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Isentropic averaging

by Roland A. de Szoeke1

ABSTRACT
The equations of motion, thermodynamics and scalar concentration are averaged separately over

infra-grid scales (comprising roughly ocean microstructure scales) and sub-grid scales (encompass-
ing 10–100 km scales), the latter average being carried out on constant potential temperature
surfaces. (Since variation of salinity has been neglected, potential temperature is synonymous with
entropy.) These methods of averaging are used to lend precision to statements about oceanic
turbulent diffusion: that infra-grid scales are primarily responsible for dientropic diffusion; and that
sub-grid scales are responsible for along-isentropic diffusion of passive scalars. Equivalent sets of
averaged equations expressed either in isentropic coordinates or quasi-Cartesian coordinates can be
obtained. Diffusion tensors for potential temperature express only infra-grid effects. For other
passive tracers, diffusion caused by sub-grid scales of motion is also felt, whose effects are shown by
scale analysis to be oriented principally along infra-grid averaged isentropes.

1. Introduction

The ocean is a turbulent medium, exhibiting random motions over a range of space and
time scales spanning many decades. The classical way to treat this randomness is to
consider the equations of motion and thermodynamics averaged over an ensemble of
realizations (Monin and Yaglom, 1971). This is the Reynolds averaging approach. It
generates forces and transports of materials and heat due to covariances among random
fluctuations of motion, scalar concentrations and temperature. Usually, to make progress,
parameterizations of these forces and transports must be proposed. In the ocean two
principal paradigms of diffusive transport processes by random fluctuations are used. The
first paradigm concerns near-vertical processes effected by fluctuations on scales of the
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order of meters and smaller. In this paper we refer to these scales as infra-grid. The average
contributions to eddy scalar variance and eddy kinetic energy from these scales are taken to
be nearly stationary in time and homogeneous in space so that balances of production and
dissipation pertain (Osborn and Cox, 1972). These hypotheses offer methods of estimating
near-vertical eddy exchange coefficients for turbulent diffusion. The other paradigm
addresses near-horizontal adiabatic processes by fluctuations on scales of tens to hundreds
of kilometers that spread water properties on “density”2 surfaces or isentropes. These
scales are called meso-scale, or sub-grid. Combined, these paradigms are considered to
furnish an eddy diffusivity tensor that is diagonal when rotated to local isentropic
coordinates (Redi, 1982): (DH, DH, KD), where DH � 103 m2s�1, KD � 10�5 m2s�1 are
typical estimates of along-isentropic and dientropic diffusivities. The values for the
dientropic parameter KD are deduced by applying the Osborn-Cox hypothesis to microstruc-
ture turbulence measurements, or from purposeful dye-release experiments (Ledwell et al.,
1993). The along-isentropic parameter DH has been calculated from long-term drifting
buoy displacement statistics (Freeland et al., 1975; Davis, 1985).

The assumption of isentropic diagonality of the diffusivity tensor reflects the common
notion that large-scale ocean property variations should spread along isentropes (or
isopycnals [Montgomery, 1938]). Indeed, Veronis (1975) showed how ocean circulation
models with diffusivity tensors oriented with respect to purely level surfaces would
produce observationally and theoretically unpalatable distributions of active and passive
scalars. Still, the isentropic character of diffusivity is far from self-evident. It seems
valuable, therefore, to deduce rationally, if possible, the isentropic diffusivity structure
from considerations of first principles. That is, can the orientation and parameters of the
eddy diffusivity tensor be deduced from consideration of the theory, combined with
observations, of the statistical characteristics of the wide range of turbulent eddy motions
that constitute it, rather than indirectly from the large-scale output features of a model?

In a comprehensive study of the equations of motion, thermodynamics, and scalar
conservation appropriate for seawater, Davis (1994a) reviewed the molecular transport
processes for heat, salt and momentum, including the various physical coefficients of
molecular viscosity and diffusivity, etc., necessary to describe them, and determined an
adequate set of approximate equations for the ocean. Davis (1994b) considered the
averaging of these equations and the eddy transport processes that then arise. He
questioned several aspects of the theoretical underpinnings of the combined view outlined
above. Careful distinctions were made between theoretical ensemble averages and practi-
cally realizable averages over time and space intervals. The former have attractive
properties, useful in manipulation, that the latter may lack, particularly if the spectra of the
variables being averaged have a “red” character (increasing power toward low frequen-
cies), and lack “spectral gaps” at the averaging cut-off scales. Because of this lack, it has

2. In this paper we shall neglect influences of varying salinity in the ocean, postponing their consideration to a
subsequent paper. “Density” is then synonymous with potential temperature or entropy, and we shall refer to
potential temperature surfaces as “Isentropes.”
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been concluded that certain inferences, known as the Osborn-Cox hypothesis (Osborn and
Cox, 1972), drawn from ensemble-averaged temperature variance balances regarding
quasi-vertical eddy heat transport cannot be strictly valid for practical averages (Gargett
and Holloway, 1984). Davis (1994b) argued that for the same reasons averaging data over
several years is a minimum requirement to replicate the statistical-theoretic effect of
ensemble averaging.

These questions are re-opened in this paper. Averaging in two stages is proposed of the
equations of motion, etc., to separate the effects of the infra-grid from the sub-grid (de
Szoeke and Bennett, 1993). The infra-grid average is taken up in Section 2. An essential
feature of the proposal is that the second, sub-grid, average (Section 4) be performed on
isentropes already averaged on infra-grid scales (Section 3, Appendix B). The Osborn-Cox
hypothesis and a similar proposition for infra-grid eddy kinetic energy balance are
reviewed in Section 5 for their utility in estimating vertical (dientropic) eddy coefficients.
In Appendix A we will consider ways to reconcile the Osborn-Cox hypothesis regarding
temperature variance balance with practically realizable averages, even when power
spectra of fluctuations are red. In Section 6 and Appendix C parameterizations of eddy
diffusion of passive tracers by sub-grid motions constrained to be nearly along isentropes
are considered (Lundgren, 1981; Bennett, 1996). In Section 7 and Appendix D we show
how to transform the equations of motion again into quasi-Cartesian coordinates. The
paper is concluded with a summary and discussion (Section 8). A glossary of symbols and
operators is included at the end (Appendix E).

2. Infra-grid- or microstructure-averaged equations

We begin with the equations of motion and scalar concentration averaged over infra-grid
scales on level (fixed z � x*3) surfaces. By infra-grid we shall mean scales ranging from
those determined by molecular viscosity and diffusion (of order centimeters) up to several
or tens of meters, which encompass the microstructure turbulence of the ocean. The
averaging should be thought of as a spatio-temporal low-pass filter, replicating at least
schematically, first, the practical averaging behavior of standard oceanographic instru-
ments such as CTDs, current meters, etc., and second, the statistical data-processing
methods usually applied to reduce high-frequency microstructure data. We will assume in
this section that the Reynolds averaging rules that are applicable to statistical ensemble
averages apply also to the practical average here employed (Monin and Yaglom, 1971).
Thus the averaged equations resemble the Reynolds ensemble-averaged equations. How-

ever, as the specific averaging rule, ���� � ���� (and even more particularly, ��� � �� ) can be
questioned (Gargett and Holloway, 1984; Davis, 1994a,b), we address the point in the
supplementary Appendix A, where corrected conservation laws not relying on this rule are
given.

The conservation equation, so averaged, for an arbitrary scalar concentration C in the
ocean, of which potential temperature �, or salinity S, are examples, is
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DC

Dt
�

1

�

�

�x*j
	�B*j

C
 � qC. (2.1)

The notations used in this paper are listed fully in Appendix E. Un-averaged variables to
which the fundamental Navier-Stokes equations apply are indicated where necessary by
tildes. Infra-grid mean vectors and tensors relative to the Cartesian coordinates are
indicated by asterisks; bars over simple variables, conventionally indicating averages, are
omitted. The advective derivative in (2.1) employs the infra-grid averaged motion.
Infra-grid averages of mass-specific variables are weighted by total density �̃, while for
density itself, or pressure, no such weighting is used. (Averaged, weighted, specific volume
is V � �̃Ṽ/� � 1/�, thus preserving the reciprocal relation between averaged specific
volume and density.) Density-weighted averages of fluctuations of mass-specific variables
vanish, while un-weighted averages of fluctuations of density or pressure vanish. In Eq.
(2.1) and similar equations, density-weighted infra-grid averaging of motion and scalar
fluctuations produces eddy transports, such as B*j

C.
Infra-grid averages are taken over scales ranging from millimeters to several meters. At

the smaller scales it is plausible that turbulent eddying motions are three-dimensionally
isotropic, while at the larger scales considerable horizontal-to-vertical anisotropy may be
felt owing to the stabilizing effects of buoyancy. An eddy with a vertical scale of one meter
might have a horizontal scale of, for argument’s sake, 10–100 meters. Fine-scale
interleaving in the ocean, as in the laboratory, is observed to have this character. Hence one
should expect horizontal elements of the diffusivity tensor to be larger than the vertical
element, which is often given as K*V � 10�5 m2 s�1 (see below), even by several orders of
magnitude, say K*H � 10�2 m2 s�1. This disparity is still much narrower than would be
brought about were the averaging to encompass in the horizontal dimension mesoscales of
tens to hundreds of kilometers (more about that below, in Section 4).

Because of the density-weighted averaging, the continuity equation applies in an
identical way to total random density and velocity and to their infra-grid averages:

��̃

�x*0
�

�

�x*j
	�̃ũj
 � 0,

��

�x*0
�

�

�x*j
	�u*j 
 � 0.3 (2.2)

The average horizontal momentum balance is similar in each horizontal component to
(2.1), except for the addition of the Coriolis and pressure-gradient forces,

Du*�
Dt

� fε3j�u*j �
1

�

�p

�x*�
�

1

�

�

�x*j
	�M*j�
 � q�

M (2.3)

3. Infra-grid fluctuations around mean density �, and indeed spatial and temporal variations of �, may usually
be safely neglected in (2.2) and elsewhere. (The conventional Boussinesq approximation exploits this property.)
However, the inclusion of density variations requires little additional effort here (de Szoeke and Samelson, 2002),
and provides an instructive preview of thickness-weighted averaging when isentropic coordinates are used
(Section 4, below).
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(� � 1, 2). In the vertical, mean hydrostatic balance is assumed:

�p

�x*3
� �g�. (2.4)

The equation of state,

��1 � V � V̆	p, �
, (2.5)

will be taken to link infra-grid-averaged density, pressure and potential temperature. The
dependence of seawater density on salinity will be neglected here, to be taken up in a
sequel paper. Though there are additional contributions to (2.5) of terms like V̆��G0

�.
arising from equation-of-state nonlinearity combined with infra-grid temperature variance
(see below), such terms are negligible (Davis, 1994a). Only infra-grid averaged pressure p
(though calculated without density weighting) appears in (2.3) and (2.4). The infra-grid
pressure fluctuations do not appear in the averaged equations.

The equation for infra-grid scalar concentration variance is

�
DG0

C

Dt
�

�

�x*j
	�G*j

C
 � �B*j
C
�C

�x*j
� ��C. (2.6)

(See Appendix E for definitions.) A similar equation can be obtained for the variance of
turbulent infra-grid velocity fluctuations,

�
DT

Dt
�

�

�x*j
	�T *j 
 � �M*ji

�u*i
�x*j

� �gaB*3
� � �. (2.7)

3. Transformation to isentropic coordinates

Suppose that x3 � � (infra-grid averaged potential temperature) is used as independent
coordinate in place of x*3 � z (height); otherwise xj � x*j, j � 0, 1, 2. Since potential
temperature is an alias of entropy when variation of salinity is neglected, we call these
isentropic coordinates. The third coordinate of a “point” indicates the isentrope on which it
falls. The mathematical details of the transformation to isentropic coordinates are summa-
rized in appendix B. The average mass conservation equation, second of (2.2), becomes

�h

�x0
�

�

�xj
	huj
 � 0. (3.1)

Here h is the thickness of isentropic layers,

h � �z� � �g�1p�, (3.2)

the second equality following from the hydrostatic relation, Eq. (2.4). Eqs. (2.1), (2.3) and
(2.4) become
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DC

Dt
�

1

h

�

�xj
	hBj

C 
 � qC	x, t
, (3.3)

Du�

Dt
� fε3��u� �

�M

�x�
�

1

h

�

�xj
	hMj�
 � q�

M	x, t
, � � 1, 2, (3.4)

�M

�x3
� �. (3.5)

Exner function � is a thermodynamic variable, a function only of p and �, determined once
and for all from the equation of state; M is the Montgomery function. Both variables are
described in Appendix B and Appendix E (glossary). The third component of generalized
velocity is diagnostically specified with replacement of C by � in eq. (3.3):

u3 � �̇ �
D�

Dt
�

1

h

�

�x�
	hB�

�
 �
1

h

�

��
	hB3

�
 � q�	x, t
. (3.6)

(McDougall (2003) avers that there should be additional source terms in this equation. We
shall neglect such effects.)

The equation (2.6) for the infra-grid variance of scalar C becomes

�

�x0
	hG0

C 
 �
�

�xj
	hujG0

C � hGj
C 
 � hBj

C
�C

�xj
� h�C. (3.7)

In particular, for the temperature variance, where C � � � x3, this is

�

�x0
	hG0

�
 �
�

�xj
	hujG0

� � hGj
�
 � hB3

� � h��. (3.8)

A similar equation for infra-grid kinetic energy is

�

�x0
	hT
 �

�

�xj
	hujT � hTj
 � hMji

�ui

�xj
� hgaB*3

� � h. (3.9)

4. Sub-grid (mesoscale) isentropic averaging

Suppose the equations and variables, (3.1)–(3.9), expressed in isentropic coordinates,
are further averaged over larger scales at fixed potential temperature �,4 i.e., on isentropes.
Such averages will be indicated by angle brackets. This averaging is supplementary to the
infra-grid averaging already inherent in the equations of Sections 2 and 3. The precise
definition of the term sub-grid will depend on the intended application. For example, in a
discrete numerical model, the sub-grid scale might be the smallest resolved length of the

4. When necessary, averages of variables at fixed � � x3 are indicated by �f(x, t)� to distinguish them from
averages at fixed z � x*3, i.e. �f(x*, t)�. When the abbreviation �f� is written, without elaboration, the former is
intended.
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model. In displaying synoptic oceanographic data, the sub-grid scale should be determined
by the sampling frequency (spacing) and subsequent data processing. Typically, sub-grid
averages will be taken over tens to hundreds of kilometers. Their essential feature is that
they should be performed on isentropes, not level surfaces, as the infra-grid averaging was
done. (Otherwise the two averages might as well be telescoped into a single procedure.)

Averaging on isentropes reflects observational data-reduction practices that are often
followed. On the other hand, some compilations of hydrographic data, such as Levitus’s
(1982), have been horizontally binned and averaged at fixed pressure levels. Yet in the
vicinity of a strong current system such as the Gulf Stream where isentropes and other
properties undergo large spatial and temporal vertical excursions, level averaging may
undesirably confound distinct oceanographic regimes, and averaging within isentropes
should be preferred (Lozier et al., 1994). Similarly, in the standard preparation and
presentation of property-property diagrams, such as �-S diagrams, individual “bottle”
samples (or CTD observations) are plotted as pinprick points which constitute clouds in
aggregate (e.g., Fuglister, 1960; Talley, 2007). The heuristic averaging invited by visual
inspection of these diagrams and the resulting mean property relations inferred suggest
isentropic averaging, certainly not level averaging.

Averages of variables which are intensive (mass-specific), such as scalar concentration
C, velocity uj (momentum/mass), specific volume V, etc., are thickness weighted and
indicated by carets, Ĉ, ûj, V̂ (de Szoeke and Bennett, 1993; Greatbatch and McDougall,
2003). Sub-grid fluctuations from these averages are indicated by single primes. On the
other hand, variables which are not mass-specific, such as p, z, M, �, are averaged without
thickness weighting: �p� � P, �z� � Z, �M�, ���. The relations among sub-grid-averaged
isentrope height Z, pressure P, and thickness �h� are obtained as follows. Because �V � 1,

Z� � �z��V� � �h�V̂;

and, from the hydrostatic relation (2.4),

P� � ��g�z�� � �g�h�.

These equations may be recombined as

P� � �gV̂�1Z�, and �h� � ��z�� � V̂�1Z�. (4.1)

The first is to be taken as the hydrostatic relation averaged over sub-grid scales on
isentropic surfaces. The exact establishment of the second equation for average thickness is
also notable. The reciprocal of thickness-weighted average specific volume arises sponta-
neously as the natural form of sub-grid average density.

Thickness-weighted sub-grid averages of products of mass-specific variables are, for
example,

�hujC� � �h�ûjĈ � �hu�jC��. (4.2)
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Eqs. (3.1), (3.3)–(3.6), averaged, become

��h�

�x0
�

�

�x�
	�h�û�
 �

�

�x3
	�h��̇̂
 � 0, (4.3)

D̂Ĉ

Dt
� �

1

�h�

�

�xj
�hu�jC�� � q̂C	x, t
, (4.4)

û3 � �̇̂� q̂�	x, t
, (4.5)

D̂û�

Dt
� fε3��	û� � u�

�
 �
��M�

�x�
� �

1

�h�

�

�xj
�hu�ju��� � q̂�

M	x, t
, (4.6)

��M�

�x3
� ���. (4.7)

The total eddy transport of average scalar Ĉ is composed of the sum of covariance of
sub-grid motion and concentration, ��hu�jC��, and infra-grid eddy transport, �hBj

C�—the
divergence of the latter constituting q̂C. This is presumably dominated by the transport
across isentropes, �hB3

C�, which has now been further averaged over sub-grid scales. Eq.
(4.5), compared with (4.4), contains contributions only from infra-grid fluxes (because
�� � 0, trivially). In isentropic coordinates, this equation serves as a diagnostic specifica-
tion of the third component of average generalized velocity, û3 � �̇̂, thus describing the
dientropic mass flux, �h� �̇̂, with units of kg m�2 s�1.

In (4.6), some particular terms have arisen involving thickness and Montgomery
gradient covariances, namely,

u�
� � f �1ε3��

1

�h�
�h�

�M�

�x�
� . (4.8)

They are written in this form because they will tend to force additional contributions to
average û�. Certain specific parameterizations have been proposed for these terms (Gent
and McWilliams, 1990).

The role of �p�2� when the equation of state is sub-grid averaged needs to be examined
(McDougall and McIntosh, 1996, 2001). The averaged Montgomery and Exner functions
appearing in (4.6), (4.7) are

�M� � �H	p, �
� � gZ, ��� � ��H	p, �


��
� . (4.9)

The latter is

��� � ��H	P � p�, �


��
� � ��H	P, �


��
� p�V̆�	P, �
 �

1
2

p�2V̆P�	P, �
 � · · ·�
(4.10)

� �	P, �
 �
1
2
�p�2�V̆P� � · · ·
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Illustrating with a simple equation of state that exhibits nonzero V̆p�, namely, V̆( p, � ) �
V1( p) � �V(1 � �p)a�, one sees that this would be

��� � �Va�P �
1
2
�P2 �

1
2
��p�2��. (4.11)

What is the effect of �p�2�? Suppose that as an archetypal model of the vertical
distribution of sub-grid pressure variance associated with meso-scale disturbances one
takes the WKB form of the first baroclinic mode function, namely,

�p�2� � p0
2��1	P
�2, where �1	P
 � sin �� �

0

P

N	p
dp

�
0

PB

N	p
dp	 , (4.12)

For the vertical buoyancy frequency dependence, suppose N( p) � N0e�p. Typical
isentrope displacements of order p0 � 100 dbar might be expected in the main thermo-
cline at p � ��1 � 1000 dbar. Then

�p�2�

P2 3 p0
2�2�2 � 0.1, as P 3 0. (4.13)

This estimate near P � 0 is an upper bound of the ratio. Near P � 1000 dbar, the ratio
reduces to 0.01. Thus the 1

2
��p�2� term is negligible compared to the 1

2
�P2 term (it is even

smaller compared to the P term), and we shall neglect it. Thus, simply,

��� � �	P, �
. (4.14)

Similarly, the averaged heat function is

�H	p, �
� � �H	P � p�, �
� � �H	P, �
 � p�HP	P, �
 �
1
2

p�2HPP	P, �
 � · · ·�

(4.15)
� H	P, �
 �

1
2
�p�2�V̆P	P, �
 � · · ·

Hence the leading neglected term in approximating mean isentrope height by

Z � g�1��M� � H	P, �
� (4.16)

is

�Z �
1
2

g�1�p�2�V̆P �
1
2
�z�2�g/c2. (4.17)

This may be estimated as �Z � 1
2

(100 m)2(9.8 m s�2)/(2 � 106 m2 s�2) � 2.5 cm, which
is quite negligible.

Eqs. (4.3) and (4.6) are solved prognostically for �h� � �P�/g and û�. From the former,
P may be obtained by a vertical integration, and �(P, � ) determined by substitution. A
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second vertical integration, of (4.7), yields �M�, which is required by the next prognostic
step for �h� and û�; and so on. Eq. (4.16) is required only for an offline diagnostic
calculation of mean isentrope height Z, which does not otherwise enter the prognostic
equations. Were the assessment of the importance of the �p�2� contributions to ��� and �H�
different, a prognostic equation for �p�2�—effectively a meta-state variable created by the
sub-grid averaging—would have to be developed.

The role of �p�2� when specific volume is averaged is also negligible. The sub-grid
averaged, thickness-weighted specific volume is calculated as follows:

V̂ �
�p�V�

P�
�

�	P� � p��
V̆	P � p�, �
�

P� (4.18)

� V̆	P, �
 �
1

2P�

�

��
�p�2�V̆P �

1
2
�p�2�V̆PP � · · · .

For estimation purposes, suppose that (1/P�)�/�� � 1/(1000 dbar), and �p�2� �
(100 dbar)2; also V̆P/V̆ � �V̆/c2 � 4 � 10�6 dbar�1, V̆PP/V̆ � 1.3 � 10�10 dbar�2.
Then the second and third terms as a proportion of V̂ are 2 � 10�5, 7 � 10�7 respectively.
The second term represents a contribution to density of 0.02 kg m�3, which is barely
significant. The third term is smaller than 0.001 kg m�3, and is quite negligible. Hence the
approximation, V̂�1 � V̆(P, � )�1, incurs an error no more than 0.02 kg m�3. However
that may be, V̂, as it occurs in the equations, is not required to nearly this accuracy, so that
this error is of no consequence. All pertinent dynamical buoyancy effects are expressed
accurately and in detail through the mean Exner function ��� in (4.7).

5. Parameterizing infra-grid eddy transports

For eddy transport of a scalar by infra-grid scales of motion, one may adopt a
parameterization similar to the common one given in Appendix B, Eqs. (B13)–(B18). After
further sub-grid averaging and thickness-weighting, one may take this to be:

�hBi
C� � �h�Kij

�Ĉ

�xj
� 
 V̂�1K*H�Z�

�Ĉ

�xi
� Z ,i

�Ĉ

��� 	i � 1, 2


V̂�1
KD

Z�

�Ĉ

��
� V̂�1K*HZ ,�

�Ĉ

�x�

	i � 3

(5.1)

(Upon sub-grid averaging, z has been replaced by Z, and � by V̂�1 in formula (B16),
appendix B). Horizontal and vertical eddy diffusivities due to motions of the infra-grid
scales are K*H, K*V. The coefficient appearing in the vertical component of (5.1) is the
dientropic diffusivity,

KD � K*V � K*H�	Z ,1

2 � 	Z ,2


2� (5.2)

[cf. (B17)]. (Note the distinction between KD and K*V.) In particular, the average infra-grid
eddy heat transport is taken to be
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�hBi
�� �  �V̂�1K*HZ,i 	i � 1, 2


V̂�1
KD

Z�

	i � 3
 (5.3)

[cf. (B19)]. The divergences of these transports give the scalar and temperature infra-grid
source functions, q̂C, q̂�. In particular the temperature source gives the average dientropic
mass transport,

�h��̇̂ � �h�q̂� �
�

�x�
	�V̂�1K*HZ,�
 �

�

�� �V̂�1
KD

Z�
�. (5.4)

When inserted into the prognostic equation for average thickness, (4.3), this gives

D̂�h�

Dt
� �h�

�û�

�x�
�

�

�x�
�K*H

��h�

�x�
� �

�2

��2 � V̂�2
KD

�h�� . (5.5)

This is a modified nonlinear diffusion equation for average thickness �h�. There is
along-isentropic linear diffusion with coefficient K *H, and nonlinear cross-isentropic
diffusion with coefficient KD. For the latter one would take a value suggested by
microstructure turbulence observations in the ocean; say KD � 10�5 m2s�1 (see below).
Even on infra-grid scales, O(1–10 m), one expects motions to be significantly anisotropic
so that K*H may well be several orders of magnitude larger than KD. Not, however, 108

times larger, as is suggested from observations of the effects of meso-scale stirring of
large-scale ocean properties. This is simply because the infra-grid eddying motions that
comprise the heat transport �hBj

�� do not include the effects of these larger scales.

a. Osborn-Cox hypothesis

In equations like (3.7) for infra-grid scalar variance the time-evolution and transport
divergence terms on the left side are often neglected. One is then left with the balance of
production and dissipation, in particular for temperature variance, Eq. (3.8), B3

� � ��. This
proposition is known as the Osborn-Cox hypothesis (Osborn and Cox, 1972, Davis,
1994b). The temperature variance dissipation thus furnishes the dientropic component of
infra-grid eddy heat transport. In this paper this hypothesis is invoked only after further
thickness-weighted sub-grid averaging:

�hB3
�� � �h���. (5.6)

The neglect of the time-evolution and transport divergence terms in (5.6) seems far better
justified after such additional averaging. Indeed, in practice the hypothesis is never applied
to a single small segment of data from which �� might have been estimated, but to averages
of ensembles of numerous such segments (Davis, 1996). The innovation in (5.6) is to
weight the averages with thickness. Substituting the third of (5.3), one obtains an estimate
of the dientropic diffusivity:

KD � V̂Z���z��
�� � V̂Z��z��̃�

�	��/�x*j 

2� � ��Cx. (5.7)
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The last equality defines the Cox number,

Cx � 	Z�

2
�h���

���h�
�

KD

�� . (5.8)

This definition differs from Osborn and Cox’s (1972) in its employment of thickness
weighting in the average.

Estimates such as (5.7), if considered typical of the turbulent regimes in which they were
made, such as the near-surface ocean, the main thermocline, or the abyssal ocean, are often
taken to be canonical for their respective regimes, and applicable not only to temperature
diffusion but to the diffusion of any passive scalar.

The neglect of cross-scale contributions to the eddy covariances, Bj
�, etc., has been

scutinized and criticized (Gargett and Holloway, 1984; Davis, 1994b). (These extra
contributions have been explicitly written out in Appendix A.) This neglect is dubious
because of the absence of gaps in the turbulent spectra (usually “red,” i.e., rising power
towards low wavenumbers and frequencies). On the other hand, because the spectrum of
temperature gradient rises toward high wavenumber, where it is eventually cut off by
molecular diffusion, this objection does not apply to estimates of temperature variance
dissipation. Estimators of dissipation, even if noisy, are fair and unbiased (Davis, 1996).
The Osborn-Cox hypothesis (5.6) furnishes the dientropic component of the eddy heat
transport enhanced by cross-scale contributions [Appendix A, Eq. (A4)]. It is precisely this
enhanced transport that appears when averaged eddy transport effects are considered.
(Appendix A may be consulted for more details.)

b. Turbulent kinetic energy balance

As an alternative to the Osborn-Cox hypothesis of temperature-variance production vs.
dissipation, though similar to it, one may reason from the microstructure turbulent kinetic
energy production-destruction balance, modified by buoyancy consumption of energy, Eq.
(3.9), thickness-weighted and averaged:

P � ag�hB*3
� � � �h�, (5.9)

where � and �h� are sub-grid averaged, thickness weighted, kinetic energy production
and dissipation; agB*3

� is the vertical transport of buoyancy. The average vertical heat flux
appearing in (5.9) is

�hB*3
��

�h�
�

K*V
Z�

(5.10)

[cf. (B14), Appendix B]. Employing the flux Richardson number, defined by

Rf �
ag�hB*3

� �

P
, (5.11)
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one may express (5.9) as

K*V �
Rf

1 � Rf

V̂�h�

ag
. (5.12)

Thus, measurements of kinetic energy dissipation  have been employed to give estimates
of vertical diffusivity K*V, analogous to the Osborn-Cox estimate of dientropic diffusivity
KD. The distinction between the two parameters, noted in Eq. (5.2), is customarily
overlooked. The two estimation methods, when compared in the field, have given similar
values for the respective parameters (Gregg, 1987, 1989, 1999; Klymak and Nash, 2009).
Because the turbulent shear spectra that constitute ̂ peak at longer scales than the
temperature gradient spectra, their routine estimation is more practicable in the field.

6. Sub-grid diffusion

With the empirical specification of the dientropic eddy coefficient KD, determined from
microstructure turbulence, the specification of the mean dientropic flow �h��̇̂ [Eq. (5.4)] is
closed. Any other mean scalar Ĉ, or mean velocity û�, is affected also by transports due to
sub-grid eddy turbulence, ��hu�jC��. For a strictly passive scalar, a plausible theory can be
developed as shown in Appendix C for the sub-grid eddy covariance in (4.4) that gives the
scalar conservation equation,

D̂Ĉ

Dt
� div �D : grad Ĉ�, (6.1)

where the “div” and “grad” operators and eddy diffusion tensor D are given by (C14) and
(C15), with (C12) and (B16).

a. Scaling analysis of the sub-grid diffusivity tensor

Scaling the sub-grid covariances that occur in (C12) suggests the following form for the
total diffusivity tensor for average passive scalar Ĉ:

D � 	Dik
 � � �H�1
2 a�12�H�1�2 a�13��H�V �1�3

a�21�H�1�2 �H�2
2 a�23��H�V �2�3

a�31��H�V �1�3 a�32��H�V �2�3 �V�3
2 � KD

�
� � LH�1 a12LH�1 a13�LHLV�1�3

a21LH�1 a22LH�1 a23�LHLV�1�3

a31�LHLV�1�3 a32�LHLV�1�3 LV�3 � KD

� (6.2)

� DH � 1 a12 a13 
a21 a22 a23 

a31 a32  2 � ε
� ,

with a12 � a�12�2/�1, a21 � a�21�2/�1, a32 � a�32�2/�1, a23 � a�23�2/�1, a22 �
(�2/�1)2. In these formulas, �i � !�hv�i

2�/�h� (no summation implied), where v�i �
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�ilu�l. Thus the third component, v�3 � Z��̇�, has units of velocity, like the other
components. Also �H, �V are decorrelation times for along- and cross-isopycnal fluctuating
motions—the latter much smaller than the former (note the assumed intermediate decorre-
lation time !�H�V for horizontal vs. cross-isentropic covariances); LH � �H�1, LV �
�V�3 are corresponding mixing lengths; DH � �H�1

2 � LH�1, DV � �V�3
2 � LV�3,  �

!DV/DH, ε � KD/DH. It is assumed that aij � O(1).
Estimates of the horizontal-diagonal elements of D have been made from neutrally

buoyant drifters (Davis, 1985; Freeland et al., 1975). These support values of DH �
103 m2s�1. While it is difficult to envisage data sets from which direct estimates might be
made of the cross-isentropic to horizontal covariances that constitute the off-diagonal
elements in the third row and column of D, a scaling estimate of �3 can be made as follows.
From (3.6),

�̇ �
1

�z�

�

��
	�z�B3

�
 �
1

�z�

�

�� �� KD

z�
� , (6.3)

having made, in the last replacement, the same estimate of the dientropic heat flux, B3
�,

before meso-scale averaging, as was employed in (5.3) after averaging. The fluctuating
dientropic velocity we therefore take as

v�3 � Z��̇� �
�

�� � KD

	Z�

2 	�z��
�; (6.4)

and the variance of this as

�3
2 � var 	v�3
 � �KD

LV
�2 �z�2�

LV
2 . (6.5)

Here we estimated
�

�� � 1

Z�
�� �

1

LV
� �

1

1000 m
�, using the scale of variation of the

thermocline for the vertical mixing length. Thus

DV � LV�3 � KD

��z�2�

LV
� KD

100 m

1000 m
� 0.1KD, (6.6)

having taken 100 m for the r.m.s. isentrope displacement. Hence

 2 �
DV

DH
� 0.1

KD

DH
� 0.1ε. (6.7)

Accepting this scaling argument, one concludes that the  -terms in (6.2) are negligible. The
eigenvalues, or principal diffusivities, of (6.2) will be DH{O(1) � O( 2)} (two values),
and KD � DHO( 2) � KD � O(DV), with respect to principal directions (eigenvectors)
differing from along-isentrope directions and the cross-isentrope direction, respectively,
by O( ). As noted, it is doubtful that these differences are significantly nonzero. The axes
of diffusive spreading of passive tracers differ insignificantly from isentropes.
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Thus the third off-diagonal row and column of D are negligible. With the further
simplifying assumption that the along-isentrope sub-grid diffusion is independent of
orientation, one obtains the Redi (1982) tensor for scalar diffusion,

D � diag 	DH, DH, KD
. (6.8)

The coefficient DH governs the spreading of passive scalars along isentropes.

b. An alternative: Averaging in level coordinates

A quite particular approach has been taken in this paper by sub-grid averaging on
isentropes (de Szoeke and Bennett, 1993). The conventional approach is to consider
variables and equations averaged at fixed z � x*3 levels (Davis, 1994a,b; Bennett, 1996).
When the derivations of the diffusion equation (6.1) [Appendix C] for a passive scalar
averaged on level surfaces are recapitulated, one obtains

�

�x*0
�C� � �u*i �

�

�x*i
�C� �

1

���

�

�x*i
� ���Kik

g
�

�x*k
�C�� .5 (6.9)

Here �C� � �C(x*, t)�, �u*i � � �u*i (x*, t)�, ��� � ��(x*, t)� (see footnote 4). The
sub-grid diffusivity tensor with regard to level coordinates is

Kik
g 	x*, t�r
 �

1

��� �
r

t

��	x*, t
u�i*	x*, t
u�k*	A*	x*, t�w
, w
�dw (6.10)

[or, in matrix notation,

Kg �
1

��� �
r

t

��u�*	x*, t
u�*	A*, w
T�dw], (6.10)�

where A*(x*, t�w) is a Lagrangian trajectory in conventional Cartesian coordinates. The
fluctuations here, u�i*(x*, t) � u*i(x*, t) � �u*i(x*, t)�, viewed from fixed levels, differ
from the fluctuations appearing in the sub-grid eddy diffusivity tensor (C12), u�i(x, t) �
ui(x, t) � �hui(x, t)�/�h� as viewed from isentropes. The third components especially,
even when expressed in comparable units, v�3 � Z��̇� vs. u�3* � ż�, which are respectively
the fluctuating dientropic flow across an isentrope, and the fluctuating vertical velocity
across a level surface, are radically different quantities. The former differs from zero solely
because of infra-grid turbulence. Formally, in the limit KD 3 0, both the mean and
fluctuation of dientropic flow would vanish. On the other hand, the vertical component of
motion, u�3*, need not vanish even in the limit of adiabatic flow.

5. The effects of infra-grid and sub-grid averaging may be lumped into a single operation, so that the infra-grid
qC term need not be separately distinguished.
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It is often asserted that the diffusivity tensor Kg should be diagonal when rotated6 into
local mean potential temperature surfaces (isentropes),7 where potential temperature
sub-grid averaged at fixed levels—a different field than infra-grid averaged potential
temperature—is meant. This assertion is by no means self-evident. If the necessary rotation
at a point x* and time t is denoted by R, the rotated tensor is

KI � RTKgR �
1

��� �
r

t

��RTu�*	x*
u�*	A*
TR�dw. (6.11)

Redi’s (1982) assertion is that KI is diagonal, say KI � diag (KI, KI, KD) (where plausibly
KI � DH). This would appear to require arguing that (RTu�*)3 is small in some sense—at
least far smaller than u�3*—though the justification for this is far from compelling. In
contrast, the case we have made above for the near-diagonality of (6.2), based on
order-of-magnitude arguments for instantaneous dientropic flow, seems far more persua-
sive.

7. Sub-grid-averaged pressure coordinates

The equations of mass, scalar concentration, temperature, and momentum, sub-grid-
averaged on isentropes, (4.3)–(4.7), may be transformed “back” to quasi-Cartesian
pressure coordinates, as described in appendix D. This gives

�Ui

�Xi
� 0, (7.1)

D̂Ĉ

Dt
�

�

�Xi
�D� ij

�Ĉ

�Xj
� , (7.2)

where D� ij � E� ij � diag (K*H, K*H, V̂�2g2K*V),

�̇̂ �
D̂�

Dt
�

�

�X�
�K*H

��

�X�
� �

�

�X3
�V̂�2g2K*V

��

�X3
�, (7.3)

D̂U�

Dt
� fε3��	U� � u�

�
 � g
�Z

�X�
�

�

�Xi
�� �hU�iU���

�h� � � q̂�
M, (7.4)

g
�Z

�X3
� �V̆	P, �
. (7.5)

These have obvious formal similarities to the infra-grid equations (2.2), (2.1), (2.3), (2.4) in
naı̈ve Cartesian coordinates. (The similarity is even closer if the latter set is expressed with

6. The transformation to isentropic coordinates given in appendix A is not strictly a rotation, such as Redi
(1982) gives, though the distinction is slight and immaterial.

7. Redi (1982), allowing for salinity, framed the assertion in terms of density, meaning, presumably, potential
density, and isopycnals, rather than potential temperature and isentropes.
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pressure p as independent vertical coordinate [de Szoeke and Samelson, 2002].) Where
they differ is in the appearance of eddy transport processes, principally along-isentrope
from sub-grid motions, and across-isentrope from infra-grid motions, for which the
parameterizations shown in (7.2) have been obtained in Appendix D. These parameteriza-
tions are strictly justified only for passive scalars so that the eddy transport terms for
momentum in (7.4) have not been analogously re-written.

The equation for dientropic flow, (4.5), has transformed into Eq. (7.3). Comparing (7.3)
to (7.2), one notices the absence of sub-grid diffusion terms, characterized by the tensor E� ij

for mean scalar Ĉ. Though we have argued for a form of this tensor oriented to directions
along local isentropes, this form is quite immaterial to the diffusion terms in (7.3).

The solution of (7.3), along with the other equations, furnishes � (P). (The dependence
on the other independent variables has been suppressed.) What is its relation to � ( p)?
Expanding in a Taylor series,

�	p
 � �	P
 � �Pp� �
1
2
�PPp�2 � · · · , (7.6)

its mean value may be calculated as

��	p
� � �	P
 �
1
2
�PP�p�

2� � · · · , (7.7)

So � (P), when enhanced by the bias 1
2
�PP�p�

2�, gives an estimate of � � �� ( p)� at the
mean pressure height �p� � P. This requires a specification of �p�2�: ideally, a prognostic
equation would be formulated and solved for this variance; or, a global atlas of isentrope
height variance having been constructed empirically, it could be used to adjust the bias in
(7.7). The variance of the estimator (7.7) is

���	p
 � ��	p
��2� � 	�P

2�p�2�. (7.8)

This is a measure of the error in (7.7) that comes about from the mean-square sub-grid
isentrope height variation. For an estimate of scale, suppose �p�2� � (100 dbar)2. Then
(7.7) and (7.8) may give quite significant estimates for bias and error. Despite the obvious
similarity of (7.1)–(7.5) to the equations of motion relative to naı̈ve coordinates the
distinctions that these factors introduce are substantial.

8. Discussion and summary

There are two principal, complementary paradigms of mixing and diffusion in the ocean.
There is the small-scale paradigm in which the ocean is regarded as nearly homogeneous in
the horizontal, and where the mixing of passive and active scalars in the vertical is
accomplished by microstructure (infra-grid) scales of motion ranging from sub-centimeter
to several or even tens of meters. At the other end of the spectrum sub-grid meso-scale
motions (tens to hundreds of kilometers) are held to diffuse properties along density
surfaces. (In this paper, where, salinity having been neglected, potential density is
determined solely by potential temperature, we have taken isopycnal surfaces to be
synonymous with isentropic surfaces.) To unify these paradigms, and to appropriate the
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distinctive turbulence parameterizations commonly employed in each, we proposed
averaging variables and equations in two stages, first over the infra-grid scales, then over
the sub-grid scales. Davis (1994b) examined such two-stage averaging, though both
averages were performed centered at fixed Cartesian space-time points. A crucial innova-
tion is to perform the second, sub-grid, average centered on isentropes, i.e., at fixed
horizontal position, time, and potential temperature (de Szoeke and Bennett, 1993).

In passing, we resolved a difficulty noted by Gargett and Holloway (1984) and Davis
(1994b). Because of the redness of the spectra of many geophysical random variables, that
is, power increasing towards low wave-numbers and frequencies, statistical estimators of
moments of random fields (such as means, standard deviations, etc.) are notoriously
unreliable. The contributions of cross-scale terms at the margin of the filter resolution
cannot be neglected. Our solution, simply, is not to neglect them. It turns out that, in the
turbulent balances of infra-grid temperature variance or kinetic energy, wherever a
second-order moment occurs—such as eddy Reynolds stresses or heat transports in the
temperature variance or kinetic energy production terms—the usual forms are enhanced
with cross-scale contributions. In the first-order average of the temperature or momentum
balance, too, precisely the divergences of the enhanced eddy transport or stress occur.

The Gargett-Holloway stricture does not apply to estimators of temperature gradient or
velocity shear variances (in effect, the temperature variance or kinetic energy dissipations)
because the wavenumber spectra of these quantities, peaked at very high wavenumbers,
have a spectral gap at lower wavenumbers within the inertial subrange. If the infra-grid
filtering scale is chosen in this subrange, reliable estimates of temperature, scalar, or kinetic
energy dissipations can be made. The theoretical links supplied by the Osborn-Cox
hypothesis, leading from variance dissipations to infra-grid eddy transports of temperature,
the latter enhanced as necessary by cross-scale contributions, are then restored. The
validity and applicability of microstructure estimates of quasi-vertical eddy diffusivities to
infra-grid averaged first-order fields—temperature, scalar, or velocity—is thereby estab-
lished.

We recommended that subsequent sub-grid averages should be performed on isentropes.
Thus, further averages of potential temperature produce, trivially, no change. The sub-grid
averaging of other scalars and vectors produces eddy transports from sub-grid fluctuations.
No such sub-grid eddy transport of heat occurs. Only infra-grid eddy transports of heat,
further averaged over ensembles of estimates, collected on sub-grid scales, contribute to
average heat balance and to cross-isentropic mass exchange. (By contrast, if temperature
were sub-grid averaged on level surfaces, there would be additional sub-grid eddy heat
transports from sub-grid motion and temperature covariances.) The supplementary eddy
transports, averaged on isentropes, of any other passive scalar can be related to average
gradients which are mediated by an eddy diffusivity tensor with the appearance of a lagged
sub-grid covariance tensor of motion component fluctuations relative to isentropes (Lun-
dgren, 1981; Bennett, 1996). This is the classic Fickian diffusion law. Its derivation entails
many questionable hypotheses or neglects (Appendix C). The class of flows called
sub-mesoscale, such as surface fronts or topographic flow separations (on scales of
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hundreds of meters or fewer) may make important contributions to eddy transports—
contributions that would be ill-represented in the present more-or-less homogeneous
Fickian view. Persevering nonetheless, scale analysis of this diffusivity tensor suggested
that the elements of its third row and column, involving the dientropic motion, were
negligible. Assuming further that sub-grid eddy transport within isentropes is isotropic,
one might arrive at something similar to Redi’s (1982) hypothesized eddy diffusivity
tensor, diagonal when referred to isentropes. By this reading, the along-isentrope diffusivi-
ties would be associated with the sub-grid averaging, and the dientropic diffusivity with
infra-grid averaging.

This is the closest we were able to come to the ideal of a rigorous justification for the
hypothesis of the eddy diffusivity tensor’s being diagonal with respect to isentropes. It
would be well to reflect that the case is not completely watertight. The fluctuating
dientropic motions might conceivably be energetic enough under some circumstances to
engender significant levels in the third, dientropic, row and column of the diffusivity
tensor. The principal directions (eigenvectors) of that tensor might not align with the
isentropic coordinate system. This means that systematic lagged correlations between
dientropic and horizontal motion could lead to diffusive spreading along non-isentropic
axes. However that may be, the diffusion of potential temperature itself is never affected by
sub-grid diffusivity. (That this is so is a mere tautological consequence of the isentropic
averaging approach that has been employed. In Redi’s (1982) formulation also, the
along-isentrope diffusivity has no effect when applied to temperature.)

What is interesting and notable about the arguments here employed is that they nowhere
relied on the notion of the buoyant restoration of water parcels displaced from their initial
isentrope. Rather, it is the mere kinematic fact of the near-conservative property of
potential temperature that is key. It follows that a different diffusion tensor may be
obtained by averaging fluctuations of motions and concentrations referred to isopleth
surfaces of any other near-conservative variable (for example, tritium corrected for
radio-decay, or one of the chlorofluorocarbons). Just as the surfaces of these variables
differ from one another, so the averaging with respect to each differs, and the respective
diffusivity tensors and their principal values and axes may differ. Potential temperature is
distinguished in this group by its sole possession of an acceleration potential (the
Montgomery function), which links it strongly to momentum dynamics.

Standard physical oceanographic measurements reflect the ideal of what we have called
infra-grid averaging. For example, traditional hydrographic bottle and thermometer casts
furnish discrete measurements of temperature, salinity, etc., which should be thought of as
averages in the vertical over at least the size of the bottle (�1 m)—more likely far
larger—and horizontally over the tens to hundreds of meters of the ship motion during the
cast. Similar remarks could be made about the edited output of standard CTD lowerings.
Moored current meters are usually set to average measurements over several minutes or
longer. The different averaging characteristics of such instruments, even if imperfectly
understood, have never deterred comparison among the variables that they produce. In the

2009] 551de Szoeke: Isentropic averaging



same spirit, the infra-grid average that we have proposed may stand for the averaging
inherent in these instruments.

Difficult microstructure measurements of temperature and velocity are nowadays
routinely being made to resolve the smallest, infra-grid scales—limited only by molecular
diffusion and viscosity—in the ocean (Klymak and Nash, 2009). These then furnish
(infra-grid averaged) estimates of temperature variance dissipation and kinetic energy
dissipation. As such dissipation estimates are notoriously intermittent (Davis, 1996),
ensembles of numerous realizations of them are assembled and further averaged to produce
stable estimates. To these, the Osborn-Cox hypothesis of quasi-steady temperature
variance balance, or the hypothesis of eddy kinetic energy balance, may be applied to
furnish (infra-grid) eddy heat and momentum transports. The second average, now
typifying a larger horizontal domain, represents what we have called the sub-grid,
meso-scale average. (One of our innovations is to suggest the use of weighting by
infra-grid averaged thickness when sub-grid averaging the dissipation estimates, just as
other sub-grid averaged variables are weighted.)

We stressed the crucial consequences that the sub-grid averaging being performed on
isentropes has to the theoretical structure of the diffusivity tensor. That averaging done,
there seems to be no bar to transforming the equations back to Cartesian coordinates. The
natural vertical coordinate to use is not naı̈ve height, but the sub-grid averaged height of
fixed isentropes.8 One then recovers a set of equations whose appearance is exactly like the
conventional hydrostatic equations of motion. Notwithstanding the peculiar vertical
coordinate, one might simply interpret a solution of the equations as mapped onto a
conventional Cartesian grid. We showed that such re-mapped solution fields were biased
from the true fields by amounts which could nevertheless be estimated. The bias estimate is
proportional to mean-square isentrope height variance.

Acknowledgment. I am grateful to Andrew Bennett for encouraging me to complete this work.

APPENDIX A

A practical infra-grid average

Suppose the infra-grid average is defined, as a practical procedure, by

�	x*, t
 � �
"

�	x* � x*1, t � t1
W	x*1, t1
dx*1dt1 (A1)

where W(x*, t) is a filter kernel centered at x* � 0, t � 0, compactly supported in
four-dimensional Cartesian space-time ", and normalized so that

8. Actually, the averaged pressure level of isentropes was used as vertical coordinate. This has the
consequence that the mass conservation equation is simplified to a solenoidal equation.
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�
"

W	x*, t
dx*dt � 1. (A2)

This definition satisfies many of the Reynolds averaging conditions, although generally not

�	x*, t
�	x*, t
 � �	x*, t
�	x*, t
, �	x*, t
 � �	x*, t
, or 	�	x*, t
 � �	x*, t

 � 0.

(A3)

For such relations to hold accurately, it has to be assumed that in the spectra of the
variables � and � there is a considerable gap between high-frequency or high-wavenumber
contributions and low-frequency or low-wavenumber contributions, and that the cut-off
averaging scales inherent in the filter kernel W in (A1) are chosen in this gap (Monin and
Yaglom, 1971). However, Gargett and Holloway (1984) argue forcefully that spectra of
velocity (and presumably temperature and other scalars), encompassing at the high
wavenumber and frequency end three-dimensional turbulence and internal waves, exhibit
no such gap. As a consequence, second moments, like the covariance constituting the
infra-grid eddy transport appearing in the infra-grid averaged balance (2.1), are more
accurately written

B*j
C � ��̃ũjC̃/� � u*j C � ��̃u#j C #/� � Rj

uC (A4)

(Davis, 1994b), where

Rj
uC � ��̃C#u*j � �̃u #jC � �̃u*jC � �u*jC�/�. (A5)

(Recall that � � ��̃ � (� � �#), u*j � �̃(u*j � u #j)/�, C � �̃(C � C #)/�, etc., and note that
none of �#, �̃u #j, �̃C # is necessarily zero.) The infra-grid momentum transport, M*j�,
figuring in the average momentum balance (2.3), has a similar elaboration. Should the
conditions (A3) be true or approximately so, the residual R-terms, (A5), called cross-scale
interaction terms, would be zero or negligible (Davis, 1994b). Otherwise, they represent
covariances among variables with length and time scales bridging the averaging scale of
the filter, and may not be negligible. However, with the modifications of (A4), (A5), and
the like, the forms of the infra-grid averaged scalar concentration equation, (2.1), and the
momentum equations, (2.3), are otherwise unchanged.

The infra-grid scalar concentration variance equation (2.6) is also unchanged, if the
following generalizations, similar to (A4), are adopted:

G0
C �

1
2
�̃C̃2/� �

1
2

C2 �
1
2
�̃C#2/� �

1
2

RCC, (A6a)

G*j
C � �1

2
�̃ũjC̃

2/� �
1
2

u*j C 2 � B*j
CC � u*j G0

C, (A6b)

�C � ��1�̃�C� �C̃

�x*j
� 2

� �C� �C

�x*j
� 2

� ��1�̃�C��C#

�x*j
� 2

� �CRCxCx (A6c)
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The cross-scale interaction terms, RCC, RCxCx, are defined in a manner analogous to (A5).
The infra-grid kinetic energy equation (2.7) holds if similar modifications are made to T,
T *j, .

Though the cross-scale interaction terms in (A4), (A6a,b), may not be negligible, the
assessment of the cross-scale contribution to scalar dissipation (A6c) is different. The
power spectrum of scalar gradient (in particular, temperature gradient), of which the scalar
variance dissipation �C (or ��) is constituted, exhibits, when turbulence in the ocean is well
enough developed, a universal high-wavenumber form peaked at a short wavelength,
�1–10 mm, determined in part by molecular diffusion coefficients, and joined at longer
wavelengths, $ 1 m, to an inertial subrange, varying like �(wavenumber)�1/3. This
decline with decreasing wavenumber is sufficient to ensure that the cross-scale contribu-
tions to (A6c) are negligible if the averaging scale in W is chosen to be, say, � O(1 m).
That is, the spectral gap condition holds for the evaluation of dissipation. Similar
statements could be made about the power spectrum of velocity shear that constitutes
infra-grid kinetic energy dissipation . These remarks establish the dominance of the first
terms in the second equality of (A6c) for ��, and of similar contributions to , which are
precisely what are given in the main text.

APPENDIX B

Transformation to isentropic coordinates

Consider transformation from the Cartesian coordinate set x*j, j � 0, 1, 2, 3, to the
isentropic coordinate system xj (see appendix E). Partial derivatives transform as

�

�x*i
� Qik

�

�xk
, i � 0, 1, 2, 3 (B1)

(summation over repeated indices, k � 0, 1, 2, 3, in a monomial term is implied), where

	Qik
 � ��xk

�x*i
� � �

1 0 0 �z,0/z�
0 1 0 �z,1/z�
0 0 1 �z,2/z�
0 0 0 1/z�

� � Q. (B2)

(The third coordinate z � x*3 is regarded here as the height of an isentrope �.) Observe that
det Q � 1/z�, and that the inverse of Q is

Q�1 � Q̃ � 	Q̃ki
 � ��x*i
�xk

� � �
1 0 0 z,0

0 1 0 z,1

0 0 1 z,2

0 0 0 z,3

�. (B3)

Thus

�

�xk
� Q̃ki

�

�x*i
, k � 0, 1, 2, 3. (B4)
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An important application of this transformation establishes the identities

V
�p

�x*3
� g �

�H

�x*3
� �

��

�x*3
� g �

1

z�
��M

�x3
� �� , (B5)

V
�p

�x*�
� V

�p

�x�
� V

z ,�

z�

�p

�x3
�

�M

�x�
� z ,��g � V

�p

�x*3
�

(B6)

�
�M

�x�
�

z ,�

z�
��M

�x3
� �� ,

where the heat function H, Exner function �, and Montgomery function M are defined in
appendix E.

The material derivative of a variable � transforms invariantly as follows:

D�

Dt
�

��

�x*0
� u*j

��

�x*j
�

��

�x0
� uj

��

�xj
(B7)

(summation is implied over j � 1, 2, 3 only), where

ui � Qkiu*k �  i3

z ,0

z�
, or u1 � u*1, u2 � u*2, u3 �

�z,0 � u*1z,1 � u*2z,2 � u*3
z�

�
D�

Dt
� �̇.

(B8)

(Observe that in (B8) the transpose of Q is used in the transformation.) The divergence of
velocity transforms according to

�u*i
�x*i

�
�ui

�xi
�

1

z�

Dz�
Dt

(B9)

Thus the infra-grid averaged mass conservation equation [second of (2.2)] becomes

Dh

Dt
� h

�ui

�xi
�

�h

�x0
�

�

�xi
	hui
 � 0, (B10)

where h � �z�. A vector F other than velocity transforms according to

Fi � QkiF*k, or F1 � F*1, F2 � F*2, F3 � 	�F*1z,1 � F*2z,2 � F*3
/z�, (B11)

so that its divergence transforms as

�F*i
�x*i

�
1

z�

�	z�Fi


�xi
(B12)

(cf. (B9)).
Illustrative example. Suppose that

B*k
C � K*kl

�C

�x*l
. (B13)
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Then

Bi
C � QkiB*k

C � Kij

�C

�xj
, (B14)

where

Kij � QkiK*klQlj; with inverse: K*nm � Q̃inKijQ̃jm. (B15)

For example, if (K*ij) � diag (K*H, K*H, K*V), then

	Kij
 � � K*H 0 �K*Hz,1/z�
0 K*H �K*Hz,2/z�

�K*Hz,1/z� �K*Hz,2/z� KD/	z�

2

� (B16)

where

KD � K*V � K*H�	z ,1

2 � 	z ,2


2�. (B17)

From (B12),

qC �
1

�

�

�x*i
	�B*i

C 
 �
1

�

�

�x*i
��K*ij

�C

�x*j
� �

1

�z�

�

�xi
��z�Kij

�C

�xj
� �

1

h

�

�xi
	hBi

C 
. (B18)

In particular, for potential temperature, C � � � x3, because ��/� xj �  j3,

hBi
� � ��K*Hz,i 	i � 1, 2
, �

�KD

z�
	i � 3
. (B19)

APPENDIX C

Sub-grid diffusion closure for passive scalars

The following account of sub-grid diffusion relative to isentropic coordinates parallels
the treatments of Lundgren (1981) and Bennett (1996) relative to fixed coordinates.

Suppose that a Lagrangian trajectory is given in isentropic coordinates by x � A(a, s�t)
(see appendix E). (Note that A(a, s�s) � a.) A closed form for the integration of the scalar
concentration equation (3.3) may then be written

C	x, t
 � �
s

t

qC	A	x, t�r
, r
dr � C	A	x, t�s
, s
 � �
s�0

t

dr � dy%	y, r�x, t
h	y, r
q*	y, r
,

(C1)

where

%	y, r�x, t
 �  	y � A	x, t�r

/h	y, r
, q*	y, r
 � qC	y, r
 �  	r � s
C	y, r
. (C2)

(The second of these equations incorporates the initial condition at r � s into the source
function q*.) One may verify that the microcanonical pdf % given by (C2) satisfies
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�

�t
%	y, r�x, t
 � ui	x, t


�

�xi
%	y, r�x, t
 � 0, (C3)

with initial condition %(y, r�x, r) �  (y � x)/h(y, r).
The thickness-weighted average of the mass-specific scalar C is indicated with a caret,

Ĉ, and is given by

Ĉ	x, t
 � �h	x, t
C	x, t
�/�h	x, t
�

�
1

�h	x, t
� �
s�0

t

dr � dy�h	x, t
%	y, r�x, t
h	y, r
q*	y, r
�

(C4)

�
1

�h	x, t
� �
s�0

t

dr � dy�h	x, t
%	y, r�x, t
��h	y, r
q*	y, r
�

� �
s�0

t

dr � dy%̂	y, r�x, t
�h	y, r
�q̂*	y, r


The third equality in this chain, making use of the general proposition �XY� � �X��Y�,
depends on the assumption of statistical independence of the sources q* (including the
initial distribution at t � s) of C from the motion trajectories A, in other words, that the
scalar C is passive (Davis, 1987).

The thickness-weighted average of eq. (C3) (furnishing the macrocanonical pdf %̂) is

�

�t
%̂	y, r�x, t
 � ûi	x, t


�

�xi
%̂	y, r�x, t
 � �S1	y, r�x, t
, (C5)

with initial condition %̂(y, r�x, r) �  (y � x)/�h(y, r)�, where

S1	y, r�x, t
 �
1

�h	x, t
�

�

�xi
�h	x, t
u�i	x, t
%�	y, r�x, t
�. (C6)

Applying the material derivative operator to (C4), and using (C5) and its initial condition,
one obtains

�

�t
Ĉ	x, t
 � ûi	x, t


�

�xi
Ĉ	x, t
 � ��

s�0

t

dr � dyS1	y, r�x, t
�h	y, r
�q̂*	y, r
 � q̂C	x, t
.

(C7)

In the second term, since one is interested in times t $ s, q̂* has been replaced by q̂C.
Subtracting (C5) from (C3),

�

�t
%�	y, r�x, t
 � ui	x, t


�

�xi
%�	y, r�x, t
 � S1 � S2, (C8)
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where

S2	y, r�x, t
 � �u�i	x, t

�

�xi
%̂	y, r�x, t
. (C9)

A closed form for the integral of (C8) [cf. (C1)] is

%�	y, r�x, t
 � �
l�1,2

�
r

t

dwSl	y, r�A	x, t�w
, w
, (C10)

disregarding an initial condition at t � r. Substituting (C10) into the right side of (C6), one
obtains after a series of approximations (among other things, only the effect of S2 in (C10)
figures principally),

S1 �
�1

�h	x, t
�

�

�xi
��h	x, t
�Eik	x, t�s


�

�xk
%̂	y, r�x, t
�, (C11)

where

Eik	x, t�s
 �
1

�h	x, t
� �
s

t

�h	x, t
u�i	x, t
u�k	A	x, t�w
, w
�dw. (C12)

This is the diffusivity tensor generated by sub-grid eddy motion covariances (Bennett,
1996). The derivation of (C11), (C12) depends on assuming the quasi-Markovian statisti-
cal independence of velocity fluctuations from time-lagged concentration fluctuations
(Lundgren, 1981). This assumption, and improvements and modifications thereof, have
been critically examined by Bennett (1996). Davis (1987), making a different assumption
about the persistence in time of statistical dependence, infers an alternative closure to
(C11) which exhibits a “memory” of past concentrations. The derivation of (C12) furnishes
a version of the conventional Fickian flux-gradient closure. Whatever the shortcomings of
the approximations underlying it, they are at least rationally stated. Some of the elements
of the sub-grid diffusivity tensor have been estimated from observations of meso-scale
eddy motions (Freeland et al., 1975; Davis, 1985). Others, particularly from the third row
and column, which involve dientropic flow, are difficult. In the case of such elements, Eq.
(C12) may suggest estimates of their order of magnitude.

Substituting (C11) into (C7), and using (C4), one obtains

DĈ

Dt
�

�Ĉ

�x0
� ûi

�Ĉ

�xi
�

1

�h�

�

�xi
� �h�	Eik � Kik


�Ĉ

�xk
� , (C13)

where the effect of the Kik tensor comes from the averaged infra-grid flux divergence q̂C

[eq. (5.1)]. This may also be written

DĈ

Dt
� �i

T	Dik�kĈ
 � div 	D : grad Ĉ
, (C14)
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where

Dik � �im	Emn � Kmn
�kn, �im � diag 	1, 1, Z�
. (C15)

The elements of Dik all have the same units: m2 s�1; “div” and all three elements of the
“grad” operator have units of m�1 (Appendix E). The infra-grid diffusivity tensor Kmn

contributes significantly only to the (3,3) element of Dik, for which it gives KD.

APPENDIX D

Transformation to quasi-Cartesian pressure coordinates

The main text describes how to sub-grid-average the equations of motion at fixed x, t,
i.e., with respect to isentropic coordinates. It is then useful to consider these averaged
equations transformed back to quasi-Cartesian pressure coordinates Xi, i � 0, 1, 2, 3 (see
appendix E), where X3 � P( x0, x1, x2, � ) is the mean pressure height P of isentrope �.
The inverse of this function is � � � (X0, X1, X2, X3), potential temperature’s dependence
on quasi-Cartesian coordinates. The transformations of coordinates may be written

�

�Xi
� Q� ik

�

�xk
,

�

�xk
� Q̃� ki

�

�Xi
, i, k � 0, 1, 2, 3 (D1)

(cf. (B1), (B4)), where Q� , Q̃� are the counterparts of (B2), (B3) with P � X3 substituted for
z � x*3. The reverse of the transformations (B5), (B6) shows that

��M�

�x3
� � � V̆

�P

�x3
� �

��

�x3
� � � g

�Z

�x3
� � V̆ � g

�Z

�X3
� �P

�x3
� �g

�Z

�X3
� V̆� 1

�P
,

(D2)

and

��M�

�x�
� V̆

�X3

�x�
� g� �Z

�X�
�

�X3

�x�

�Z

�X3
� � g

�Z

�X�
�

� ,�

�P
�g

�Z

�X3
� V̆� . (D3)

The substantial rate of change of Ĉ following the mean motion ûi is invariant,

D̂Ĉ

Dt
�

�Ĉ

�x0
� ûj

�Ĉ

�xj
�

�Ĉ

�X0
� Uj

�Ĉ

�Xj
, (D4)

where U1 � û1, U2 � û2, U3 � P,0 � û1P,1 � û2P,2 � �̂̇P,3 � Ṗ � D̂P/Dt, the last
being the apparent vertical motion of an isentrope �. The divergence of mean motion
transforms as

�ûi

�xi
�

�Ui

�Xi
�

1

�P

D̂�P

Dt
�

�Ui

�Xi
�

1

�h�

D̂�h�

Dt
, (D5)

where recall that 1/�P � P� � �g�h�. The counterpart of (B10) is
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1

�h�  D̂�h�

Dt
� �h�

�ûi

�xi
� �

�Ui

�Xi
� 0. (D6)

A vector other than velocity is taken to transform as

Fk � Q� ikF� i, F� k � Q̃�Q� ikFi, (D7)

where F� k are the components in the quasi-Cartesian system. The divergence transforms as

�Fi

�xi
�

1

�P

�	�PF� i


�Xi
. (D8)

Application: the flux of scalar Ĉ,

Fi � �h�Eij

�Ĉ

�xj
(D9)

[cf. (B14)], transforms into

F� i � �h�E� ij

�Ĉ

�Xj
, where E� ij � Q̃� ki EklQ̃� lj; (D10)

and its divergence becomes

1

�h�

�

�xi
� �h�Eij

�Ĉ

�xj
� �

�

�Xi
�E� ij

�Ĉ

�Xj
� . (D11)

The physical units of the elements of the quasi-Cartesian diffusion tensor E� ij are not all the
same, although the elements of the re-scaled tensor �� miE� ij�� jn, where �� mi � diag (1, 1,
ZP � �g�1V̂), all have units of m2s�1.

APPENDIX E

Glossary

A list of most symbols used in the text follows; some symbols that are very common or
are only used locally have been omitted. The symbols are listed alphabetically, Latin first,
Greek second. A list of operators is given at the end. A brief description, and the number of
the equation in which the symbol or operator is first used, are given.

a Thermal expansion coefficient; � V̆�1�V̆/��. (2.7)

A(a, s�t) The Lagrangian “position” (specified by two horizontal coordinates and
temperature) of a fluid parcel at time t that is at position a at time s. (C1)

A*(x*, t�w) Lagrangian trajectory in conventional Cartesian coordinates. (6.10)
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B*j
C Eddy transport of scalar C in a Cartesian reference frame by infra-grid

fluctuation covariances (similarly B*j
�); � ��̃ũjC̃/� � u*jC � ��̃u #jC#/

�.9 (2.1)
Bj

C Eddy transport of scalar C in an isentropic reference frame by infra-grid
fluctuation covariances (similarly Bj

�); Bj
C � B*j

C, j � 1, 2; B3
C �

(B*3
C � z,�B*�

C)/z� (summation over � � 1,2). (3.3), (3.6)
C̃ Total scalar concentration (similarly potential temperature �̃); � C � C #.

(A4)
C # Infra-grid scalar concentration fluctuation (similarly potential temperature

�#); �̃C # � 0.10 (A4)
C Infra-grid averaged, density-weighted scalar concentration (similarly poten-

tial temperature �); � �̃C̃/� � Ĉ � C�. (2.1)
Ĉ Sub-grid averaged, thickness-weighted, scalar concentration; ��hC�/�h�.

(4.2)
C� Sub-grid scalar concentration fluctuation; �hC�� � 0. (4.2)
c Sound speed; � �V̆P/V̆2. (4.17)
Cx

Cox number; � 	Z�

2
�h���

���h�
�

KD

�� . (5.7)

D Total eddy diffusion tensor. (6.1)
Dij The total diffusivity tensor, expressed relative to isentropic coordinates,

generated by sub-grid and infra-grid eddy motions; elements of D. (6.2)
DH Horizontal (along-isentrope) sub-grid eddy diffusivity. (6.2)
DV Vertical (across-isentrope) sub-grid eddy diffusivity. (6.2)
D� ij The total diffusivity tensor, expressed relative to quasi-Cartesian coordi-

nates, generated by sub-grid and infra-grid eddy motions. (7.2)
Eik The diffusivity tensor, expressed relative to isentropic coordinates, gener-

ated by sub-grid eddy motion covariances. (C11)
E� ij The diffusivity tensor, expressed relative to quasi-Cartesian coordinates,

generated by sub-grid eddy motion covariances. (7.2)
G0

C Infra-grid averaged scalar concentration variance (similarly G0
�); � 1

2
�̃C̃2/� �

1
2

C2 � 1
2
�̃C#2/�.9 (2.6)

G*j
C Infra-grid eddy transport of scalar concentration variance relative to a

Cartesian reference frame (similarly G*j
�); � �1

2
�̃ũj C̃2/� � 1

2
u*j C

2 �
B*j

CC � u*j G0
C � �1

2
�̃u #j C #2/�.9 (2.6)

Gj
C Infra-grid eddy transport of scalar concentration variance relative to an

isentropic reference frame; related to G*j
C as Bj

C is related to B*j
C

(similarly Gj
� ). (3.7)

h Specific thickness of infra-grid averaged isentropic layers; � �z� �
�p� /g � �h� � h�; units: kg m�2 K�1. (3.1)

9. There are extra terms after the second equality caused by cross-scale interaction terms; they are given in
appendix A.

10. More generally, the practical average of this fluctuation need not vanish (appendix A).
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�h� Sub-grid averaged specific thickness of isentropic layers; � V̂�1Z� �
�P� /g. (4.1)

h� Sub-grid fluctuation of isentropic specific thickness; �h�� � 0. (4.8)

H Heat content function, � �
0

P V̆	p, �
dp. (B5)

�H� Sub-grid averaged heat function. (4.9)

K*V Vertical diffusion coefficient due to infra-grid eddy fluctuations. (5.2)

KD Dientropic diffusion coefficient due to infra-grid eddy fluctuations. (5.1)

K*H Horizontal diffusion coefficient due to infra-grid eddy fluctuations. (5.1)

Kik
g Sub-grid eddy diffusivity tensor obtained from averaging with respect to

fixed coordinates. (6.9)

Kg Sub-grid eddy diffusivity matrix from averaging with respect to fixed
coordinates; � Kik

g . (6.10)�

KI Sub-grid eddy diffusivity matrix, calculated wholly with respect to fixed
coordinates, and rotated to local isentropic coordinates. (6.11)

KI Principal along-isentropic eddy diffusivity coefficient calculated with re-
spect to fixed coordinates. (6.11)

Kij Diffusivity tensor due to infra-grid eddy fluctuations, relative to isentropic
coordinates. (5.1)

K*kl Diffusivity tensor due to infra-grid eddy fluctuations, relative to Cartesian
coordinates. (6.9)

LH Horizontal (along-isentrope) sub-grid mixing length. (6.2)

LV Vertical (across-isentrope) sub-grid mixing length. (6.2)

M Montgomery function, � H � gz � �M� � M�. (3.4)

�M� Sub-grid averaged Montgomery function; � �H� � gZ. (4.6)

M� Sub-grid Montgomery function fluctuation; �M�� � 0. (4.8)

M*jk Eddy transport of momentum in a Cartesian reference frame by infra-grid
velocity fluctuation covariances; � ��̃ũjũk/� � u*ju*k � ��̃u #ju #k/�.9

(2.3)

Mjk Eddy transport of momentum in an isentropic reference frame by infra-grid
velocity fluctuation covariances; Mj� � M*j�, j � 1, 2; M3� � (M*3� �
z,�M*��)/z�. (3.4)

N( p) Typical buoyancy frequency profile, as a function of pressure. (4.12)

p Infra-grid averaged pressure (not density weighted); �P � p�. (2.3)

P Sub-grid averaged pressure, or pressure depth (in decibars, say) of isen-
trope �; ��p� (not thickness weighted). (4.10)

P� �
�P

��
. (4.1)

p� Sub-grid pressure fluctuation; �p�� � 0. (4.10)

�p�2� Sub-grid pressure variance on an isentrope �. (4.10)

p0 Mid-depth rms pressure fluctuation of an isentrope �; �100 dbar. (4.12)
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� Sub-grid averaged production of infra-grid eddy kinetic energy;

� �hMji

�ui

�xj
�. (5.9)

p� � p,3 �
�p

��
. (3.2)

qC Infra-grid average creation rate of scalar concentration by eddy transport

divergence (similarly q�); �
1

�

�

�x*j
	�B*j

C 
 �
1

h

�

�xj
	hBj

C
 (see formula

(B12)). (2.1)

q�
M Infra-grid average creation rate of horizontal momentum (� � 1, 2) by

eddy transport divergence; �
1

�

�

�x*j
	�M*j�
 �

1

h

�

�xj
	hMj�
. (2.3)

q̂C

Thickness-weighted sub-grid average of qC (similarly q̂�); �
1

�h�

�

�xj
�hBj

C�.

(4.4)

q̂�
M

Thickness-weighted sub-grid average of q�
M; �

1

�h�

�

�xj
�hMj��. (4.6)

Qik Transformation matrix between Cartesian ( x*i ) and isentropic ( xk) coordi-

nates; �
�xk

�x*i
. (B1)

Q Matrix of Qik elements. (B2)

Q̃ Inverse of Q; �	Q̃ki
 � � �x*i
�xk

�. (B3)

Q� ik Transformation matrix between quasi-Cartesian (Xi) and isentropic ( xk)

coordinates; �
�xk

�Xi
. (D1)

Q� Matrix of Q� ik elements. (D1)

Q̃� Inverse of Q� ; �	Q̃� ki
 � ��Xi

�xk
�. (D1)

R�� Residual cross-scale contribution in addition to mass-weighted infra-grid
covariance �̃�#�#/�. (A4)

R Rotation matrix from Cartesian to local isentropic coordinates, sub-grid
averaged with respect to fixed-level coordinates. (6.11)

Rf
Flux Richardson number; �

ag�hB*3
��

P
. (5.11)

t Time; �x*0 � x0 � X0. (2.1)

T Infra-grid eddy kinetic energy; � 1
2
�̃ũk

2�/� � 1
2

u*k
2 � 1

2
�̃u #k

2/�.9 (2.7)

T *j Infra-grid eddy transport of kinetic energy relative to a Cartesian reference

frame; � �1
2
�̃ũj ũk

2/� � 1
2

u*j u*k
2 � M*jku*k � u*j T � p̃ũj � pu*j �

�u #j ( 1
2

u #k
2�p�p̃)/�.9 (2.7)

Tj Infra-grid eddy transport of kinetic energy relative to an isentropic refer-
ence frame; related to T*j as Bj

C is related to B*j
C. (3.9)

ũj Total Cartesian velocity components; �u*j � u #j. (2.2)

2009] 563de Szoeke: Isentropic averaging



u*j Infra-grid averaged, density-weighted Cartesian velocity components in
the directions indicated by the suffix j; ��̃ũj/�. (2.2)

u #j Infra-grid velocity fluctuations; �̃u #j � 0.10

uj Infra-grid averaged generalized velocity components; u� � u*� (� � 1,

2), u3 � �̇ �
D�

Dt
; uj � ûj � u�j. (3.1)

ûj Sub-grid averaged, thickness-weighted, generalized velocity; � �huj�/�h�.
(4.2)

Uj Quasi-Cartesian, sub-grid averaged, velocity; U� � û� (� � 1, 2), U3 �
Ṗ � D̂P/Dt. (7.1)

u�j Sub-grid generalized velocity fluctuations; �hu�j� � 0. (4.2)
u�
� Horizontal velocity bias due to thickness-Montgomery function gradient

covariance (Gent and McWilliams, 1990); � f �1ε3��

1

�h�
�h�

�M�

�x�
�. (4.6)

u�j* Sub-grid eddy velocity fluctuations with respect to fixed coordinates.
(6.10)

u�* � (u�1* u�2* u�3*). (6.10)�
V� Specific volume; � �̃�1 � Ṽ( p̃, �̃).
V̆( p̃, �̃) The functional dependence of specific volume on pressure and potential

temperature, i.e., the equation of state. (2.5)
V Infra-grid averaged, density-weighted, specific volume; � �̃Ṽ/� � ��1.

(2.5)
V̂ Sub-grid averaged, thickness-weighted, specific volume; � �hV�/�h�.

(4.1)
�V Typical specific volume scale. (4.11)
W A practical space-time filter kernel for an infra-grid average. (A1)
v�i Isentropic sub-grid velocity fluctuation components, all with units of m

s�1; ��ilu�l. (6.2)
x*j Cartesian space coordinates, horizontal ( j � 1, 2), vertical ( j � 3); and

time ( j � 0), i.e., t � x*0. (2.1)
x* � (x*1 x*2 x*3). (6.10)
xj Isentropic coordinates; x� � x*� (� � 1, 2), x3 � �, x0 � t. (3.1)
x � ( x1 x2 x3). (C1)
Xj Quasi-Cartesian coordinates; X� � x� � x*� (� � 1, 2), X3 � P, X0 � t,

where P is the depth (in pressure units, decibars) of an infra-grid
averaged isentrope �. (7.1)

z Vertical coordinate, or height of infra-grid averaged isentrope �; �x*3.
(3.2)

z, j �
�z

�xj
. (B2)

z� � z,3 �
�z

��
. (3.2)

�z�2� Sub-grid height variance of an isentrope �. (4.17)
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Z Sub-grid averaged height of isentrope �; � �z� (not thickness weighted).
(4.9)

Z, j �
�Z

�xj
. (5.1)

Z� � Z,3 �
�Z

��
. (4.1)

�Z Error in sub-grid averaged isentrope height. (4.17)
 � !DV/DH. (6.2)
�kj Diagonal scale matrix; � diag (1, 1, Z�). (C15)
ε � KD/DH. (6.2)
ε3ji � 1 if ji � 1, 2; � �1 if ji � 2, 1; � 0 otherwise. (2.3)
�� Molecular diffusion coefficient for temperature (�C for scalar C). (5.7)
�

Reference thermobaric parameter; �
V̆p�

V̆�

�p�0,��0. (4.11)

�C Molecular dissipation of scalar concentration variance; � �̃�C	�C#/�x*j 

2�/�.

(2.6)
�� Molecular dissipation of temperature variance; � �̃��	��#/�x*j 


2�/�. (3.8)
� Infra-grid averaged density; � ��̃. (2.1)
�̃ Total density; � � � �# � V̆( p̃, �̃)�1; �# � 0.11 (2.2)
� Typical thermocline e-folding scale; � (1000 dbar)�1. (4.13)
�i Rms sub-grid velocities; �!�hv�i

2�/�h�. (6.2)
� Infra-grid averaged potential temperature (entropy); � �̃�̃�/�. (2.5)
�̇ Infra-grid averaged potential temperature rate of change; �D�/Dt. (3.6)

�̂̇ Sub-grid averaged, thickness-weighted, potential temperature rate of change;
� û3 � D̂�/Dt. (4.3)

�̇� � u�3. (6.4)
�

Exner function; �
�H	p, �


��
. (3.5)

��� Sub-grid averaged Exner function. (4.7)
 Molecular dissipation of kinetic energy; � {1

2
�̃v(�u #i/� x*j � �u #i/� x*j )2 �

2
3
�̃v(�u #i/� x*i)

2}/�. (2.7)
% Microcanonical probability density function (pdf); � %̂ �%�. (C1)
%̂ Macrocanonical probability density function; � �h%�/�h�. (C4)
%� Probability density function fluctuation; �h%�� � 0. (C6)

Operations

(. . .) Infra-grid average, at fixed x*j, t (fixed height z). (A1)
�. . .� Sub-grid average, at fixed xj, t (fixed isentrope �). (4.1)
�̃(. . .)/� Density-weighted infra-grid average.
�h(. . .)�/�h� Thickness-weighted sub-grid average.
div (6.1)
grad (6.1)
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DC

Dt Substantial derivative, following infra-grid averaged motion, of an infra-

grid averaged scalar or vector component; �
�C

�x*0
� u*j

�C

�x*j
�

�C

�x0

� uj

�C

�xj
. (Here, as throughout the main text, repeated indices, such as j,

in a monomial term indicate summation over 1,2,3.) (2.1)
D̂Ĉ

Dt

Substantial derivative, following sub-grid averaged motion, of a sub-grid

averaged scalar or vector component; �
�Ĉ

�x0
� ûj

�Ĉ

�xj
�

�Ĉ

�X0
� Uj

�Ĉ

�Xj
.

(4.4)

�

�x*j
Partial derivative taken with x*k, k & j, fixed. (2.1)

�

�xj

Partial derivative taken with xk, k & j, fixed. (3.1)

�i �
�

�xi
, i � 1, 2; �

1

Z�

�

��
, i � 3 (grad). (C14)

�i
T �

1

�h�

�

�xi
	�h� · 
, i � 1, 2; �

V̂

Z�

�

��
	V̂�1 · 
, i � 3 (div). (C14)

�

�Xj

Partial derivative taken with Xk, k & j, fixed. (7.1)

�

�� �
�

�x3
. (5.1)
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