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Relative dispersion in the Nordic Seas

by I. Koszalka1, J. H. LaCasce1,2 and K. A. Orvik3

ABSTRACT
We examine the relative dispersion of surface drifters deployed in the POLEWARD experiment

in the Nordic Seas during 2007–2008. The drifters were launched in pairs and triplets, yielding 67
pairs with an initial separation of 2 km or less. There were 26 additional pairs from drifters which
subsequently came near one another. As these produced statistically identical dispersion to the original
pairs, we used them as well, yielding 93 pairs.

The relative dispersion exhibits three phases. The first occurs during the first two days, at spatial
scales less than 10 km. The dispersion increases approximately exponentially during this period, with
an e-folding time of roughly half a day. During the second phase, from 2 to roughly 10 days and scales
of 10 to roughly 100 km, the dispersion increases as a power law, with r2 ∝ t3. At the largest spatial
and temporal scales, the dispersion increases linearly in time and the pair velocities are uncorrelated,
consistent with diffusive spreading.

We use a stochastic model with a representative mean flow to test the effect of the mean shear on
dispersion. The model produces dispersion comparable to the observed during the second and third
phases but fails to capture other statistics, such as the PDFs of the displacements. These statistics are
instead suggestive of an inverse energy cascade, from the deformation scale up to 100 km.

1. Introduction

A cloud of tracer in a turbulent flow is both advected and strained. The advection can be
quantified using single particle statistics (Davis, 1991). Straining, which reflects the spread
about the cloud’s center of mass, can be studied with pairs of particles (e.g. Bennett, 2006;
LaCasce, 2008; Salazar and Collins, 2009). The study of pair (“relative”) dispersion dates
back to Richardson’s (1926) seminal work in the atmospheric boundary layer. Relative
dispersion is central to describing the spread of pollutants and the evolution of biological
tracers. But it is also of theoretical value, as it can provide information about Eulerian
statistics.

Many of our expectations about relative dispersion come from turbulence theory. Under
certain conditions,4 the relative dispersion can be used to deduce the Eulerian energy
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spectrum (Kraichnan, 1966; Bennett, 1984). The relative dispersion (the mean square pair
separation) is defined:

〈r2〉 = 1/Np

∑
i �=j

(xi − xj )
2 + (yi − yj )

2, (1)

where the sum is over all pairs of particles and Np is the number of pairs. If the energy
spectrum has a power law dependence:

E(k) ∝ k−α, (2)

with an exponent such that 1 < α < 3, the dispersion scales as:

〈r2〉 ∝ t4/(3−α). (3)

This is known as local dispersion, because the dispersion is dominated by eddies comparable
in size to the pair separation. The most familiar example is in the turbulent energy inertial
range, for which α = 5/3. Then the relative dispersion increases cubically in time, a relation
known as Richardson’s law.

If the spectrum is steeper, so that α > 3, the dispersion is instead dominated by larger
eddies. For such non-local dispersion, pair separations grow exponentially in time:

〈r2〉 ∝ exp

(
t

τ

)
(4)

where τ is a time scale related to the strain rate. This implies a sensitive dependence on
initial conditions, because particles with slightly different positions separate exponentially.

If the pair separations are greater than the scale of the energy-containing eddies, the
particles have uncorrelated velocities. Then relative dispersion is proportional to the single
particle (“absolute”) dispersion, with each particle behaving independently. The disper-
sion then increases linearly in time and the flow is “diffusive” because the diffusivity (the
derivative of the dispersion) is constant (Taylor, 1921).

In the 1970s, pairs of balloons were launched near the tropopause in the Southern Hemi-
sphere stratosphere in two large experiments: EOLE at 200 mb (Morel and Bandeen, 1973)
and TWERLE at 150 mb (Jullian et al., 1977). The relative dispersion was described by
Morel and Larcheveque (1974) and Er-el and Peskin (1981), respectively. In both experi-
ments there was evidence of exponential dispersion at scales less than roughly 1000 km,
with an e-folding time on the order of one day. The dispersion at larger scales was less clear
but indicated a power law dependence, with the dispersion increasing linearly in time or
faster.

There have been few such relative dispersion experiments in the ocean. As such, relative
dispersion has been studied using “chance pairs” consisting of instruments which happened
to pass within a prescribed distance of each other at a certain time. LaCasce and Bower
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(2000) used this technique with subsurface floats in the North Atlantic. Their results sug-
gested the dispersion varies regionally; that in the eastern Atlantic is largely diffusive while
Richardson-type growth occurs in the western Atlantic. The latter is likely connected with
the Gulf Stream, which would explain why the dispersion differs in the east, which is more
quiescent.

Ollitrault et al. (2005) examined a different set of subsurface floats, deployed in the mid-
Atlantic. Many of these were deployed together so that the majority were actually original
pairs. They also found indications for Richardson growth in the western Atlantic. But they
also found the same type of growth in the eastern Atlantic.

In both studies, there were few pairs with separations smaller than the deformation radius.
However, using a set of surface drifters in the Gulf of Mexico, LaCasce and Ohlmann (2003)
obtained 140 chance pairs with an initial separation of 1 km, a scale substantially smaller
than the local deformation radius (roughly 45 km). The dispersion at these scales appeared
to be increasing exponentially in time, with an e-folding time scale on the order of a day.

But the small-scale dispersion remains controversial, both in the atmosphere and ocean.
Using the “finite scale Lyapunov exponent” (FSLE; Aurell et al., 1997; Artale et al., 1997) to
re-examine the EOLE data, Lacorata et al. (2004) found clearer support for the Richardson
law than exponential growth. Similarly, Lumpkin and Elipot (2010), who employed the
FSLE with pairs of drifters launched in the Gulf Stream region, found the sub-deformation
scale dispersion in the western Atlantic was closer to the Richardson law than an exponential.

Thus numerous questions remain concerning relative dispersion. Resolving the sub-
deformation scales requires more pairs with small separations, and this demands experi-
ments where the drifters or floats are launched together. Second, nearly all the aforementioned
studies indicate Richardson dispersion at some scales. Okubo (1971) discovered this much
earlier, in his analysis of tracer release experiments near the ocean surface. But the reason
for Richardson dispersion remains obscure. This can occur under turbulent advection, as
noted above, but can also stem from lateral shear advection (e.g. Bennett, 1987). Under-
standing this would help explain the discrepancy between the results in the eastern Atlantic
between LaCasce and Bower (2000) and Ollitrault et al. (2005).

Hereafter we examine the relative dispersion of surface drifters deployed recently in the
POLEWARD experiment in the Nordic Seas. In this, 118 drifters were deployed off the
west coast of Norway in 2007 and 2008. The primary goal of POLEWARD was to study
the Norwegian Atlantic Current (the northern branch of the North Atlantic Current) as it
flows toward the Arctic Ocean. But a second goal was to measure relative dispersion. Thus
the drifters were deployed in pairs and triplets.

The region is one of pronounced variability. The eddies generated by the Norwegian
Atlantic Current spread several hundred kilometers offshore from the shelf break, with
velocities of 50 cm/sec and more (e.g. LaCasce, 2005). These eddies play an important
role in the thermohaline circulation, as they effectively increase the surface area of the
warm inflow, prolonging the exposure to atmospheric cooling (Mauritzen, 1996). Relative
dispersion here directly reflects the lateral mixing of these warm surface waters.
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The paper is organized as follows. The data set is described in Section 2. In Part a, we
compare the statistics of the original and chance pairs in the set. In Section 3, we examine
how long and over what spatial scales the pair motion is correlated. The dispersion (Section
4) exhibits three regimes: one below the deformation radius, another up to scales of 50–
100 km and the third at larger scales. In Sections 5 and 6 we examine possible causes for
the intermediate scale dispersion.

2. Data

The POLEWARD data set consists of 118 surface drifters, of the type used in the Sur-
face Velocity Program (SVP) of the World Ocean Circulation Experiment (WOCE) (e.g.
Lumpkin and Pazos, 2007). Each drifter consists of a surface buoy, with a transmitter and
a temperature sensor, and a subsurface drogue at 15-m depth. The drifter has a tether strain
sensor, for monitoring the presence of the drogue. The drifters are tracked by the Argos
satellite system, yielding positions with 150–1000 m accuracy up to 50 times a day.

The data were processed in two steps. First, zonal and meridional velocities were cal-
culated by finite differencing the positions in time. A recursive de-spiking program was
applied to remove velocities exceeding four standard deviations. We also eliminated posi-
tions for drifters which had lost their drogues or ceased to transmit reliably. We furthermore
excluded segments from tracks near the ice edge, estimated by interpolating ice products
(http://saf.met.no/p/ice/) onto individual trajectories. This affected 11 instruments. We then
processed the data with a Butterworth filter with a 25-hour window, to suppress tidal and
inertial motions, and re-sampled to 6 hour intervals.

We tested the effect of the filtering and de-spiking by recalculating the dispersion without
either one. As might be expected, this altered the results at time scales less than a day, and
significantly so only at times less than half a day. The dispersion without filtering is greater,
presumably reflecting the effect of inertial motions.

We deployed a total of 27 pairs and 21 triplets. The latter were treated as yielding 3 pairs.
The drifters were released along the path of the Norwegian Atlantic Current (Fig. 1) during
6 field campaigns from June, 2007, through October, 2008. Most (75 pairs) were deployed
at the southern-most “Svinøy site.” Additional drifters were deployed farther north, near
the islands of Gimsøy (3 pairs) and Bjørnøy (3 pairs). One additional set of 3 pairs was
deployed in the western Barents Sea. Four drifters failed to transmit or lost their drogue
shortly after deployment, leaving 85 pairs.

The pairs and triplets were launched essentially simultaneously. As such, the initial
separations, r0, depend primarily on when the first satellite fix occurred. A histogram of the
initial separations is shown in Figure 2a. There are 44 pairs with r0 ≤ 1 km, and 67 with
r0 ≤ 2 km. However, we do not obtain many more pairs by using a larger r0. As a trade-off
then between having the smallest r0 possible and the largest number of pairs, we choose
r0 = 2 km as our maximum initial separation.

As noted, pair mortality is affected by drogue life and environmental conditions. The
number of pairs with r0 ≤ 2 km present as a function of elapsed time since deployment is
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Figure 1. Drifter trajectories from the POLEWARD experiment during the first 40 days after deploy-
ment. The colors indicate deployment location: Svinøy (red), Gimsøy (blue), the Barents Sea (light
blue) and Bjørnøy (magenta).

Figure 2. (a) Number of pairs vs. initial separation. (b) Number of pairs vs. elapsed time since
deployment.
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Figure 3. The relative dispersion for the original pairs and chance pairs. Both have r0 ≤ 2 km and
the chance pair curve has been shifted by 0.75 days. The error bars, corresponding to the original
pairs, are obtained by bootstrapping with 1000 samples.

shown in Figure 2b. The number decreases steadily in time, but there remain more than 40
pairs at 40 days. So our primary focus will be on this period.

This leaves 67 pairs with a maximum lifetime of 40 days. Of these, 59 were launched
at Svinøy, 3 at Gimsøy, 2 at Bjørnøy and 3 in the Barents Sea. The drifters were also
deployed at different locations relative to the bottom topography; 35 were deployed over
the continental slope (H < 1000 m) and 32 in deeper water (H < 1000 m).

a. Chance pairs

As noted, several previous studies relied on “chance pairs,” i.e., pairs of drifters not
deployed together (Morel and Larcheveque, 1974; Er-el and Peskin, 1981; LaCasce and
Bower, 2000; LaCasce and Ohlmann, 2003). This is potentially problematic because the
initial pair separations may be correlated with the local velocities, and this can affect the
subsequent dispersion (e.g. Babiano et al., 1990). The POLEWARD drifters are “original
pairs,” so the correlation with the velocity should be less. However, the number of pairs (67
with r0 ≤ 2 km) is relatively small. We have 26 chance pairs with r0 ≤ 2 km, so including
them would increase the sample size by 30%. But to do this, we must check their statistics
in relation to those of the original pairs.

The relative dispersion from both pair types is compared in Figure 3. The error bars
for the original pairs, calculated using a bootstrap method with 1000 subsamples, are also
indicated. We see that the chance pair curve is not significantly different from the original



2009] Koszalka et al.: Relative dispersion in the Nordic Seas 417

pair curve over the entire period. However, the chance pair curve must be shifted by 0.75
days to align with that for the original pairs. This suggests that there is an initial period, of
the same duration, during which the original pairs adjust to the flow. Thereafter the chance
pairs disperse like the original pairs.

A similar comparison was made with the EOLE balloons in the Southern Hemisphere
stratosphere by Morel and Larcheveque (1974). Their conclusion was the same, that there
was no statistical difference between chance and original pair dispersion. Thus, that study
and the present finding lend credibility to the aforementioned analyses based on chance
pairs.5 Hereafter, we add the chance pairs to the original pairs, after shifting the former by
0.75 days. This yields a total of 93 pairs.

3. Correlated motion

A central point in interpreting pair dispersion is determining when the pair velocities
are correlated. Turbulent dispersion implies correlated motion (Section 1), while random
motion is associated with uncorrelated velocities. Here we use two different measures to
establish how long and over what spatial scales the motion is correlated.

a. Relative velocity variance

The mean square separation velocity is defined:

〈v2(t)〉 = 1/Np

∑
i �=j

(ui(t) − uj (t))
2 = 2ν2 − 2uiuj . (5)

where ν is the mean single particle velocity and ui and uj are the individual velocities
(Kraichnan, 1966; LaCasce, 2008). Thus the squared separation velocity is twice the squared
single particle velocity if the individual velocities are uncorrelated. If the velocities are
correlated, the squared separation velocity is less.

The mean square separation velocity is shown in Figure 4a. Initially this is much less than
twice the squared single particle velocity, but it increases during the first 6–10 days. After
day 10 the two are not different within the errors. The corresponding rms single particle
velocity is 25 cm/sec.

To determine the correlated spatial scales, we plot the relative velocity against pair sepa-
ration (Fig. 4b). We obtain this by averaging velocities for all pairs which have a separation
in a specified range, e.g. from 10–20 km, at a given time. The chosen distance ranges have
a geometric scale dependence:

dn = γdn−1 = γnd0 (6)

5. An exception however was noted by Haza et al. (2008), in a study of synthetic drifters in the Adriatic. In
their case, the chance and original pairs spanned different parts of the domain, with the chance pairs occurring
primarily in a boundary current. So the two sets produced different dispersion.
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Figure 4. (a) Mean square separation velocity plotted vs. time since deployment, with errors from
bootstrapping. (b) Mean square separation velocity plotted vs. time since deployment, with errors
from bootstrapping. In both panels the solid line indicates twice the mean square single particle
velocity, 0.053 m2/sec2.

which produces equally-spaced points on a logarithmic graph. For the scale factor, γ, we
used a value of 1.2.

The results indicate the separation velocity increases over scales below 50–100 km. At
larger scales, the value is near 0.07 m2/sec2, which is twice the squared single particle
velocity (Fig. 4a). Thus the velocities at scales below 50–100 km are correlated. Also
indicated in the figure are two power law regimes which occur at the smaller scales. These
are discussed hereafter.

b. Separation angle

We can define another measure of correlated motion. This is based on the fact that the
individuals in a correlated pair have nearly parallel velocity vectors. When they separate,
the velocity vectors diverge. Consider the example in Figure 5a, which is representative.
The colored bands on the individual trajectories indicate the number of days elapsed since
deployment. During the first 4 days, the drifters move together, separating slowly. But on
the fifth day, they veer apart, moving independently thereafter.

The angle between the velocity vectors is:

θ = cos−1
( �u1 · �u2

|�u1||�u2|
)

. (7)

The mean separation angle should indicate when the pairs are moving together, on average.
Note that uncorrelated pairs will have a mean angle of 90 degrees, assuming a uniform
distribution of angles between 0 and 180 degrees.

Shown in Figure 5b is the mean angle for all pairs with r0 ≤ 2 km. The average angle is
near zero initially but increases thereafter, reaching 45 degrees by day 6. This is a typical
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Figure 5. (a) Example of pair dispersion in the POLEWARD data set. The daily segments of drifter
trajectories are color-coded. The dashed and solid lines indicate the times when the angle of sepa-
ration θ is 45 and 90 degrees, respectively. (b) The mean separation angle between the individual
velocities from the pairs with ro ≤ 2 km. The 95% confidence intervals are obtained by bootstrap
re-sampling (1000 samples).

value when a pair is starting to split apart (e.g. Fig. 5a). By about 10 days, the mean angle is
near 90 degrees. We conclude the first 6 days are correlated and that by 10 days most pairs
are decorrelated, consistent with the conclusions based on the relative velocities.

Plotting the mean angle vs. pair separation (not shown) suggests that the angle is less
than 45 degrees below about 30–50 km, and approaches 90 degrees at scales greater than
100 km. So the correlated spatial scales are also consistent with those inferred from the
relative velocities.

Thus these two measures suggest the pair motion is correlated during roughly the first
10 days, up to 100 km in scale. The larger scales, and longer times, should correspond to
single particle dispersion.

4. Relative dispersion

We now examine the relative dispersion in more detail. As noted, we focus on the first
40 days, as the number of pairs falls off thereafter.

Shown in Figure 6a is the total (zonal plus meridional) dispersion, plotted on a logarithmic
graph, with error bars from bootstrapping. The figure suggests there are three distinct growth
phases: one during the first two days, a second from 2 to roughly 10 days and a third
thereafter. The intermediate and late phases exhibit power law dependencies on time, so
that:
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Figure 6. (a) Relative dispersion on a logarithmic graph. (b) The zonal and meridional dispersion. (c)
The initial relative dispersion, on a semi-logarithmic graph; 95% confidence intervals are obtained
by bootstrap re-sampling (1000 samples).

〈r2〉 ∝ tn (8)

where r is the total separation. The exponents, determined by least squares, are n = 2.9±0.2
and n = 1.2 ± 0.3, respectively. The growth in the early phase on the other hand is closer
to exponential, with an e-folding time of roughly half a day.

The meridional and zonal dispersion are plotted separately in Figure 6b. During the initial
and intermediate periods, the curves are not statistically different, indicating the dispersion
is isotropic. During the late period, the meridional dispersion is somewhat greater than
the zonal. Visual inspection of the trajectories confirms a slightly increased tendency for
meridional dispersion at late times.

We also compared the dispersion for pairs deployed at the different sites and found the
differences to be statistically insignificant. However, this is due in part to the fact that
most of the pairs were deployed at Svinøy, so that the errors with the other subsets are
larger. For instance, the Barents Sea dispersion is the weakest of the four groups, but there
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are only 3 pairs there. There are some indications of a dependence on the water depth at
deployment; pairs deployed in deep water disperse somewhat less than those over the slope.
However, these differences are barely significant and do not persist. Thus we will assume the
dispersion is approximately homogeneous and group all the pairs together when calculating
the statistics.

In the following sections, we look more closely at each of the growth phases.

a. Initial phase

The initial phase pertains to the first two days and scales less than 10 km. In Figure 6c
we plot the dispersion on a semi-logarithmic graph. The dispersion increases rapidly during
this period, by roughly two orders of magnitude. Although the errors are large, the curve
can be fit with an exponential over the period of 0.25 to 2.25 days. The e-folding time from
least squares is 0.42 ± .12 days.

As noted in Section 1, exponential relative dispersion is characteristic of non-local disper-
sion, when the dispersion is dominated by eddies with scales larger than the pair separations.
So, for instance, pairs with 1 km separations are advected by 10 km (or larger) eddies.

Non-local dispersion has specific implications for other statistics, and we can check those
for consistency. With exponentially growing dispersion, the relative diffusivity scales as:

K = 1

2

d

dt
〈r2〉 ∝ r2. (9)

This is shown in Figure 7, plotted against separation distance. As with the relative velocities
(Fig. 4b), we average in bins of geometrically increasing size. The diffusivity during the
initial phase increases rapidly during the first three days, and the dependence is not different
from r2. However as the range is short, a definitive identification is not possible. One could
argue that the quadratic dependence persists only to 5 km, or that a different dependence
is also possible, given the errors. Nevertheless, the dependence is not inconsistent with
non-local dispersion.

Non-local dispersion also has implications for the relative velocity. For one, the mean
square relative velocity should scale as:

〈(ui − uj )
2〉 ∝ r2 (10)

(e.g. Morel and Larcheveque, 1974). The mean square relative velocity is shown in Figure 4b.
As with the diffusivity the result is not indisputable, but the dependence is at least consistent
with a quadratic dependence on r in this distance range.

In addition, non-local dispersion produces relative displacement distributions (PDFs)
which have increasingly long tails (Lundgren, 1981; Bennett, 1984). This is because pairs
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Figure 7. Relative diffusivity plotted against separation. The x’s indicate the diffusivity obtained by
averaging the instantaneous diffusivity by distance, and the dotted lines are the errors obtained from
bootstrapping. The dashed line is the diffusivity from differencing the dispersion, plotted against
the square root of the dispersion.

in rapidly straining regions separate much faster than other pairs. A way to detect this is
with the displacement kurtosis, defined:

Ku ≡ 〈r4〉
(〈r2〉)2

(11)

(LaCasce and Bower, 2000; LaCasce and Ohlmann, 2003).6 With exponential growth, the
kurtosis should increase exponentially in time (Bennett, 1984).

The kurtosis over the first 40 days is plotted in Figure 8. For reference, we compare the
result to the value obtained for a Rayleigh distribution (which is what one expects for a
normally-distributed random process). A Rayleigh distribution has:

6. We define the kurtosis in terms of the raw moments, without the mean removed. We do this because the
displacements are positive definite quantities. But the choice does not affect the results.
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Figure 8. Displacement kurtosis as a function of time for the r0 ≤ 2 km pairs. The errors from
bootstrapping, with 1000 subsamples, are indicated. The horizontal dashed and solid lines show
the kurtosis for the Richardson and Rayleigh distributions.

p(r) = r

σ2
exp

(
− r2

2σ2

)
(12)

where σ is the variance. For a Rayleigh distribution, the kurtosis can be shown to be:

Ku = Γ(3)

[Γ(2)]2
= 2 (13)

where Γ is the gamma function. We also calculated the conventional kurtosis (with the mean
removed) and this produces similar results.7

The kurtosis increases rapidly during the first 2.5 days, from an initial value near 2 to a
value near 6 (Fig. 8). It then decreases over the next 10 days, asymptoting to a value between
2 and 3. It is not possible to say whether the initial increase is exponential or not, due to the
errors and short duration of the growth, but such growth is plausible.

Thus several measures are indicative of non-local dispersion during the initial period.
Because 10 km is comparable to the local deformation radius, these results support expo-
nential growth below that scale. However, due to the brevity of the initial period, a definitive
identification of non-local dispersion is probably not possible.

7. LaCasce and Bower (2000) and LaCasce and Ohlmann (2003) used the kurtosis based on the de-meaned
displacements. For a Rayleigh distribution, this has a value of 3.2451.
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b. Intermediate phase

The intermediate phase occurs during the period 2–10 days, over scales of 10–100 km.
The dispersion is consistent with:

〈r2〉 ∝ t3, (14)

within the errors. This is as expected for a Richardson regime (Section 1). Under Richardson
dispersion, the relative diffusivity should scale as:

K = 1

2

d

dt
〈r2〉 ∝ r4/3. (15)

The results in Figure 7 are consistent with such a growth in the intermediate range.
In addition, under local dispersion the displacement PDF is self-similar (it preserves

its shape). Thus the kurtosis has a constant value. One can show that this value is 5.6
(LaCasce, 2009). We see instead that the kurtosis is falling during this period, reaching a
value between 3 and 4 by day 10. This change in part reflects the relaxation which occurs
from the very peaked PDF which develops during the initial period. But the PDF at the end
of the intermediate period is less peaked than expected for a Richardson distribution.

Thus the results for the intermediate phase are mostly consistent with local dispersion,
despite that the displacement PDF is evolving in time. As discussed in Section 1, identifying
the reason for this dispersion is less simple. We consider two possibilities in Sections 5 and
6 hereafter.

c. Final phase

The logarithmic slope in the third phase is not significantly different from one, so that:

〈r2〉 ∝ t. (16)

This implies that the relative diffusivity is constant. Note though that the diffusivity calcu-
lated with respect to separation distance (Fig. 7) does not level off at large scales.8 Thus the
relative dispersion and distance-averaged diffusivity are at odds here.

The reason for this stems from the averaging process. The dispersion samples all pairs
present at the late times, those with small and large separations. But the distance-averaged
diffusivity at large scales represents only pairs with large separations. In the POLEWARD
set, such pairs often have one member caught in the boundary current and the other in the
interior. Such pairs have a distinctly rapid separation which is determined by the boundary
current, not by random motion.

An alternate approach is to calculate the diffusivity from the derivative of the dispersion
and plot the result against the square root of the dispersion (e.g. LaCasce and Bower, 2000).

8. A similar discrepancy was shown, but not noted, by Morel and Larcheveque (1974).
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In this case, the dependent variable is the root mean square displacement, rather than the
displacement itself. Calculated in this way, the diffusivity (the dashed line in Fig. 7) ceases
to increase at scales greater than roughly 100 km. So by averaging all pairs present at late
times, the diffusivity appears approximately constant at large scales.

In addition, the mean square relative velocities during the third phase are comparable to
twice the mean square single particle velocity (Fig. 4a) and the kurtosis (Fig. 8) is similar to
that for a Rayleigh distribution. Both observations suggest the final period is one of random
motion, with the individuals in the pairs moving independently.

5. Stochastic model

There are several possible explanations for the Richardson dispersion seen in the inter-
mediate period. As noted, this can occur under a turbulent energy cascade, but also with
random motion in the presence of a mean shear. The Norwegian Atlantic Current dominates
the flow in the region and has significant lateral shear, on the order of 0.3 f. The current
has a north-south orientation as well, which could explain the meridional anisotropy seen
in Figure 6b.

To test the current’s effect, we examined the dispersion of synthetic particles in a represen-
tative mean flow. To do this, we used a first-order stochastic model (e.g. Griffa et al., 1995;
LaCasce, 2000; Veneziani et al., 2004). In this, the particles have velocities determined by:

dxi = (ui + U(x, y)) dt, dyi = (vi + V (x, y)) dt

dui = − 1

TL

ui dt +
√

2

TL

ν dw, dvi = − 1

TL

vi dt +
√

2

TL

ν dw. (17)

Here the subscript refers to the particle, (U, V ) is the background mean flow and dw is
a Wiener (normal) noise process. The velocity has two components, a “memory” of its
previous value and a random noise component (representing eddy advection). The velocity
autocorrelation decays as an exponential in this model with an e-folding time of TL. The
first order model is fairly realistic for simulating surface drifter motion (e.g. Griffa et al.,
1995; Veneziani et al., 2004). The important point in the present context is that the stochastic
drifters move independently at all times. So the results will be useful in determining the
role of correlated velocities with the actual drifters.

We used three separate estimates of the mean field, (U, V ):

• Geostrophic velocities derived from mean sea-surface height from the Rio and Her-
nandez (2004) climatology

• Mean velocities from a one year (2008–2009) simulation with the MIPOM model
of the Norwegian Meteorological Institute (LaCasce and Engedahl, 2005 and refs.
therein)

• Mean velocities obtained by averaging the drifter velocities in geographical bins.
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Figure 9. (a) Relative dispersion of the stochastic particles generated with various mean flows (sec.
5) compared to that of the POLEWARD drifters. (b) Mean single particle displacements for the
POLEWARD data and the stochastic model with the MIPOM mean velocities.

Both the Rio and Hernandez and the binned drifter velocities have a resolution of 1/4 degree,
which is coarser than the deformation scale of 10 km. The MIPOM mean has 4 km resolution
and moreover exhibits fairly realistic structure, despite that its velocities are somewhat too
weak (LaCasce and Engedahl, 2005). The Rio means pertain specifically to the surface
while the MIPOM means correspond to a depth of 5 m.9 The binned velocities were only
calculated in the Svinøy region, where the drifter density is highest.

We deployed stochastic particles where the actual drifters were deployed, but used 10
times as many. When using the binned velocities, we deployed particles only at Svinøy. We
use an integral time, TL, of one day, based on estimates derived from the single particle
velocity autocorrelation. A one-day time scale is also consistent with the expectation from
the Eulerian integral time scale, which is of order 1–2 days (LaCasce, 2005). We then varied
the noise amplitude, to produce a relative dispersion comparable in magnitude with the
observed. Realistic dispersion was obtained with a noise amplitude of roughly 0.05 m/sec.
This is smaller than the rms drifter velocity of 0.25 m/sec, but the latter represents the
combination of mean and eddy advection.

The dispersion is shown in Figure 9a. All three stochastic curves exhibit an initial growth
which is significantly faster than observed. This is to be expected, because the initial dis-
persion increases quadratically in time in the stochastic model, not exponentially. However,
after roughly four days all three stochastic runs produce dispersion similar to the observed.
The exception is the run with the RIO means which exhibits too weak dispersion. The other
two runs yield reasonable dispersion during both the intermediate and late periods.

This suggests that the intermediate and late phases could be attributed to stochastic shear
dispersion. The increased dispersion in the intermediate phase occurs when many of the

9. We use 5 m rather than 15 m because the model velocities at 5 m are stronger than, but also parallel to, those
at 15 m, and thus more representative of the actual velocities at 15 m.
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Figure 10. Relative displacement PDFs on (a) day 6 and (b) day 40 for the the POLEWARD drifter
and the stochastic model with the MIPOM mean velocities. The PDFs have been normalized so
that the sum of probabilities is one.

particles are near the cores of the mean flow, where the shear is greatest. At late times, the
dispersion is less because the particles have exited the cores and are moving in regions with
weaker background flow.

However, other measures suggest the intermediate phase cannot be attributed to shear
dispersion. Consider for example the mean single particle displacement, shown in Figure 9b
for the MIPOM mean field. The stochastic particles exhibit significantly greater mean drift,
particularly in the meridional direction. This reflects that the stochastic particles follow the
mean current to a greater degree than the actual drifters. This discrepancy is reduced if the
noise amplitude is increased, as more particles then exit the mean flow; but then the model
produces unrealistically large dispersion.

Then there are the probability density functions (PDFs) of the relative displacements.
The PDFs at day 6 are compared in Figure 10a. The PDF for the stochastic particles is very
near a Rayleigh distribution, consistent with random motion. But the observed PDF differs
markedly, having many more small displacements and extended wings. The drifter kurtosis
at day 6 is 3.5 (Fig. 8), only slightly larger than 2, but the PDF nevertheless differs markedly
from a Rayleigh distribution.

The agreement with the stochastic model is better however during the late phase. The
relative velocities indicate the individual velocities are decorrelated during this period. And
the PDFs are in reasonable agreement as well. These are shown in Figure 10b, calculated
from the displacements at day 40. Both the stochastic and actual drifters exhibit distributions
which are comparable to the Rayleigh distribution.

So while the stochastic model can produce dispersion like that observed and appears to
capture the late behavior, it cannot reproduce all the statistics during the intermediate phase.
So we must turn to another explanation for this period.
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6. Inverse cascade

Another possibility is that there is an energy cascade from the deformation scale (10 km)
up to the 50–100 km scale. This could occur if deformation scale eddies, produced by the
instability of the mean jets, were merging to produce larger eddies.

There is visual evidence of such eddies. In the offshore deployments in the Svinøy
region, a subset of 20 drifters were caught up in coherent eddies (i.e., exhibited persistent,
approximately circular motion). These eddies had scales exceeding 50 km, considerably
larger than the deformation scale. A number of similar events, involving single drifters,
were seen in the other regions as well.

Several statistical measures are also consistent with a cascade. If the turbulence is homo-
geneous, the mean square separation velocity is equivalent to the second order Eulerian
structure function for the longitudinal velocities, defined:

〈(ul(�x + D, t) − ul(�x, t))2〉. (18)

Here the brackets indicate a spatial average and D is the separation between observations.
In a two-dimensional energy cascade, the second order structure function scales as the
separation, r , to the 2/3 power (Babiano et al., 1985; Lindborg, 1999). The relative velocity
plotted against distance Figure 4b does not yield a definitive power slope in the intermediate
range, but a r2/3 dependence is at least plausible.

Similarly, the third order structure function should increase linearly with separation in
an energy cascade (e.g. Lindborg, 1999). The corresponding result in 3-D turbulence is
Kolmogorov’s “4/5 Law” (Frisch, 1995). The mean of the third power of the separation
velocity is plotted in Figure 11 and this does exhibit a linear dependence on separation in
the intermediate range. The inferred constant of proportionality is also positive, which is
consistent with a negative flux of energy (a flux to larger scales). Note too that the third
order moment increases as separation cubed at the small scales, which is as expected under
non-local dispersion.

Taken together, these results are at least consistent with an inverse cascade in the region.
This appears to be a more likely explanation for the behavior in the intermediate range than
shear dispersion.

7. Summary and discussion

We have examined the relative dispersion of 118 surface drifters deployed in the POLE-
WARD experiment in the Nordic Seas during 2007–2008. The drifters were launched in
pairs and triplets, yielding 67 pairs with an initial separation, r0, of 2 km or less. We found
26 additional pairs from drifters which subsequently came near one another. These pro-
duce dispersion statistically identical to that of the original pairs, so we used them as well,
yielding 93 pairs.

The relative dispersion occurs in three phases. The first occurs during the first two days, at
spatial scales less than 10 km. The dispersion increases approximately exponentially during
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Figure 11. Third order structure function of the separation velocity as a function of separation.

this time, with an e-folding time near one half a day. Several other statistical measures,
including the diffusivity, the displacement kurtosis and the third moment of the relative
velocity, are also consistent with exponential growth.

During the second phase, from roughly 2–10 days and scales of 10–100 km, the dispersion
increases as a power law, with r2 ∝ t3. We found that a stochastic model with a representative
mean flow could produce comparable dispersion. However, the stochastic model differs with
other measures, such as the mean single particle drift and relative displacement distributions.
The latter, and the relative velocity correlations, appear instead to be consistent with an
inverse energy cascade.

At the largest separations, the dispersion increases linearly in time and the pair velocities
are uncorrelated. Evidently, the drifters are dispersing diffusively at this point, in regions
away from the cores of the mean flow.

The results are thus consistent with non-local relative dispersion at sub-deformation
scales. Similar indications have been seen before in the stratosphere (Morel and Larcheveque,
1974; Er-El and Peskin, 1981), the surface ocean (LaCasce and Ohlmann, 2003) and in the
subsurface ocean (Ollitrault et al., 2005). However, the deformation radius in the Nordic
Seas is small, so only one decade of scales is resolved in the data. A more definitive asso-
ciation, at least in this region, would require sampling with higher spatial resolution, e.g.
with GPS tracking. But then the issue of dispersion by inertial motions would have to be
addressed.

We also observe Richardson dispersion. LaCasce and Bower (2000) and Ollitrault et al.
(2005) saw the same in the subsurface Atlantic, and LaCasce and Ohlmann (2003) and
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Lumpkin and Elipot (2010) found evidence for this at the surface in the Atlantic. The
present study is the first to rule out shear dispersion, i.e., random motion in the presence
of the observed background shear, as a cause for this. It remains to be seen whether shear
dispersion can be similarly discounted in the other cases.10 If the dispersion is related to an
inverse energy cascade, these results are in line those of with Scott and Wang (2005), who
inferred and inverse cascade at the surface in the South Pacific from altimetric data.

We have focused primarily on the relative dispersion, the relative diffusivity and the
displacement PDF. We have not discussed the finite scale Lyapunov exponent (FSLE), a
measure favored in several recent studies. We did calculate the FSLE, but found the results
weren’t always straightforward to interpret. We believe this is due in part to the measure
itself. As discussed by Lumpkin and Elipot (2010), using the FSLE requires subjective
decisions. If, for example, a given pair separation exceeds 10 km and then decreases, does
one count the time to the first crossing, the second crossing or both?

For this reason, we prefer the distance-averaged diffusivity, which is essentially the
measure used by Richardson (1926). Like the FSLE, this involves averaging by distance
and so differs fundamentally from the time-based relative dispersion. But it derives from the
instantaneous diffusivity and so does not require such subjective choices. One shortcoming
we observed with the measure is that the behavior at large scales may be biased by flow
inhomogeneities, specifically large-scale coherent flows. A similar effect should affect the
FSLE, since it is also based on distance averages. This effect might explain discrepancies
seen before between relative dispersion and the FSLE at large separations (LaCasce and
Bower, 2000; LaCasce and Ohlmann, 2003; Lumpkin and Elipot, 2010).

Recently, several authors have argued that the surface ocean may be dominated by surface
quasi-geostrophic (SQG) dynamics (Lapeyre and Klein, 2006; LaCasce and Mahadevan,
2006; Isern-Fontanet et al., 2006; Capet et al., 2008; Lumpkin and Elipot, 2010). SQG
turbulence can produce an energy cascade like that in two dimensions, with a spectral slope
of k−5/3. Such a slope is observed in the upper troposphere, below scales of 500–1000 km,
and this has been interpreted as a sign of SQG turbulence on the tropopause (Tulloch and
Smith, 2006). At larger scales, there is clear evidence of a k−3 spectrum (Nastrom and Gage,
1985), consistent with a 2-D enstrophy cascade (Charney, 1971).

Interestingly, the present observations are the opposite. We infer a k−5/3 spectrum (an
energy cascade) at intermediate scales, above the deformation radius, and a k−3 (or steeper)
spectrum below the deformation radius. This is more in line with the traditional paradigm
of geostrophic turbulence in the presence of baroclinic instability (Salmon, 1980). So we
infer that SQG may not be relevant in this region.

We have not discussed surface divergence effects. Indeed, it is not obvious that 2-D
turbulence is a relevant paradigm at the surface as that theory applies to non-divergent

10. Ollitrault et al. (2005) suggested shear dispersion was an unlikely culprit in their study as the dispersion
was isotropic over the relevant scales. But their displacement PDFs resembled the Rayleigh distribution over the
same scales, suggesting random motion.
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fluids. Davis (1985) did not find a systematic dependence of diffusivity on distance at the
surface in the California Current and suggested this might have been due to divergences.

We do see obvious evidence for divergence effects. Numerical studies of particles con-
fined to a 2-D surface in the presence of 3-D turbulence exhibit particle clustering along
lines (Schumacher and Eckhardt, 2002), similar to the clustering of debris between surface
Langmuir cells. We did not find instances of such clustering in any of the locations.

As suggested by LaCasce and Ohlmann (2003), this could be because the surface veloc-
ities are nearly geostrophic. Then the flow would be horizontally non-divergent at first
order and vertical velocities an order of magnitude smaller. Nevertheless, divergence effects
deserve more attention, both in numerical models and in experiments in which relative dis-
persion is simultaneously measured at the surface and sub-surface.
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