams comparing model (Run C)
predictions with observations. The correlation coefficient r2 for all quantities exceeds 0.7,
suggesting that the model does a good job in capturing the phase information in the time
series of chl-a and PP and in the along-channel distributions of DIN. In terms of nutrient
predictions, the model reproduces the amplitude of the observed gradient in DIN during
winter and spring but underpredicts it during summer and fall (Fig. 11a). This discrepancy
is mainly caused by underestimates of NO3 in the upper Bay by this model (see Figs. 10c
and d). Furthermore, the predicted mean DIN concentration is about the same as that
observed during winter, but lower during the other three seasons (Fig. 11b). The total rms
(root-mean-square) errors for along-channel nutrient distributions were 12.2, 14.3, 6.9 and
13.0 m Mol N m�3 during winter, spring, summer and fall seasons, respectively. r2 was
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0.92, 0.94, 0.91 and 0.94, while the skill parameter (see the Appendix for the definition)
reached 0.95, 0.90, 0.88 and 0.72 for the four seasons.

The coupled biophysical model also performs well to predict the centered patterns and
amplitudes of seasonal variations of chl-a for the whole Bay and its sub-regions (Fig. 11a).
The correlation coefficient r2 is around 0.7. The amplitudes agrees within � 20%.
However, the annual mean chl-a predicted from the model is consistently lower than the
mean derived from ocean-color measurements (Fig. 11b). The total rms errors for chl-a are
7.0, 11.9, 6.5 and 11.4 mg m�3 for the whole, lower, mid and upper Bay, with the average
relative error at 23% (see Table 3). r2 between predicted and observed PP exceeds 0.8 in all
regions as the model captures the annual cycle quite effectively. However, the model
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significantly underestimates the amplitude of seasonal variation of PP in the lower and mid
Bay. PP estimated from the VGPM model shows very low values in the beginning and
ending months of 1997, but the ocean-color measurements on which the VGPM model is
based were sparse during those times and may have affected the accuracy of its estimates.
The predicted PP is higher than the VGPM-based observational estimates during fall,
which is a main reason why the predicted PP standard derivation is significantly smaller
than the observed. On the other hand, it is encouraging to note that biases in PP are
relatively small. Other modelers have also found that PP is more difficult to predict than
chl-a concentrations (e.g. Lima and Doney, 2004; Fennel et al., 2006).

4. Sensitivity analysis of plankton predictions

Model results presented in Section 3 are based on a single model run (Run C) with a
fixed set of biological parameter values. In this section we examine the sensitivity of key
plankton metrics to changes in biological rate parameters and physical forcing. We
investigate if properties such as AIP are sensitive to changes in biological rate parameters
(within observed ranges) and to different formulations of some biogeochemical processes.
Consequently we can assess the robustness of predictions from the biogeochemical model.
We also use the coupled biophysical model to examine the sensitivity of model results to
changes in climatic and meteorological forcing such as river runoff, wind speed, tempera-
ture and incoming solar radiation. Although these numerical experiments do not directly
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simulate interannual variability in the plankton, they offer a clean test of the model’s
sensitivity to specific climatic and meteorological forcing. Several different climatic
factors may vary simultaneously between consecutive years. It may be difficult to tease out
the effects of individual forcing without conducting the sensitivity analyses first.

a. Sensitivity to variations in biological parameters

We conducted sensitivity studies to ascertain how model predictions respond to changes
in specific biological parameters within the ranges observed in the Bay. The five-
component biogeochemical model has a total of 14 parameters and it is not computation-
ally feasible to explore all combinations of these parameters. Rather, we focus on five
aspects of model parameterizations that we expect to strongly influence plankton dynam-
ics: (1) temperature-dependent maximum phytoplankton growth rate Vp; (2) initial slope of
the P-I curve 	; (3) light attenuation coefficient KPAR; (4) detritus remineralization rate
tDremin; and (5) phytoplankton mortality rate tPmort. Other parameters are fixed at their
respective typical values (as in Run C). These include: (1) half-saturation constants for
uptakes of nitrate KNO3 and ammonium KNH4, and zooplankton grazing Kp; (2) grazing
efficiency AEN; (3) zooplankton mortality tZmort, metabolism tZbmet and excretion Qexcr

rates; (4) sinking speeds for phytoplankton Lvp and detritus Lvd (see Table 1 for the
parameter values). We conducted a total of 9 model runs and grouped them into 5 separate
groups (Table 2).

Two Bay-wide measures of the plankton cycle are used to quantify differences between
model runs: annual-mean euphotic-layer chl-a (AMC) and annual-integral production
(AIP). To evaluate how each model run reproduces the observed plankton annual cycle, we
also calculate regression coefficient r2, rms errors, and skill scores for the annual time
series of Bay-averaged chl-a and PP (such as those shown in Figs. 9a and 9b). In Run C,

Table 2. Model runs used to examine the sensitivity to variations in biological parameters.

Group Name Run Name Description

Group A1 Run C Linear function Eq. 10 for Vp.
Run VX Exponential function Eq. 11 for Vp.
Run VE Eppley’s curve Eq. 12 for Vp.

Group A2 Run C 	�0.065.
Run AL 	�0.048.
Run AS Seasonally-varying 	: 0.065 (1 June to 30 Sep) and 0.048 at

other times.
Group A3 Run C KPAR doubled in regions 5 and 6.

Run KO KPAR recovered to interpolated values.
Run KP No PO4 limitation.

Group A4 Run C Exponential function for remineralization rate: Eq. 13 for tDremin

Run RL Linear function for remineralization rate: Eq. 14 for tDremin.
Group A5 Run C Phytoplankton mortality rate tPmort�0.01.

Run ML Phytoplankton mortality rate tPmort�0.1.
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AMC is 25.4 mg m�2 and AIP is 180 g C m�2yr�1. Observations based on monthly or
bi-weekly sampling give AMC of 30 mg m�2 and AIP of 170 g C m�2yr�1 (see Table 3).

In the first group (A1) of model experiments (Runs C, VX, VE), we examine how
different formulations for the temperature dependence of maximum phytoplankton growth
rate Vp affect model predictions. Run C uses a linear fit to observed Vp (Eq. 10) for the
Bay; Run VX uses an exponential fit to these same data (Eq. 11): and Run VE uses an
Eppley function (Eq. 12). Figures 12a and 12b compare the time series of euphotic-layer
chl-a and PP among the three runs. Spring bloom size is directly related to the value of Vp

at spring temperatures (between 5 and 15 degrees) so that it is largest in Run C and smallest
in Run VE. Hence AMC is smaller in Runs VX and VE than in Run C because they
generate smaller spring blooms (Table 3). Run VX has higher summer productivity than
Run C because its Vp values are higher at summer temperatures. Run VE has lower Vp

values at all temperatures and thus lower AIP. Overall Runs C and VX produce similar
predictions for AMC and AIP because their Vp functions are empirical fits to the in-situ
data collected in the Bay. In contrast, the Eppley’s function developed for the open-ocean
applications predicts significantly lower (30%) AMC and AIP for Chesapeake Bay.

In the second group (A2) of numerical experiments (Runs C, AL, AS), we examine how
the slope 	 of the P-I curve affects model predictions. In Run C, 	 is set at 0.065, and in
Run AL 	 is 0.048. In Run A3 we allow 	 to vary seasonally, using 0.065 between June 1
and September 30 and 0.048 at other times (Harding et al., 2002). As shown in Figures 12c
and 12d, there are relatively minor differences in the annual time series of chl-a and PP
among the three runs. The only notable difference is that Run AL has a smaller spring
bloom size. AIP varies slightly with the 	 value. AIP in Run AL is about 8% lower whereas
that in Run AS is about 13% larger than Run C. In summary, neither AMC and AIP are
very sensitive to values of 	 within the observed range for Chesapeake Bay.

In the third group (A3) of numerical experiments, we examine how light attenuation

Table 3. Summary of the model sensitivity to biological parameters where AMC and AIP stand for
annual mean euphotic-layer chl-a and annually-integrated primary productivity averaged over
Chesapeake Bay.

Run Name
AMC

(mg m�2) r2
rms

(mg m�2) skill
AIP

(g Cm�2 yr�1) r2
rms

(g Cm�2 d�1) Skill

Observations 30.0 170
Run C 25.4 0.72 7.0 0.72 180 0.89 230 0.82
Run VX 20.7 0.79 10.9 0.59 180 0.86 200 0.89
Run VE 15.2 0.81 16.1 0.46 127 0.83 255 0.80
Run AL 19.1 0.85 12.1 0.54 166 0.92 190 0.89
Run AS 24.2 0.75 7.8 0.69 204 0.87 241 0.82
Run KO 35.5 0.05 10.8 0.45 262 0.82 332 0.77
Run KP 39.1 0.18 12 0.48 280 0.85 361 0.76
Run RL 26.6 0.65 6.6 0.73 225 0.86 258 0.83
Run ML 11.4 0.12 22.2 0.33 145 0.93 155 0.95
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coefficients and phosphorous limitation in the upper Bay affect model predictions. Few
optical measurements are made in the upper Bay with most in the less turbid central
shipping channel, as discussed above. When we use those data to form algebraic averages
of KPAR for regions 5 and 6, the model overestimates PP in the upper Bay. In Run C we
double KPAR values for regions 5 and 6. In Run KO we use observed KPAR without the
empirical adjustment. With smaller KPAR values in Run KO, both plankton biomass and PP
are significantly higher in the upper Bay (compare red and black lines in Fig. 13). In
contrast, changing upper Bay KPAR has much smaller impacts on the mid- and lower Bay.
Hence model predictions for the mid and lower Bay are not very sensitive to the results in
the upper Bay. Averaged over the whole Bay, AMC in Run KO is 40% higher than in Run
C. Although PP in the upper Bay is about twice as high in Run KO as in Run C, AIP for the
whole Bay is only 40% higher as the narrow upper Bay represents a relatively small area of
the total. These discrepancies demonstrate that accurate determinations of KPAR in the
upper Bay are essential to obtain accurate retrievals from the coupled model. Another
relevant issue is the suggestion of Fisher et al. (1992) that phosphorous rather than nitrogen
is the limiting nutrient in low-salinity waters of the Bay. We take the approach developed
by Xu and Hood (2006) to consider phosphorous limitation in Run C. To study this effect,
we remove phosphorous limitation in Run KP and compare the results with Run C (Fig.
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Figure 12. Comparison of euphotic-layer chl-a (left panels) and primary productivity (right panels)
averaged over whole Bay for the model runs in Group A1 (upper panels) and Group A2 (lower
panels). In Group A1 (a/b), Run C (black), Run VX (red) and Run VE (blue) correspond to linear,
exponential and Epply’s functions for phytoplankton intrinsic growth rate. In Group A2 (c/d), Run
C (black), Run AL (red) and Run AS (blue) correspond to 	�0.065, 0.048 and a seasonally
varying function.
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13). This produces a larger spring bloom in the mid Bay but chl a in the upper Bay is in
better agreement with observations. Removing phosphorous limitation also produces
higher PP in the upper Bay (Fig. 13h).

In the fourth group (A4) of numerical experiments (Run C and RL), we test the
sensitivity of model predictions to parameterizations of the remineralization rate. In Run C
we use an exponential function (Eq. 13), and in Run RL we use a linear function of
temperature (Eq. 14). There are minor differences in AMC between the two runs, although
AIP in Run RL is 25% larger than in Run C (see Table 3). Essential elements of the
remineralization terms are that the remineralization rate is an increasing function of
temperature, detritus is converted to NH4, and summer PP is sustained by mixing processes
that inject regenerated nutrients into the euphotic layer.

In the fifth group (A5) of numerical experiments (Runs C and ML), we examine how the
phytoplankton mortality rate affects model predictions of AMC and AIP. It is difficult to
estimate the mortality rate from observations. In Run C we set tPmort to 0.01. In Run ML
tPmort was 0.1. Both values are in the range of reported observations (e.g. Fennel et al.,
2006). AMC in Run M is about half of that in Run C, whereas AIP is 19% lower (see Table 3).
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Figure 13. Comparison of euphotic-layer chl-a (left panels) and primary productivity (right panels)
averaged over whole Bay (a/b), lower Bay (c/d), mid-Bay (e/f) and upper Bay (g/h) for three model
runs: Run C (black), Run KO (red) and Run KP (blue), corresponding to different formulations of
upper-bay light attenuation and PO4 limitation.
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The higher mortality rate we use in Run ML significantly reduces the magnitudes of the
spring bloom and the summer PP.

In summary, nine model runs were conducted to explore the effects of alternative
parameter values and different formulations of some biogeochemical processes. Although
this set of runs is far from exhaustive in the 14-dimensional parameter space of the coupled
model, we selected model elements expected to exert more important controls than other
parameters that were fixed. It is satisfying to find a general consistency between the
different model runs, as shown in Table 3. Both AMC and AIP range within 50%,
suggesting a degree of robustness of the model results.

b. Sensitivity to changes in physical forcing

River runoff, wind forcing, temperature and light field are four types of climatic and
meteorological forcing that are expected to exert important controls on phytoplankton
growth, but their precise effects are not well studied in Chesapeake Bay. We conducted
four groups of numerical experiments to examine how plankton biomass and productivity
vary in response to changes in these physical forcing fields (see Table 4).

In the first group (B1) of model experiments (Runs C, RD, RH), we examine how the
magnitude of river runoff affects euphotic-layer chl-a and PP averaged over the whole Bay
and its subregions. Analysis of the long-term record of river flow over the past century
reveals that the annual mean discharge varies between 1000 and 3500 m3s�1. The mean
river discharge for 1997 was about 1600 m3s�1, slightly below the long-term mean. Run C
uses observed river flow rate, Run RD doubles flow rate, and Run RH has half of the
observed flow. As shown in Figs. 14a and 14b, both chl-a and PP show a strong response to
the doubling of the freshwater flow and associated increase of nutrient loading. Increased
biomass is particularly pronounced in the mid- and lower Bay regions as higher river flow
carries nutrient-rich water further down the estuary. PP is significantly elevated in all

Table 4. Model runs used to examine the sensitivity to changes in physical forcing.

Group Name Run Name Description

Group B1 Run C Observed runoff.
Run RD Runoff doubled.
Run RH Runoff halved.

Group B2 Run C Observed wind forcing.
Run WD Wind stress doubled.
Run WN Wind forcing switched off.

Group B3 Run C Observed air temperature.
Run TI Temperature increased by 2°C.
Run TD Temperature decreased by 2°C.

Group B4 Run C Observed surface PAR.
Run PI Surface PAR increased by 30%.
Run PD Surface PAR decreased by 30%.
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regions of the Bay. AMC is 43.0 mg m�2 in Run RD versus 25.4 mg m�2 in Run C. AIP is
305 g C m�2 yr�1 in Run RD versus 180 g C m�2 yr�1 in Run C (Table 5). Both AMC and
AIP increase by about 70% for a doubling of river runoff. In contrast, the response to a 50%
reduction of river runoff is less dramatic. AMC is 17.6 mg m�2 and AIP is 157 g C m�2

yr�1 in Run RH, only 30% and 13% smaller than their counterparts in Run C, respectively.
These model comparisons suggest nonlinear responses of plankton biomass and productiv-
ity to variability of river runoff and nutrient loading.

Our analysis in Section 3 shows that summer winds cause temporary increases of PP. To
investigate if these contribute to a net increase in AIP, we conduct second group (B2) of
numerical experiments (Runs C, WD, WN). We analysed the time series of wind speeds
measured at three weather stations: BWI (Baltimore-Washington International Airport),
PRNS (Patuxent River Naval Station) and NIA (Norfolk International Airport) over a five
year period between 1994 and 1998. We found that the maximum of the annually averaged
wind speed exceeds that of 1997 by about 33%. This translates to 80% increase in the wind
stress. Hence the wind stress is doubled in Run WD. In order to further clarify the wind
effects, we conduct another run (Run WN) in which the wind forcing is switched off.
Figures 14c and 14d compare the time series among the three runs. PP in Run WD is higher
with much more pronounced spikes. AIP is 231 g C m�2 yr�1 in Run WD versus 180 g C
m�2 yr�1 in Run C (see Table 5). In contrast, no spikes are found in the PP time series for
Run WN in which wind forcing is switched off. It is interesting to note that AMC in Run
WN is 38% smaller than Run C but AIP is about the same between Runs C and WN.
Wind-induced mixing affects phytoplankton growth in two different ways. On the one
hand, winds can inject nutrients to the euphotic layer and enhance PP. One the other hand,
they could increase the mixed layer depth such that phytoplankton may be driven to deeper
water with lower light exposure, thus reducing PP. The net effect of wind mixing on PP
thus depends on the competition between these two factors. In addition to the local winds
blowing over the Bay’s surface, offshore winds blowing over the adjacent shelf may
produce coastal upwelling and import nutrients into Chesapeake Bay, but this nutrient
source is expected to be small (see Boynton et al., 1995).

In the third group (B3) of model experiments (Runs C, TI, TD), we examine how
temperature change might affect the plankton system in the Bay. Historical records show
that global temperature has increased by 1°C since 1880. Global climate models are
predicting that temperature in the mid-Atlantic region may increase 1–4°C by the end of
21st century (Najjar et al., 2009). To understand how global warming might affect plankton
production in the Bay, we conduct two additional runs: Run TI in which temperature is
increased by 2°C and Run TD in which temperature is decreased by the same amount.
Table 5 summarizes the results from these runs. AMC increases from 25.4 to 30 mg m�2

for 2°C warming but remains about the same for 2°C cooling. AIP increases from 180 to
246 g C m�2 yr�1 due to warming, but AIP in cooler condition simulated by Run TD is
surprisingly higher than Run C.
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In the fourth group (B4) of model experiments (Runs C, PI, PD), we examine how the
magnitude of surface PAR affects chl-a and PP. In Run C, we use daily averaged PAR for
1997. However, Fisher et al. (2003) examined the annual cycle of PAR over the past
couple of decades and found that PAR can vary about � 30% over the long-term average,
depending the cloud cover and weather conditions in a particular year. To examine the
sensitivity of plankton biomass and productivity to PAR, we conduct two more runs: Run
PI in which PAR is increased by 30% and Run PD in which PAR is decreased by 30%.
Spring bloom size in the mid and lower Bay and summer plankton biomass in the upper
Bay are proportional to the PAR values (Fig. 14e). PP also varies with PAR (Fig. 14f). In
summary, AMC increases/decreases by 18%/28% and AIP increases/decreases by 38%/
22% for the 30% increase/decrease in surface PAR (Table 5).

To summarize, we have examined how the plankton system responds to variations in
river runoff, wind forcing, temperature and light level. While the river runoff and
associated nutrient loading are the dominant factor affecting chl-a and PP, wind-induced
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Figure 14. Comparison of euphotic-layer chl-a (left panels) and primary productivity (right panels)
averaged over whole Bay for the model runs in Groups B1 (upper panels), B2 (middle panels) and
B4 (lower panels). Group B1 (a/b) consists of Run C (black), higher-runoff run (RD, red) and
lower-runoff run (RH, blue). Group B2 (c/d) consists of Run C (black), double-stress run (WD,
red) and no wind forcing run (WN, blue). Group B4 (e/f) consists of Run C (black), higher-PAR
run (PI, red) and lower-PAR run (PD, blue).
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mixing significantly enhances summer PP. AMC and AIP increase by about 70% for a
doubling of river runoff, but only reduce by 30% and 13% for 50% reduction of river
runoff. Doubling of wind stress results in 28% increases in AIP while AMC increases from
25.4 to 30 mg m�2 and AIP increases from 180 to 246 g C m�2 yr�1 for 2-degree warming.

5. Conclusions

We have used a 3D coupled hydrodynamic-biogeochemical model to simulate the
annual cycle and regional distributions of plankton biomass and productivity in Chesa-
peake Bay. The model captures the observed phase lag between the spring chl-a maximum
and summer PP peak, and shows reasonable skill in reproducing the observed chl-a, PP and
nutrient distributions. Sensitivity analysis of model simulations for different biological-
parameter values and alternative formulations of biogeochemical processes suggest that
model predictions are relatively robust. Hence this coupled biophysical model provides a
useful tool to explore how physical processes and climate variability affect plankton
dynamics in Chesapeake Bay.

Previous research suggested that dead plankton sink and are remineralized to yield
regenerated nutrients that support high PP in summer. However, the mechanism for
reintroduction of regenerated nutrients into the euphotic layer under strongly stratified
conditions that persist in summer had not been satisfactorily explained. Our model
demonstrates that episodic wind events in summer inject regenerated nutrients into the
surface euphotic layer, leading to short periods of enhanced PP. Since both EPA CBP
sampling cruises and aircraft remote-sensing flights are carried out at roughly biweekly or
monthly intervals, there have been little observational documentation of the effects of wind
mixing on plankton dynamic in Chesapeake Bay. In the future, it would be desirable to
schedule remote-sensing flights to capture plankton response to wind events.

The plankton system in Chesapeake Bay shows different responses to variations in river

Table 5. Summary of the model sensitivity to variations in physical forcing where AMC and AIP
stand for annual mean euphotic-layer chl-a and annually-integrated primary productivity averaged
over Chesapeake Bay.

Run Name AMC (mg m�2) AIP (g Cm�2 yr�1)

Observations 30.0 170
Run C 25.4 180
Run RD 43.0 305
Run RH 17.6 157
Run WD 26.5 231
Run WN 18.3 188
Run TI 30.0 246
Run TD 25.4 216
Run PI 30.0 249
Run PD 18.1 158
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runoff, wind forcing, temperature and light. While river runoff and associated nutrient
loading is the dominant factor affecting chl-a and PP, wind-induced mixing may signifi-
cantly enhance summer PP. Warming promotes phytoplankton growth, but light level
affects spring bloom size in the mid- and lower Bay and the summer biomass peak in the
upper Bay. These sensitivity analyses based on variable physical forcing lay the ground-
work for simulating the interannual variability of the spring bloom and summer PP
maximum that have been traced to regional climatic variability (Miller and Harding, 2007).
A model capable of capturing past interannual variability may be also used to project the
impacts of future climate change on the plankton system in Chesapeake Bay.
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APPENDIX

In the Taylor diagram, the correlation coefficient r2, the centered root-mean-square (rms)
error E, and the ratio �n of the standard deviations of the model-predicted field (i.e., the test
field) and the observed field (i.e., the reference field) are displayed by the location of one
point (representing the model field) in relation to the reference point (representing the
observed field). The correlation coefficient measures the centered pattern agreement of the
variations of the two fields regardless of amplitude; in other words, correlation is high if the
test field is correctly phased. The centered rms error measures the difference between the
fields with the overall bias removed. The ratio of the standard deviations indicates if the
test field overestimates (�n  1) or underestimates (�n � 1) the amplitude of variations.
The reference point is located on the x axis at �n � 1. The radial distance of the test point
from the origin indicates the normalized standard deviation (�n � �mod/�obs), its
azimuthal position indicates the correlation coefficient, and its distance from the reference
point indicates the centered rms error.

The Target diagram provides summary information about the pattern statistics as well as
the bias, thus allowing for an assessment of their respective contributions to the total rms.
In a simple Cartesian coordinate system, the unbiased rms serves as the X-axis and the bias
serves as the Y-axis. By definition, the X-axis (unbiased rms) must always be positive.
However, the X�0 region of the Cartesian coordinate space may be utilized if the unbiased
rms difference is multiplied by the sign of the standard deviation difference �d � sign
(�mod � �obs) (see Jolliff et al., 2009). Again we normalize the quantities by the reference
field standard deviation.

In addition to the Taylor and Target diagrams, we apply a model “skill parameter” used
by Warner et al. (2005b) in their simulations of the Hudson River estuary:
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Skill � 1 �

�
i�1

N

��mod � �obs�2

�
i�1

N

���mod � �� obs� � ��obs � �� obs��2

(A1)

where � is the variable being compared, �� its time mean, and the subscripts mod and obs
refer to model outputs and observations, respectively. Perfect agreement between model
outputs and observations yields a skill of 1.0 whereas complete disagreement yields a skill
of 0.
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