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Measuring turbulent large-eddy structures with an ADCP.
Part 2. Horizontal velocity variance

by A. E. Gargett', A. E. Tejada-Martinez’ and C. E. Grosch'

ABSTRACT

This paper considers the degree of accuracy with which observations from an acoustic Doppler
current profiler (ADCP) can determine turbulent horizontal velocity variance. As in a previous paper
addressing turbulent vertical velocity variance, we use a combination of techniques, deriving
response functions from simple theory and from oceanic observations taken with a VADCP (an
ADCP with an additional vertical (V) beam) in two different oceanic turbulent flows, Langmuir
supercells (LSC) and unstable convection. In the case of LSC, we also determine response by
sampling available Large-Eddy Simulations (LES) with specified beam geometry. In contrast with
the previous investigation, where a direct measurement of vertical velocity variance was available
from the vertical beam of the VADCP, we lack direct measurements of horizontal velocity variances.
Thus the observational response reported here for horizontal variance is an estimate, taken as the ratio
of first-order to the (assumed more accurate) second-order variance estimates made possible for the
first time by the presence of a vertical beam.

The theoretical response function is used to illustrate effects on response of horizontal scale,
vertical/horizontal anisotropy and possible quasi-coherent phase structure of the large eddies of the
turbulent field, and to predict the impact of changing 6, the angle of slant beams from vertical.
Observational estimates show that convective turbulence is characterized by near-unity response
throughout the water column for both horizontal velocity variances, in agreement with theoretical
prediction. For Langmuir supercells, theoretical responses correctly predict qualitative behavior of
the LES-derived response functions, specifically overestimation in the lower part of the water column
shifting to underestimation toward the surface. LES-derived responses for different values of 6 are
also in agreement with theory: both approaches suggest that 6 = 30° provides more accurate
measurement of horizontal turbulent velocity variance than does 6 = 20°, the present commercial
standard.

For all examined cases of unstable convection and most (normal) LSC cases, observationally
estimated response functions generally agree with theoretical (and, where available, LES) predic-
tions. However in a few (abnormal) LSC cases, record-averaged second-order variances are clearly
underestimated (most obviously when they are actually negative). We have been unable to assign a
cause to this underestimation and advise against use of second-order horizontal velocity variances
until this unpredictable effect is understood. Normal LSC cases exhibit overestimation of horizontal
variance by a maximum factor of 1.5 (observational estimates) to 3 (LES estimates), a degree of
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accuracy comparable to that associated with microscale-based estimates of turbulent large-eddy
quantities. We suggest ways in which the parameters needed for theoretical prediction of the
response function for horizontal velocity can be estimated directly from VADCP measurements.

1. Introduction

A previous paper (Gargett et al., 2008, henceforth Part 1) provided motivation for the use of
Acoustic Doppler Current Profilers (ADCPs) for measurement of the large eddy scales of
turbulence in the ocean. Briefly, the structure and variability of the energy-containing scales of
turbulence contain direct links to the instability mechanism(s) that deliver energy to them,
hence to a basic understanding of processes that generate ocean turbulence. Because of the well
known three-dimensional turbulent cascades of kinetic energy and scalar variance, the dissipa-
tion scales that are usually defined as turbulence measurements actually contain no direct
information about the processes that generated them, nor the vertical fluxes associated with
them, fluxes essential for global ocean circulation and embedded ecosystems. Microscale
profilers cannot measure the energy-containing scales of ocean turbulence, partly because some
sensors, like airfoil probes, are band-limited by nature, but also because both freefall and
self-propelled vehicles respond to motions of scales similar to their own dimensions, acting as
an effective high-pass filter. Instead, energy-containing scales and turbulent fluxes have been
inferred indirectly from measured microscale quantities using multiple assumptions, some of
which are unproven or even doubtful. Even dissipation-scale isotropy is unlikely for many low
Reynolds number patches (Gargett et al., 1984), leaving the basic dissipation estimates
uncertain within perhaps a factor of 2. In addition, constant mixing efficiency and a single eddy
diffusivity for all scalars are suspect in the case of vertical fluxes, while the gradient-diffusion
and turbulent viscosity relationships are themselves only hypotheses. It is thus highly desirable
to measure the energy-containing and flux-carrying scales of ocean turbulence directly.

In shallow coastal waters, progress has been made toward this goal through bottom-
mounted deployments of three types, bottom tripods heavily instrumented with point
sensors (e.g. Sherwood et al., 2006), bipolar acoustic systems (Stanton, 2001), and ADCPs.
Major disadvantages of tripod systems include inability to measure the entire water column
where it exceeds frame height (typically 1-2 m), as well as mechanical fragility which
precludes measurements during the highly energetic wind/wave conditions characteristic
of storms. The impact of this latter problem is clearly illustrated by the discovery (Gargett
et al., 2004) that storm-driven Langmuir supercells (LSC), full-depth Langmuir circula-
tions occurring intermittently during the weakly stratified part of the year (September
through May), are the dominant sediment transport mechanism at the inner shelf location
of the LEO1S5 cabled observatory off the coast of New Jersey (for a map of the area, see
http://explore.noaa.gov/long-term-ecosystem-observatory-at-15-meters-depth-leo-15). A
number of years of tripod-based sediment transport studies at the same location completely
missed this process because tripods were deployed only in the summer, a time of relatively
calm wind/wave conditions and generally high upwelling-induced water column stratifica-
tion. The combination of low Langmuir forcing and restriction of surface-forced motions
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Figure 1. Bottom-mounted, upward-looking 5-beam VADCP. Slant beams make an angle of 6-30°
from vertical. Horizontal separation of the slant beam pairs 2A = 2z tan 6 increases with distance z
above the transducer. An instrument coordinate system is defined with vertical axis originating
from the transducer face and horizontal axes defined in the orthogonal planes of the slant beam
pairs, as shown.

to the part of the water column above the strong seasonal pycnocline results in the absence
of LSC during the months suitable for tripod measurements. Bipolar acoustic systems
produce highly desirable collinear velocity component profiles, but cannot be substantially
scaled up in size to extend measurement beyond the near-bottom boundary layer (T. P.
Stanton, pers. comm.), nor deployed on moorings or towed bodies. The use of ADCPs to
measure turbulent quantities began in the 1990s, after development of pulse-to-pulse
coherent and broadband sonar systems provided the accuracy needed to measure relatively
small turbulent velocities in the sea. Over the past several years, both standard 4-beam
ADCPs (Lohrmann et al., 1990; Stacey et al., 1999; Cheng et al., 1999; Rippeth et al.,
2002; Lu and Lueck, 1999) and VADCPs, systems with an additional vertical beam
(Gargett, 1994; Gargett and Wells, 2007, henceforth GW07), have been used to measure
previously inaccessible characteristics of turbulence in shallow coastal locations. For
ADCP-based measurements, the spatial arrangement of acoustic beams is a fundamental
determinant of the ability to measure turbulence. Ideally, one would profile all three
components of the instantaneous velocity vector along a vertical line, as bipolar systems do
near bottom. Instead, a standard Janus-configuration ADCP measures radial velocities
along pairs of opposing beams in 2 orthogonal planes, aligned respectively along x and y
(instrument-based) axes (Fig. 1). Each beam in a pair makes an angle 6 with the vertical
z-axis,* defined with zero at the face of the transducer array. The centers of paired beams
are separated by a distance 2A(z) = 2z tan 0 that increases with z. Under an assumption

4. Depending on the strength and frequency/wavenumber content of the flow field within which a turbulent
field is embedded, significant instrument misalignment leads to irrevocable contamination of the turbulent field
measurement. In this paper, it is assumed that the instrument has been accurately aligned to vertical, so fields
calculated from combinations of slant beam velocities do not contain errors due to alignment, and the vertical fifth
beam of a VADCP directly measures vertical velocity.
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that the velocity field is uniform across the full beam spread (first-order homogeneity),
estimates of horizontal velocity components are made from pairs of slant beams, while the
standard estimate for vertical velocity uses all four beams. An assumption of uniformity
over beam spread is reasonable for large-scale time-mean velocity fields but less comfort-
able for turbulence, which may contain a range of scales comparable to or smaller than the
size of the 4-beam footprint at a particular height. It is thus of considerable interest to better
understand the nature of the spatial response of an ADCP/VADCP for all six turbulent
stresses (three normal stresses (variances), and three shear stresses) as functions of height
and underlying turbulent structure. While this response will assuredly be less than ideal, it
must be emphasized that there are presently no viable alternate methods for making
measurements of the energy-containing eddies associated with the highly energetic but
also highly intermittent turbulent events that dominate coastal waters during the several
months every year when stratification is weak. Until such alternate methods arise, what
knowledge we have of this large-scale turbulence in coastal waters will come from ADCPs.

In Part 1, we investigated the effect of the spatial configuration of a standard 4-beam
ADCP on determination of turbulent vertical velocity variance. Methods used were a
combination of simple theory, Large Eddy Simulation (LES), and field observations from
the 2003 VADCP deployment that discovered Langmuir supercells (for deployment
details, see GWO07). Both theory and LES predict that the vertical velocity response
function for turbulent velocities depends not only upon the horizontal spatial scale of the
eddies relative to the maximum beam spread, but also upon the degree of vertical/
horizontal anisotropy of the large eddies and the presence/absence of quasi-deterministic
phase relationships among velocity components. Two different turbulent flows were
selected from the observations, the LSC typical of storm conditions and unstable convec-
tion driven by surface heat loss at times of weak winds and waves: for details and examples
of both flows, see Part 1. Convective eddies did not exhibit strong phase relationships; for
observed vertical/horizontal anisotropy, near-uniform response with depth was both
predicted and observed. In contrast, response functions for LSC are dominated by
characteristically strong phase relationships among velocity components; predicted cross-
wind response is near unity throughout the water column, while predicted downwind
response is first an increasing underestimate with increasing distance from the transducer,
becoming an overestimate in the upper part of the water column. These theoretical
predictions agreed qualitatively, and to a large extent quantitatively, with responses
determined from the LES of LSC and from the observations. For both turbulent flows, the
worst estimator (that using all 4 slant beams) of vertical velocity variance was at most a
factor of 2-3 different from the “true” value measured by the vertical beam: agreement
could be further improved by choosing as the “true” estimate the larger of the two
slant-beam estimates that are averaged to form the 4-beam estimate.

The present paper uses generally similar techniques to investigate how well turbulent
horizontal velocity variances can be determined in the same turbulent flows employed and
described in Part 1: a major difference is that we lack a “true” estimate of horizontal velocity
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variance from the observations. Section 2 outlines the various estimates that can be made for
horizontal variances. First-order estimates can be made with only an ADCP, while supposedly
more accurate second-order estimates require information from the 5™ beam of a VADCP.
Characteristics of a theoretical response function for first-order variance are derived and
examined in Section 3. LES techniques are reviewed briefly in Section 4, then used to
determine the first-order response function for an instrument immersed in a wind- and
wave-driven turbulent flow characterized by LSC. In Section 5, data from both LSC and
unstable convective turbulence are used to determine observationally-based response functions
estimated as the ratio of first- to second-order variances, a process that reveals a problem with
second-order variances under certain conditions. Several possible sources of this problem are
considered, but an acceptable explanation is not found. Section 6 compares observational
response functions with theoretical predictions for convective turbulence and, in the case of
LSC, with the LES-based responses.

2. Turbulent horizontal variance estimates with 4- and 5-beam Doppler profilers

Consider a three-dimensional velocity field u(x, y, z) = (u, v, w) in an instrument-
based coordinate system (seen in Fig. 1) with origin at the transducer, z positive upwards, x
positive in the direction from beam 2 toward beam 1, and y positive from beam 4 toward
beam 3 (directed 90° to the right of beam 2). In this system, slant beam velocities (defined
as positive if directed towards the transducer) at height z are given by

B, = —u(+A(z), 0, 2) sin 6 — w(+A(z), 0, z) cos 6 (1
B, = u(—A(z), 0, z) sin ® — w(—A(z), 0, z) cos 6 2)
B; = —v(0, +A(z), z) sin 6 — w(0, +A(z), z) cos 6 (3)
B, = v(0, —A(z), z) sin 6 — w(0, —A(z), z) cos 0 4)

where 2A(z) = 2z tan 0 is the horizontal distance between opposing beams at height z.
Vertical velocity can be directly measured by the vertical beam of a VADCP,

w(0, 0, z) = —Bs. (5)

or estimated from the 4 beams of an ordinary ADCP by a form

4
Y
i=1

 4cos @’

wa = (6)
that assumes first-order homogeneity (denoted by subscript (1)), i.e. that velocity structures
have horizontal scale much larger than the distance between beams, so that u(—A, 0, z) =
u(A, 0, 2), etc.

In statistically stationary turbulence, velocity u = U + u’ is assumed to consist of two
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parts, a mean field U(z) = (U(z), V(z), 0) that is a function only of z, and a
three-dimensional fluctuating field " with zero mean <u'> = 0 and turbulent kinetic
energy per unit mass E = V2 <u'u' + v'v' + w'w’'>, where angle brackets denote a
suitable averaging process.’ In this case, the beam velocities B g = <B,> + B, q=
I,..., 4 are also made up of two parts, a mean <B,(z)> and a fluctuating part
qu(x, v, z) with zero mean <B et 0 and variance <Bif>. With these assumptions,
Eqgs. (1)—(6) can be written for both mean and fluctuating components individually.

Under an assumption of first-order homogeneity as defined above, the fluctuating forms
of Egs. (1) and (2) can be solved for first-order estimates of fluctuating velocity, e.g.

. (By—B,y)
T ) i g ™

and associated horizontal velocity variance

<M’2>(1): — . (8)

An equivalent expression for <v’2>(1) involves velocities from beams 3 and 4.

Although the assumption of first-order homogeneity is acceptable for mean flows,
defined as those with horizontal spatial scales much larger than the maximum beam spread,
it can be suspect for the scales that characterize turbulence. An alternate assumption is that
of Lohrmann et al. (1990), who suggested that only second-order statistics need be uniform
across the beam spread. Applying this much weaker assumption, which we term second-
order homogeneity, to averaged equations for fluctuating beam variances yields equation
pairs that can be solved for the horizontal velocity variances, provided that a direct
measurement of vertical velocity is available from a 5™ beam. Using the 2/1 beam pair as
an example, at height z

<B}> = <ul?> sin”® 6+ <wl> cos’0+ <u\w| > sin26 9)
<By> = <u”> sin®f+ <w?> cos’d — <u'w’ > sin 26, (10)

where subscripts (+, —) denote values of u’, w' measured in beams 1 and 2 at horizontal
positions x; = +A(z) and x, = —A(z) respectively. Under second-order homogeneity,
<u’f> = <u'’> = <u'?> etc., thus Egs. (9) and (10) can be solved for a second-order
estimate (subscript (2)) of the horizontal turbulence variance

5. The fluctuating velocity structures that can be observed at LEO15 must have periods longer than surface
wave periods (from which they are separated by low pass filtering), and shorter than the dominant semi-diurnal
tidal period. Because stable statistics typically require averaging over periods greater than an hour (see GW07)
and tidal velocities can vary over this period, a linear least squares fit, computed separately at each bin, is first
removed from the beam velocity time series. The averaging operator <> denotes a subsequent time average over
a period of one record (~ 2 h: individual records are referenced as sss.nnn, where nnn is the number of the record
within session sss).
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<B;> + <By>
2 sin’ 0

<u'’> = — < B> cot’ 6, (11)
with a similar expression for <v’2>(2) derived from the 4/3 beam pair.

A standard ADCP provides only first-order variances while a VADCP also allows
second-order estimates. The purpose of this paper is to assess the accuracy with which
horizontal turbulent velocity variances are determined by first-order estimates, a process
that is more difficult for horizontal variances than it was for the vertical variance
considered in Part 1 because of the lack of groundtruth. Since both available observational
estimates involve (different) assumptions and are affected (differently) by instrumental
noise and sampling error, neither can be considered as “true”. Consequently we will rely
more heavily on a combination of the features of a theoretical response function (derived in
Section 3) and those of the response derived by sampling LES available for LSC (Section
4). Favorable comparison of responses predicted by theoretical and LES methods with the
“true” observational response that is available for vertical variance when using a VADCP
(Part 1) gives confidence in applying these methods to horizontal variances in the absence
of a “true” observational estimate. Response characteristics derived via these two methods
can then be compared with an estimated observational response defined by assuming that
the second-order variance is “true” (Section 5).

3. Theoretical response for horizontal turbulent velocity variance

The first attempt to derive a response function characterizing the spatial filtering effect
of beam spread on measurement of horizontal velocity was that of Theriault (1986), who
derived a theoretical response for (total) horizontal velocity u as a function of 6, z and k,
where k is the horizontal wavenumber in the plane containing the beam pair used to
estimate u. Theriault assumed that vertical velocity w is either identically zero (w = 0) or
else constant (i.e., w, = w(+A, 0, z) = w(—A, 0, z) = w_): then letting u = u
expikx, he derived a response function for the first-order horizontal velocity variance,

o

*
R, = uuLz = cos® (kz tan 0) = cos? (kA), (12)
0
where star denotes complex conjugation. R, = 1 for all k£ and has an infinite number of
zeros at kA = n/2. Since turbulence spectra are typically red in wavenumber, the limit of
horizontal resolution is usually taken as the first zero, corresponding to a cutoff length scale
A (z) = 4z tan 0 that increases with distance from the transducer.

The Theriault response function R is the basis of existing belief that horizontal velocity
variance at fixed wavelength becomes progressively underestimated with increasing range.
However Theriault’s assumptions about vertical velocity are inappropriate for turbulent
velocity fields, in which the turbulent vertical velocity w' is expected to contain energy at
wavenumbers similar to those of the horizontal turbulent velocity u#'. A more general
approach (following Gargett, 1994, and used in Part 1) extends Theriault’s theory to
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Figure 2. Logarithmic response functions for first-order horizontal velocity variance as functions of
kA/m = 2A/L, where 2A(z) is slant beam pair separation at height z above the transducer, and k and
L are horizontal wavenumber and wavelength respectively. Curves are drawn for ¢, = 0° (zero
phase lag between horizontal and vertical velocity components) and for the labeled values of
vertical/horizontal anisotropy ratio w_/u,,. The Theriault response function for non-turbulent flow
is that with w_/u, = 0. For turbulent flows, response increases with w /u,, switching from
underestimation to overestimation at w_ /u, = 0.577. The vertical line marks the location of a
spatial scale of 80 m, typical of observed structures at LEO15, for a worst-case value of A(z) = A,,
= H tan 30° = 8.66 m, the maximum beam half-separation in water of mean depth H = 15 m.

“turbulent” velocities. Setting u’ = u, expi(kx + ly) and w' = w, expi(kx + ly + &,)
allows for possible phase difference ($,) between ' and w' and for anisotropy in the
sense of differences in their amplitudes, quantified by an anisotropy ratio w,/u,. The
resulting response function for <u’2>(1), the first-order estimate of horizontal velocity
variance of a turbulent field is given by

' IE3
Ui . . .
u= (;2( L= cos? kA + 7 sin® kA — rsin &b, sin 2kA, (13)
o
WO 12 . . .
where r = ufcot 0. The response for <u'“>, is not affected by variation of the

turbulent Veloc(i)ty field in the (y) direction normal to the plane of the beam pair used to
calculate u(,,. However it does depend strongly on the { x, z} structure of the underlying
turbulent velocity fields through the anisotropy ratio w /u,, and the phase lag ¢, between u
and w components.® Figure 2 illustrates the dependence of Ru on w/u,, for fixed ¢, = 0°.
The lowest curve (w,/u, = 0) is the Theriault response R, (Eq.12), which is always an
underestimate. For a turbulent velocity field, the response changes to overestimation for
values of w,/u, > 0.577. Thus as a structure with fixed horizontal wavelength (say the ~

6. Taking u = u, sin kx, and w = w,, sin (kx + ¢,), positive(negative) ¢, means w lags(leads) u. For LSC
(as shown in Part 1, Fig. 2), if u = u, = downwind velocity, &, =180°: if u = u, = crosswind velocity, ¢, =
—90° at the bottom of the water column and +90° at the top.
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Figure 3. Logarithmic response functions for first-order horizontal velocity variance as a function of
kA/m and the phase difference ¢, between horizontal and vertical components of the turbulent
velocity field, for the fixed value of w,/u =0.577 that gives unit response for ¢, = 0°(180°).
Vertical line as in Figure 2.

80 m scale typical of LSC at LEO15) and fixed w,/u,, is measured at increasing range, the
observed horizontal variance may be either an increasing underestimate, as predicted by
Theriault, or an increasing overestimate. If the anisotropy ratio itself varies with range, the
same fixed wavelength may be underestimated in one part of the range and overestimated
in another.

The presence of quasi-deterministic phase relationships between horizontal and vertical
velocity components within large-eddy structures adds further complexity. As seen in
Figure 3, unit response for fixed w,/u, = 0.577 and ¢, = 0° can change dramatically
with non-zero ¢,. As w progressively lags u (positive ¢,), the low-frequency response
drops progressively below 1: at ¢, = +90°, the response has a zero at kA = 0.25. Asw
progressively leads u (negative ¢,), the low-frequency response rises above 1 to an
increasing maximum at kA = (.25, before falling to a zero (not shown) at kA = 0.75.

Convective records are not characterized by strong phase relationships (see Part 1) and
although LSC have quasi-deterministic phase relationships between vertical and horizontal
components, the phase between vertical and downwind components is 180°: thus both the
convective response and the downwind LSC response should depend primarily on the
magnitude of w,/u,. In contrast, the phase between vertical and crosswind LSC compo-
nents varies from +90° at the bottom to —90° at the top of the water column, and for
approximately constant w,/u,, the phase effect of Figure 3 dominates the crosswind
response. The theoretical prediction of quite different LSC responses in downwind and
crosswind directions is supported in the following section, where these responses are
calculated from LES velocity fields.

The theoretical response function allows comparison of the performance with respect to
determination of horizontal velocity variance of different slant beam angles from vertical.
Figure 4 compares responses as functions of dimensional wavenumber (necessary because
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Figure 4. Comparison of logarithmic response functions for first-order horizontal velocity from
instruments with slant beam angles from vertical of 6 = 30° (solid lines) and 6 = 20° (dashed
lines). The (worst-case) response is calculated at maximum halfwidth A,, = H tan 6 for the LEO15
value of H = 15m. The vertical line marks the dimensional wavenumber of 0.0125 cpm
associated with the ~ 80 m horizontal length scale estimated for observed convective structures
and LSC crosswind structure. (a) Variation with w_ /u, (0, 0.5, 1) for fixed ¢, = 0°(180°). (b)
Variation with ¢, (—90°, 0°, +90°) for fixed w /u, = 0.5.

the parameter A used to non-dimensionalize k in Figures 2 and 3 is a function of 6) for the
two angles (6 = 20° and 30°) available in commercial instruments. With ¢, = 0°(180°),
Figure 4(a) shows that 20° beam angle is preferable for highly anisotropic turbulence
(small w,/u ), but produces significantly larger overestimation than a 30° instrument when
values of w /u, exceed ~ 0.5. For a fixed value of w,/u, = 0.5 (which lies between the
values of 0.377 and 0.577 at which Ru = 1 for 6 = 20° and 30°, respectively), Figure 4(b)
illustrates the effects of phase. Response for 6 = 20° is marginally preferable to that for
0 = 30° for 0° < ¢, < 90°, but noticeably worse when ¢, is negative. These predictions
are also confirmed when response functions for both angles are determined from the LES
of LSC.

4. Horizontal variance response functions derived from LES of LSC

In the case of Langmuir supercells, response functions for turbulent horizontal variances
can be derived from LES available at two values of turbulent Langmuir number La, =
(uJuy)"'?, where u, = (1,/p,)"? is the surface friction velocity (r, is surface wind stress
magnitude and p, water density) and u is the surface Stokes drift velocity (McWilliams et
al., 1997): for details of the LES, see Tejada-Martinez and Grosch, 2007, henceforth
TMGQO?7. Stress forcing was held constant in the simulations, so La, = 0.4 corresponds to
stronger Langmuir vortex-forcing than La, = 0.7. Although one might expect stronger
vortex forcing to lead to stronger Langmuir cells, the opposite appears to be the case, with
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Figure 5. (a) Mid-depth auto-correlation of vertical w = u, in the downwind direction (here assumed
aligned with the instrument x-axis) for flows with La, = 0.4 (heavy curves) and La, = 0.7 (light
curves). (b) Same as (a) but normalized by <ujuj>. Although the flow with stronger Langmuir
forcing (La, = 0.4) has larger maximum correlation, the normalized correlation drops much more
steeply with downwind distance, evidence of shortened downwind length scale.
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the La, = 0.7 case exhibiting more distinctly “Langmuir-like” characteristics, specifically
more highly linear structures, more intense near bottom downwind “jets”, and strong phase
relationships among velocity components. With stronger vortex forcing in the La, = 0.4
case, near-bottom downwind “jets” are significantly reduced in magnitude and the
elongated downwind structures develop more sinuous structure: Figure 4 illustrates the
decreased downwind correlation length scale of the vertical velocity component as La,
decreases from 0.7 to 0.4. Decreased downwind correlation moves the flow toward
horizontal isotropy (although the La, = 0.4 flow is by no means yet isotropic) by
decreasing the downwind linearity of structures considered characteristic of Langmuir
circulations, possibly a progression towards more conventional turbulence through instabil-
ity of the Langmuir structures.

To derive an LES-based response function, variances of synthetic beam velocities are
obtained by sampling the LES fields with the geometry of a VADCP, then averaged over
time and both horizontal spatial dimensions of the computational domain used to calculate
first-order horizontal variance estimates (for details, see Part 1, Appendix B). Because of
the averaging involved, the second-order relationships (e.g., Eq. (11)) are equivalent to the
“true” variances, as defined by the LES, and the computational response function is thus
the ratio of first-order to second-order computed variances. The response functions Lu,
and Lu, shown in Figure 6, middle panels, are calculated in a horizontal coordinate system
oriented in the downwind (subscript 1) and crosswind (subscript 2) directions. Differences
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Figure 6. For slant bin angle from vertical 6 = 30° and (a) La, = 0.7 and (b) La, = 0.4, top panels
show profiles of downwind (left) and crosswind (right) horizontal velocity variances normalized
with U_, the mean downwind velocity at mid-depth. Solid lines are the true (LES) values and
dashed lines are the first-order estimates. Middle panels are profiles of the LES-derived response
functions for the first-order estimates. Bottom panels show the ratios of rms vertical to horizontal
velocity components w,/u,, = <uju;>""*/<uu/>'"?: the vertical dashed line corresponds to the
value w,/u,, = 0.577 theoretically predicted to give unit response for zero phase between vertical
and horizontal components. Gray bars indicate areas inaccessible to horizontal velocity observa-
tions with the VADCP (6 = 30°) deployed at LEO15.

between Lu, and Lu, arise from differences in characteristic wavenumber, anisotropy
ratio, and phase between horizontal and vertical components associated with the horizon-
tally anisotropic LSC structures. Difference between downwind and crosswind responses
is largest in the La, = 0.7 case, in agreement with previous discussion of the more
“Langmuir-like” features of this flow relative to that of La, = 0.4. As seen in Figure 6, the
first-order response is characteristically an over-response in the lower water column,
shifting to under-response at a height that varies both with component (the downwind
component at a level higher than the crosswind component) and with La, (the case La, =
0.4 at a level higher than that of La, = 0.7). The degree of overestimation of the
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downwind component in the middle part of the water column increases with decrease in
La,.

All of the response functions shown in Figure 6 are strikingly different from the
increasing-with-height underestimate predicted by the Theriault response function. The
theoretical function derived in the previous section aids in understanding that the LES
responses result from the presence of vertical velocity fluctuations with magnitude
comparable to horizontal fluctuations over much of the interior of the water column (Fig. 6,
bottom panels). The observed near-unity downwind response throughout the water column
in the La, = 0.7 case (Fig. 6, middle left panel) is predicted by the theory for a structure
with (a) the long downwind correlation length scales of the La, =0.7 case, (b) phase of
180° between u and u% = w’ components, and (c) values of w_ /u, ~ 0.6: slight
over-response, as observed in the LES, would be predicted where w,/u, approaches 1,
around x3/H ~ 0.7. The predicted crosswind response for horizontal wavenumber k =
27/80 m typical of LSC is determined mainly by strong phase dependence between u’ and
u’% in LSC (see Part 1, Fig. 2). As illustrated in Figure 3 for w,/u, = 0.577, unit response
near bottom (where A is small) is predicted to change to over-response in the lower water
column where ¢, < 0°, then to under-response in a near-surface zone where ¢, > 0°.
This behavior, which describes the main features of the LES crosswind response for La, =
0.7, would be modulated only slightly by the variation in w /u, with height seen in the
lower panels of Figure 6 (left). The more similar (although not identical) downwind and
crosswind response functions in the La, = 0.4 case (Fig. 6, middle right panels) would be
predicted on the basis of the increase in horizontal isotropy in this case, as suggested by
Figure 5.

For anisotropic turbulent structures such as LSC, an additional variable that affects
response is the orientation of the ADCP/VADCP instrument to the long axis of the
structures. The maximum significant angle {s between a beam pair axis and the long axis of
LSC structures is 45°. For the more anisotropic case of La, = 0.7, Figure 7 compares the
response functions for this extreme value of {s with the case ys = 0°. (Fig. 7(a)) in which the
downwind long axis of the cells is assumed to be perfectly aligned with the instrument axis
x. As seen previously in Figure 6, response with s = 0° is near unity in the x direction (in
which k£ — 0), but an overestimate in most of the water column for the finite wavenumber
of the crosswind structure. As expected, both responses are comparable when the long axis
lies mid-way between x and y instrument axes (¢ = 45°, Fig. 7(b)), since then both beam
pairs sample part of both the larger downwind structure and the smaller crosswind
structure. This result suggests that if the directionality of turbulent structures is known or
suspected a priori, installing the ADCP/VADCP at 45° to the dominant direction would
produce the most uniform first-order response, an overestimate of both horizontal vari-
ances in middle of the water column by a factor of ~ 1.5 for La, = 0.7, ~ 2.7 for La, =
0.4 (not shown).

The LES can be readily re-sampled to investigate the impact of decreased beam angle
6 = 20°, allowing an additional comparison with theoretical predictions. As seen in Figure 8,
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Figure 7. Comparison of response functions for maximum range of angle {s between one instrument
axis and the long axis of strongly directional LSC structures (La, = 0.7). (a) ¢ = 0°, x instrument
axis aligned with the downwind axis in which LSC are elongated. (b) ¢ = 45°. Gray bars indicate
areas inaccessible to horizontal velocity observations with the VADCP (6=30°) deployed at
LEO15.

the smaller beam angle approximately doubles over-estimation of horizontal velocity
variances in the interior of the water column. This change is qualitatively in agreement
with the theoretical curves shown in Figure 4, where for typical interior values of w /u, >
0.5, responses with phases either 0°/180° (Fig. 4(a)) or negative (Fig. 4(b)) are signifi-
cantly greater for 8 = 20° than for 6 = 30°, predicting greater over-estimation of
downwind variance throughout the water column and of crosswind variance in the lower
part of the water column for LSC structures. Thus the cost of the improved slant beam
estimation of vertical velocity variance with 6 = 20° reported in Part 1 is deterioration in
estimation of horizontal velocity variance. If a fifth vertical beam is available to provide
vertical velocity variance directly, a slant beam angle of 30° from vertical, resulting in
improved estimation of horizontal variance, is preferable to the now standard 20°.

5. Response functions based on observations of unstable convection and LSC

In Part 1, observational response functions for various slant beam estimates of turbulent
vertical velocity variance were determined as ratios of the variance of the slant beam
estimate to the “true” variance measured by the vertical beam. The present case of
turbulent horizontal velocity variances suffers from lack of independent measures of the
true values. With available observational information, only an estimate of the response
function for the first-order variance can be made. If we assume that the second-order
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Figure 8. As in Figure 6, except for slant bin angle from vertical 6 = 20° (the vertical dashed line in
the bottom panels at w,/u,, = 0.377 is the value theoretically predicted to give unit response with
zero phase between vertical and horizontal components for this value of 0). Note the doubling of
the horizontal scale of the center panels from Figure 6, necessitated by larger overestimation of
horizontal turbulent variances with = 20°. Gray bars indicate areas inaccessible to horizontal
velocity observations with this ADCP configuration, assuming the same transducer height above
bottom as at LEO15.

variance is “true” (or at least closer to “true” than the first-order estimate, since dependent
upon less stringent assumptions), estimated response functions (superscript e) can be
defined as ratios of first-order to second-order variances, i.e.

Ru‘= <u'>>/<u'’>, and RV¥= <v?>/<v?>,,

where the (u, v) notation draws attention to the fact that primary determination of the ratios
occurs in instrument coordinates. Response functions estimated in this way contain
unknown uncertainty associated with how close second-order variances really are to “true”
variances.

Horizontal velocity variance response functions estimated as described above for the
same set of observational records considered in Part 1 exhibit the three archetypal forms
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Figure 9. Three archetypes of observationally estimated response functions for horizontal velocity
variance. (a) Record 161.006, (b) Record 043.026, (c) Record 043.023. Upper panels: Profiles of
horizontal turbulent velocity variances <u'?> (left) and <v'?> (right) calculated in instrument
coordinates, with one standard deviation error bars (solid and dash lines respectively for first (0)
and second (x) order estimates. Middle panels: Response functions (solid lines) for first-order
variances, estimated assuming the second-order estimate is accurate, with one standard deviation
error bounds (dash lines) calculated as in Appendix A. (c) Profiles of w,/u, = <w'>>/<u’>>
and w, /v, = <w'?>/ <v’2>(l) (solid lines) and one standard deviation error bounds (dash lines). A
vertical line in these panels marks the value w, /u, = 0.577 theoretically predicted to give unit
response with zero phase between vertical and horizontal components for 6 = 30°. In all panels,
the horizontal dashed line marks the nondimensional height above which there is potential for

sidelobe contamination of slant beam velocities.

illustrated in Figure 9 (a)—(c). Upper panels are profiles of first and second-order estimates
of horizontal variance in instrument coordinates. Variances are corrected for bias errors
and (one standard deviation) error bounds are calculated with methods described in
Appendix A. The middle panels show the estimated response functions for each compo-
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Figure 10. Upper panels: ensemble averages of five convective turbulence records (161.005-
161.009). Estimates of horizontal variances, measured in an instrument coordinate system (results
are statistically identical in arbitrary horizontal coordinates) are normalized by the convective
scale velocity w,, before averaging into bins of scaled height. Lower panels: Ensemble averaged
estimated response functions for first-order horizontal variances, with one standard deviation error
bounds (dash lines). Symbols as in Figure 9, except that small-sample error bounds are calculated
over the ensemble.

nent, while lower panels are profiles of w,/u, and w,/v,, estimated using vertical beam
variance for w, and first-order horizontal variance for u,(v,) (for a reason that will shortly
become apparent).

The first archetype, seen in Figure 9(a), is that of convective records. As discussed in
Part 1, these are characterized by a distinctive backscatter signature and small O(1 (cm/s)?)
horizontal variances that are quasi-constant with height above bottom and horizontally
isotropic, ie independent of horizontal coordinate system. Although the variances are
small, both first and second-order estimates are significantly different from zero. Estimated
response functions are unity, within rather large error bounds associated with the ratio of
two observational values.

In an attempt to reduce the error bounds, ensemble-averaged variance profiles were
formed. For each of 5 convective records, dimensional variances were scaled by the
convective scale velocity w, = 0.55(JH)'? determined with (destabilizing) surface
buoyancy flux J and record-average water depth H, then sorted into bins of 0.05 in
H-scaled depth. The resulting convective ensemble-average vertical velocity variance is
approximately equal to w} (not shown), while both horizontal variances (Fig. 10) are
approximately equal to 4w 2, a value typical of turbulence driven by a mixture of unstable
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convection and wind stress in the atmospheric boundary layer (Stull, 1988). These results
appear to be the first confirmation of the applicability of this scaling to the ocean.
Ensemble-averaged (curly brackets) response functions {Ru‘} ~ {Rv®} ~ 1, within
somewhat reduced error bounds. The observed response is that predicted by the theory of
Section 2. In the observed absence of strong phase relationships among velocity compo-
nents, theoretical response is determined solely by the turbulence isotropy ratio. Estimates
of w,/u, and w_,/v, (bottom panels of Fig. 9(a)) are both close to the value of 0.577
theoretically associated with scale-independent unit response, hence consistent with the
observationally based near-unity response.

The second archetype, shown in Figure 9(b), is what we will call “normal” LSC records,
in which all variance estimates are significantly different from zero: estimated response
functions for such records are well-behaved and consistent in character. However because
the underlying structures are anisotropic, actual values are expected to depend upon
horizontal coordinate system. The instrument coordinate system was by chance approxi-
mately 45° to the NE/SW direction of strong wind events at LEO15, hence approximately
45° to the presumed long axis of LSC structures. As expected from the LES results for ¢ =
45° discussed above, the two instrument-system response functions (middle panels of
Fig. 9(b)) are quite similar, starting at 1 near the transducer and increasing with height to a
value of ~ 1.5. However because error bounds for this single record are sufficiently large
that a constant response value of 1 cannot be discounted, we again attempt to reduce error
bounds by ensemble averaging.

For LSC records, ensemble averaging must be carried out in the “natural” downwind/
crosswind coordinate system, lest changes in wind direction between records smear the
response. At first-order, horizontal velocity components can be rotated to the desired
coordinate system, then squared to form (rotated) variances. However at second-order, the
velocity field itself is not calculated, hence the appropriate components of the second-order
stress tensor must be rotated (see Appendix B). For consistency of comparison between
first and second-order estimates, we first calculate variances of both orders in instrument
coordinates, then rotate the stress tensors. (Because the horizontal variance rotation
involves <—u'v'>, the only shear stress component that does not have a second-order
formulation, necessary use of the first-order expression for <—u'v'> (e.g., Eq. (11) of
GWO07) introduces additional unknown error into rotated results: however as discussed
below, this error is likely small for LSC.) After rotation into wind coordinates, variances
are normalized by the downwind speed at mid-depth in the water column U, = U,(x5 =
H/?2) (a parameter readily available from both observations and LES, facilitating compari-
son between them; see GW07 and TMGO7), and sorted before averaging into the same bins
of 0.05 in scaled depth used for the convective records.

Differences in scaled variance profiles between the two LSC ensembles seen in
Figure 11 probably result mostly from differences in La,. Observationally determined
values (based on a single surface wave at the dominant frequency, see GW07) of 0.52 <
La, < 0.63 and 0.57 < La, < 0.72 for the two sets differ only slightly. However, LES
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Figure 11. Upper panels: ensemble averages of horizontal velocity variances rotated into downwind
(left) and crosswind (right) coordinates, for two sets of “normal” LSC records (a) 043.026, 027 and
028 (0.52 < La, < 0.63) and (b) 154.013, 014 (0.0.57 < La, < 0.72). Variances are scaled by U,
the downwind speed at mid-depth in the water column, and averaged into scaled depth bins. The
two sets are averaged separately because of the observed differences in scaled variance profiles,
possibly a result of different La,. Lower panels: estimated response functions for first-order
horizontal variances. Symbols as in Figure 9, except that small-sample error bounds are calculated
over the ensemble.

(see TMGO7) suggests a high degree of sensitivity to La, magnitude: thus separate
ensemble averages were computed for each episode to avoid having these differences
increase error bounds on the computed variance ratio. The basic characteristics of the
computed response functions are similar for the two ensembles. Estimated response is
close to 1 in the bottom third of the water column, then rises (with now marginal statistical
significance) to values of order 1.2 to 1.7 in the remaining part of the water column
accessible to the observations. This behavior is in overall agreement with the predictions of
both theoretical and LES approaches, although the maximum response magnitude is
approximately half that predicted by the LES and subtle differences between downwind
and crosswind responses revealed by the LES are obscured by the error in the observational
values. Although one of the ensembles (Fig. 11(a)) also shows the tendency towards
near-surface underestimation predicted by both theory and LES, these measurements are
above the level of potential sidelobe interference in slant beam measurements (horizontal
dotted line), hence possibly suspect.

The final archetype is the “abnormal” LSC record of Figure 9(c), in which at least one
(and sometimes both) of the second-order variances appears to be significantly underesti-
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mated. Underestimation is at its most obvious in a record like that shown, where one of the
calculated second-order variances actually becomes negative at heights well below any
possibility of sidelobe interference. In less obvious cases, the second-order variances may
only become negative after rotation into wind coordinates; in still others, evidence of
second-order underestimation lies in sudden increase with height of otherwise normal
profiles of the estimated response functions Ru¢ and/or Rv°.

We have considered a number of possible explanations for significant underestimation
of second-order variances, focusing on the negative values that are its most obvious
manifestation, while noting that negative record-averaged variances are observed only in
LSC records and then only in the upper half of the water column.

(1) Asshown in Appendix A, second-order variance estimates can be biased either high
or low by noise, depending on relative magnitudes of noise level in the vertical and slant
beams. For beam noise levels as determined in Part 1, this bias is in the right direction (i.e.,
the true value is higher than the estimate), but too small in magnitude (i.e., most variances
that were negative remain negative when corrected). Thus we dismiss noise bias as an
explanation for negative second-order variances.

(2) Negative second-order variances (and the other manifestations of variance underes-
timation) appear at locations in the water column where both observations and LES
indicate minimal horizontal variances, hence might possibly result from inability to resolve
small variances. However conversion of profile minimum LES non-dimensional variances
of 0(0.005) (cf TMGO7, Fig. 10(a), 0.5 < x3/H < 0.7) to dimensional values using
characteristic observed downwind mean speed U, ~ 25 cm/s yields variances of
O3 (cm/s)?) at this minimum. Since even smaller variances (O(1 (cm/s)?)) characterize
convection, yet negative record-averaged variances are not observed in convective records,
we conclude that negative variances in the LSC records are not a result of inability to
resolve small variances.

(3) Rotation of horizontal variances to wind-oriented coordinates involves terms
*+2<<uv> sin a cos a (where « is the angle between the wind and one instrument axis, see
Appendix B) as well as positive definite terms. Thus depending on the sign of <uv>, one
or other of the rotated variances could potentially become negative. However because in
LSC u' tends to extrema where v’ is zero, it seems likely that the correlation between them
is small. Even if this were not the case, the <uv> terms cannot account for cases where
both rotated variances are negative, nor do they serve as an explanation for records (such as
that of Fig. 9(c)) in which the variances are negative in the original instrument-based
coordinates.

(4) All of the abnormal LSC records are characterized by considerably larger error
bounds than the normal records, as illustrated by comparing the archtypes shown in Figure
9(b) and (c). If these larger error bounds were caused by the presence of fewer “structures”
within the fixed time extent of one record, the average variance in such records might be
closer to the mode than the mean of the probability distribution function for variance. In
such records, the estimated value would then be smaller than that for records containing
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more structures. However examination of the number of independent estimates in each
record revealed no pattern consistent with the hypothesis that negative second-order
variances are biased low by small numbers of independently sampled structures: some of
the “normal” records had the smallest number of degrees of freedom and a “abnormal”
record had the second largest number.

(5) Yet another possibility considered was bias resulting from small non-zero instru-
ment tilt. As detailed in Appendix C, a second-order estimate (subscript 2) made from a
tilted {2, 1} beam pair is related to true (unsubscripted) second-order variance by

<u?>= <u> +dy<u'w' >2(2cot’ 1), (14)

where ¢5 << 1 is the instrument pitch (rotation of the instrument about the axis normal to
the plane containing the {2, 1} beam pair, see Appendix C) in radians. A similar
relationship involving instrument roll ¢, << 1 can be written for the estimate <v'v'>,,
made from the tilted {4, 3} beam pair. An attractive characteristic of the tilt bias in
equation (14) is that it is zero unless turbulent velocity components have coherent phase
relationships, ie non-zero <u'w'> covariance, consistent with the absence of negatively
biased values in convective cases (which have velocity covariances only ~ one tenth of
those associated with LSC records). The 0-dependent multiplier in the bias terms is
positive for commercial instruments, so the sign of the tilt bias depends on the signs of the
tilt angle and the <u'w'> covariance. We estimate the bias possible in our observational
LSC records by using observed tilt values (both pitch and roll are ~ + 0.2° ~ 0.003
radians and effectively constant) and LES values of <u'w’> ~ —2 (cm/s) at x3/H ~
0.6. Because b;<<u'w'> < 0, the estimated value will be biased low, hence would seem
to be a potential explanation for observed negative values. Unfortunately, the magnitude of
predicted bias is only ~ 0.07 (cm/s)? for § =30°, too small to produce negative variance
values from true horizontal variance levels of O(3 (cm/s)?) suggested by the LES. Even
allowing for maximum error in the measurement of ¢ (stated error in the tilt sensors is *
0.5°) raises the potential bias only to ~ —0.2 (cm/s)?. Moreover since 6, b, and ¢4 are all
fixed, the source of more severe bias in some records relative to others could only lie in
different magnitudes of their velocity covariances. Yet the relevant covariances are
relatively uniform (within a factor of 2) across the observational LSC records, again
arguing that tilt effects were not the prime cause of the observed variance underestimation.

(6) Finally, we examined the possibility that non-Gaussian statistics could lead to bias
in the second-order estimate. However using a bootstrap method with replacement
(Davidson and Hinkley, 1997) we find that the second-order estimate has effectively zero
bias for both normal and abnormal records, removing this as a possible explanation.

In the end, we have not found a convincing explanation for the abnormal archetype.
However clear underestimation of horizontal variances by the second-order form in some
LSC cases, as evidenced by negative variances calculated in the original instrument
coordinate system, advises caution in use of second-order estimates where the underlying
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turbulent structures have strong phase correlations among velocity components, this being
the only obvious difference between convective and LSC records.

6. Discussion and conclusions

Using a combination of theory, numerical simulation, and observation, we have
demonstrated that for structures of horizontal wavelength that is fixed with height above
bottom, the first order ADCP estimate of turbulent horizontal velocity variance is not
necessarily an underestimate that increases with height, as widely assumed based on the
results of Theriault (1986). Instead, all three methods indicate that first-order response can
be either an underestimate or an overestimate. We find that, in addition to the angle 6 of the
slant beams from vertical, the response behavior of first-order estimates depends upon
horizontal wavenumber k, the anisotropy ratio w,/u, between vertical and horizontal
turbulent components, and any quasi-deterministic phase relationships between them, in a
manner that is reasonably well described by the theoretical response function derived in
Section 3.

For convective turbulence characterized by horizontal isotropy and weak phase relation-
ships among velocity components, the observational response estimated as the ratio of first
and second order variances is near unity throughout the water column (Figs. 9(a) and 10).
Although we do not have a measurement of the true horizontal variance, this result is
internally consistent with theoretical prediction of unit response for a value of w /u, =
0.577 and observed quasi-uniform values of ~ 0.5 for that ratio (based on “true” vertical
velocity variance from the 5™ beam and the first-order estimate for horizontal variance).

In contrast, Langmuir turbulence is characterized by strong phase relationships among
velocity components (GW07). Two ensembles of “normal” observationally-based re-
sponse estimates (Fig. 11) indicate an overestimate that increases with height in most of the
water column accessible to the ADCP measurement of horizontal velocities, in qualitative
agreement with that derived from the LES of this case. Quantitatively, maximum
over-response values of ~ 1.5 for the (wind-coordinate) observational responses are
somewhat smaller than LES response maxima, which range up to ~ 3, depending on the
value of La, (Fig. 6).

For the measurement of turbulent horizontal velocity variances, both theoretical and
LES results indicate that a system with beam angle 6 = 30° is preferable to the
now-standard 6 = 20°. For a given turbulent field, the smaller angle is associated with
larger variance spread errors (Appendix A), larger bias errors in second-order estimates
(Appendix A), and larger tilt biases (Appendix C), while producing greater overestimation
of variances for commonly observed values of anisotropy ratio (Figs. 4 and 8).

As was the case with the vertical velocity variance discussed in Part 1, we find
encouraging similarity between predicted theoretical responses for first-order horizontal
velocity variance and those based on sampling an LES with the geometry of an ADCP.
These results suggest that, lacking the gold standard of a response function determined
from LES of a particular turbulent flow, the theoretical response function is a useful tool
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for estimating response, provided basic characteristics of the large eddies are known at
least roughly. The most important characteristics governing response are the characteristic
horizontal wavelength of the large eddy structures, their degree of horizontal isotropy, the
magnitude of vertical/horizontal anisotropy, and the presence or absence of quasi-
deterministic phase relationships among velocity components. All of these characteristics
can be estimated from the VADCP data itself. Autocorrelation functions of the individual
beam velocities can provide temporal integral scales which can be scaled to horizontal
wavelength using measured mean velocity components and Taylor’s hypothesis. The
degree of horizontal isotropy can be determined by successive horizontal coordinate
rotations of these orthogonal length scales, which will be equal and invariant under rotation
for horizontally isotropic structures but variable for directional structures. VADCP
estimates of vertical to first-order horizontal variances provide at least a gauge of vertical
to horizontal isotropy. Very strong phase relationships among velocity components will
likely be either obvious, as they are in the case of LSC, or unimportant if not obvious.

While our analyses can be used to assess the degree of error involved in the use of
first-order estimates of variance, first-order response would be irrelevant if the second-
order estimates suggested by Lohrmann ef al. (1990) were both available and accurate.
Using vertical velocity measured by a vertical beam, we are for the first time able to
calculate second-order estimates. Unfortunately, we not only find cases in which horizontal
variance is clearly underestimated by the second-order formulation, but have been unable
to identify a cause. Until the conditions leading to underestimation of second-order
estimates are understood, we suggest that it is safest to use first-order estimates.

For the turbulent flows examined here, the first-order estimates of horizontal velocity
variance are accurate to within a factor of 2-3. This level of uncertainty is, as pointed out in
the Introduction, approximately the same as that associated with the microscale estimates
of large-eddy characteristics that are routinely presented in the literature. As has been the
case for dissipation-based estimates, we contend that it is preferable to have somewhat
inaccurate estimates of important processes than none at all. At present there are no viable
alternate techniques that would provide more accurate continuous vertical profiles of
three-dimensional turbulent variances over (nearly) the full water column in the shallow
coastal oceans that are of such importance to human activities. From autumn through late
spring seasons when water column stability is low, convection and Langmuir turbulence
appear to dominate vertical and horizontal turbulent transports both at the inner shelf site of
the LEO15 data considered here and at the Navy’s R2 tower in 26 m depth on the mid-shelf
off Georgia (D. Savidge, pers. comm. 2008). Both processes have vertical scale equal to
the water column depth and horizontal scales a few to several times larger and neither has
been adequately described by standard oceanographic tools. Indeed, the very existence of
Langmuir circulations extending to the ocean floor was completely unsuspected until only
a few years ago. Until better techniques are devised, ADCPs and VADCPs are the only
tools available for observational studies of these dominant turbulent processes. Our results
will better inform their use.
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APPENDIX A
Bias and spread of horizontal velocity variance estimates

Estimates of horizontal velocity variance made using squared beam velocities involve
errors of both bias and spread (bias error, associated with the presence of (assumed
Gaussian random) noise in field measurements, is a positive offset from the “true” value
that cannot be reduced by increased sample size, while spread refers to the statistical error
associated with finite sample size). The derivations of both types of error follow the
techniques described in Part 1, Appendix A, where true beam variance (overbar) is shown
to be related to observational variance (angle brackets) by

bsbs = E(<ByBy>) —0;= <ByBy> — 03 % s55

bb;=E(<ByBy;>)—0o’= <ByBy> —0’*s, ij#5.

Values of o2 = 0.10 (cm/s)* for the noise variance of the vertical beam and o2 =

0.02 (cm/s)? for slant beam noise variance (assumed equal for all four beams) are as

determined in Part 1: standard deviations over the record length are calculated for

individual bins using the method of Heathershaw and Simpson (1978), detailed in Part 1.
It can be shown that the true variance u'? is related to the first-order velocity variance

<u'?>, by

B, — B\
u'?= E(<<( &l ‘f> >) = (4sin® 0) 'E( < B}, + B}, — 2B,;By; > )

2sin6
= (4 sin’ 0) "(E(<B},>) + E(<B3;>) — 2E(< B;B);>))

= (4 sin® 0) 7' (b% + 02 = 5y, + b+ 0%+ 53 — 2(bybyy + 07 E 51,))
Si T snt s

= <u’>,,=* .
o 4 sin” 0

The first-order estimate of horizontal velocity variance is unbiased by noise. The associ-
ated spread depends not only upon the measured field, through the standard deviations of
beam variances and covariances, but also on slant beam angle from vertical 6. The
denominator 4 sin®> 6 = 1 for 8 =30°, but 0.47 for § =20°: thus the present commercial
standard instrument configuration with 6 =20° has approximately double the spread error
of a 30° instrument.

A similar derivation for the second-order estimate yields

<Bf> — < B3>

12 f o 2 2
_ < >

u E( 2 sin? 0 BSf cot” 0

(o2 cos’ 0 — a?) . (511 + Sy + 2555 cos® 0)

= <u'’>,+ .
@ 2sin’ 0

sin” 0
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The second-order estimate of horizontal variance is biased by an amount that depends on
both beam noise levels and 0. For fixed values of o2 and o3, the difference in (sin” 6) "
(respectively 8.5 and 4 for 20° and 30° instruments) dominates that in cos” @ (respectively
0.93 and 0.75), so the magnitude of the bias (and likely spread) is larger for a 20°
instrument. The sign of the bias depends upon the relative magnitudes of ¢ and ¢'. With
the noise levels of our (30°) instrument, (0§ cos? 0 — (rf)/sin2 6 ~ 0.2 (cm/s)> > 0, i.e. the
estimate is biased by noise to a value smaller than the true value.

APPENDIX B

Rotation of Reynolds stress tensor into a different horizontal coordinate system

Let {u, v, w} be components of horizontal velocity in coordinate system { x, y, z} and
let the x" axis of coordinate system { x', y’, z' } be located at angle «, taken as positive for
x" to the right of x. In the new coordinate system:

=ucosa+vsina

<
I

—usin o + vcosa

S
o
Il

uy=w,
hence

<u>> = < (ucosa+vsina)>

= <u*> cosPa+ <> sinfa+2<wuv> sinacosa
<ul> = < (—usina + vcos o)’ >

= <u*> sinfa+ <v’> cos’a—2<uv> sinacosa
<uP> = <wr>
<wuwi> = <uw> cosa+ <vw> sina
<wuut> =—<uw> sina+ <yw> cosa

<uwh> = < (ucosa+ vsina)(—usin a + v cos o) >
<uv> (cos?a —sin*a) + (<> — <u®>>)sinacos a

It is clear from the above that for small values of both <u?> and <v*>, either <u*> or
<uly?> (but not both) can potentially attain negative values, depending upon the sign and
magnitude of <uv>.
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APPENDIX C
Bias of second-order horizontal variance estimates by instrument tilt

Roll (¢,) and pitch (¢b5) are defined as the rotation of a vertical plane containing beam
pairs {2, 1} and {4, 3} respectively about the axis normal to the plane (see Lu and Lueck,
1999, Fig. 1). For small tilt angles, the beam pair {2, 1} fluctuating beam velocities correct
to first-order in ¢, and &5 (radians) are given by

By = —u, (sin ® + ¢; cos B) — w' (cos 6 — d; sin 0) + v, cos 6 (C.1)

By =u" (sin® — ¢; cos B) — w’ (cos 6 + d; sin 0) + v_.d, cos 6 (C2)
where subscripts (+, —) denote values of ', w' measured in beams 1 and 2 at horizontal
positions x; = +A(z) and x, = —A(z) respectively. For the vertical beam,

Bs, = —(wg — dsug — bavp) (C.3)

where the subscript denotes values at x = 0.
Using the above relationships with the assumption of second-order homogeneity, i.e.
that <u'’> = <u',’> = <u)?> = <u' *>, etc.,

<B}> + <By> ., » ,
- " =< > < >
2 sin we= t swh=cotf (C.4)

+ by <u'w >2(cot?0— 1) — b, <v'w' >2cot’ 0

and
<By> cot’ 6= <w'?> cot’ § — (b, <v'w' > + by <u'w’ >)2cot’ 6
(C.5)
Substituting Egs. (C.4) and (C.5) in the expression for <u’2>(2) (text, Eq. 11) yields
<u?> = <u?> +d;<u'w >2(2cot? 0 —1).
Similarly, using the {4, 3} beam pair,
<VI> = <> 4 d,<v'w >2(2co? 6 - 1)

The 6-dependent multiplier in the bias terms is positive for §<<45° (hence for commercially
available ADCPs). The tilted estimate of horizontal variance is biased only if there are
non-zero phase relationships (i.e., large covariances) between horizontal and vertical
turbulent velocity components. The sign of the bias may be either positive or negative,
depending on the signs of the relevant tilts and covariances.
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