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Mass transport in the Stokes edge wave

by Jan Erik H. Weber1,2 and Peygham Ghaffari1

ABSTRACT
The Lagrangian mass transport in the Stokes progressive edge wave is obtained from the vertically

integrated equations of momentum and mass, correct to second order in wave steepness. The
cross-shore momentum balance is between the mean pressure at the sloping bottom, the radiation
stress, and the pressure gradient due to the mean surface slope. In the alongshore direction, the effect
of viscosity leads to a wave attenuation, and hence a radiation stress component. The frictional effect
on the mean Eulerian motion is modeled through a turbulent bottom drag. The alongshore
momentum balance is between the mean pressure gradient due to the surface slope, the radiation
stress, and the turbulent drag on the mean Eulerian flow. It is shown that ��E/� y, where E is the total
mean energy density for waves along the y-axis, is the wave-forcing term for the total mean
Lagrangian momentum in the trapping region. This result is independent of the bottom slope angle.
Vertically-averaged drift velocity components are obtained from the fluxes, divided by the local
depth. Utilizing physical parameters relevant for field conditions, it appears the traditional Stokes
drift in the Stokes edge wave is negligible compared to the mean Eulerian velocity component. The
importance of this drift for the near-shore transport of effluents and suspended light sediments is
discussed.

1. Introduction

After being regarded as a mere curiosity for many years, e.g. Lamb (1932), edge waves
have fairly recently received renewed interest. This is because such waves apparently play
an important role in the dynamics of coastal zone and beach erosion processes (LeBlond
and Mysak, 1978). Edge waves are often considered as the major factor of the long-term
evolution of the irregular coastal line, forming rhythmic crescentic bars (Bowen and
Inman, 1971; Kurkin and Pelinovsky, 2003; Quevedo et al., 2008). Holman and Bowen
(1982) showed that the steady drift, generated by the nonlinear self-interaction of edge
waves inside the bottom boundary layer, can cause a net displacement of the sediment and
give rise to bottom patterns similar to those detected in the field.

We here concentrate on the Stokes edge wave (Stokes, 1846), which is the first mode in
the spectrum of shelf modes that contains both discrete and continuous parts (Eckhart,
1951; Ursell, 1952; Reid, 1958). Several mechanisms for generating edge waves are
possible in nature. Large-scale edge waves can be generated by direct wind stress above the
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water, by traveling air pressure, or by tsunamis (Munk et al., 1956; Aida, 1967; Beardsley
et al., 1977; Fuller and Mysak, 1977; Golovachev et al., 1992; Boss et al., 1995; Kurkin
and Pelinovsky, 2003; Galletta and Vittori, 2004; Monserrat et al., 2006), while medium-
and small-scale edge waves may occur through nonlinear interaction of wave groups or
nonlinear subharmonic resonance mechanisms (Gallagher, 1971; Minzoni and Whitham,
1977; Bowen and Guza, 1978; Chapman, 1984). The occurrence of edge waves has also
been demonstrated in wave tank experiments (Yeh, 1985; Mok and Yeh, 1999).

In the present study we focus on the mass transport induced by the Stokes edge wave.
Earlier papers, (e.g. Kenyon (1969)) have considered the pure Stokes drift (Stokes, 1847)
in inviscid edge waves applying the hydrostatic approximation, while Dore (1975) and
Mok and Yeh (1999) have calculated the mass transport velocity in the viscous laminar
bottom boundary layer associated with edge wave motion. But obviously, real field bottom
boundary layers are turbulent. Furthermore, the frictional effect at the bottom will generate
a mean interior Eulerian flow, in addition to the Stokes drift (Longuet-Higgins, 1953). It is
the aim of the present paper to quantify the mean Eulerian mass transport generated by the
Stokes edge wave in a turbulent ocean. When we add the Stokes flux, we obtain the total
mean Lagrangian mass transport in the system. It is this transport that advects neutral
tracers and bottom sediment in suspension in the region of wave trapping. In order to
obtain a robust formulation, we consider the vertically integrated equations of momentum
and mass, e.g. Phillips (1977), and derive the mean Lagrangian mass transport to second
order in wave steepness. The vertically-averaged drift velocity is obtained by dividing the
volume flux by the local depth. In this way we do not resolve the motion in the bottom
boundary layer, so this method is not directed at sediment transport very close to the sea
bed. However, for finer sediment that is mixed in the entire water column, and the drift of
biological material, the present approach yields new and interesting results.

2. Mathematical formulation

We consider trapped surface gravity waves in a homogeneous incompressible fluid with
a linearly sloping bottom. The motion is described in a Cartesian system, where the x-axis
is situated at the undisturbed surface and directed into the semi-infinite sea, the y-axis is
directed along the shore line, and the vertical z-axis is positive upwards; see the sketch in
Figure 1. The corresponding velocity components are (u, v, w). Furthermore, the pressure
is p and the constant density is �. The bottom is given by z � �h � �x tan �, where �
(��/2) is the sloping angle, and the free surface by z � �. At the free surface the pressure
is constant. In this study we disregard the effect of the earth’s rotation.

We denote periodic wave variables by a tilde, and the mean flow (averaged over the
wave period) by an over-bar. Mean horizontal volume fluxes (U� , V� ) are defined by

U� � �
�h

�

udz, V� � �
�h

�

vdz. (1)
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These are actually the Lagrangian fluxes, since we integrate between material boundaries
(Phillips, 1977; Weber et al., 2006). Integrating the governing equations in the vertical, and
utilizing the full nonlinear boundary conditions at the free surface and the sloping bottom,
we obtain for the mean quantities, correct to second order in wave steepness (Phillips,
1977):

�U�

�t
� �

1

�

�

�x �
�h

0

p�dz �
1

2�

�

�x
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1

�
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�
�
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0
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�
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��h
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�
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(2)

���

�t
� �

�U�

�x
�

�V�

�y
.

By neglecting the effect of friction in the vertical component of the momentum equation,
Phillips found for the mean pressure to this order:

p�

�
� g��� � z	 � w̃2 �

�

�x �
z

0

ũw̃d� �
�

�y �
z

0

ṽw̃d�, (3)

Figure 1. Sketch depicting the coordinate system, with the surface and sloping bottom included; y is
the alongshore coordinate and the seawards direction is x3�.

2009] 215Weber & Ghaffari: Mass transport in the Stokes edge wave



where g is the acceleration due to gravity. As shown by Mei (1973) for the Stokes standing
edge wave, the dynamic mean bottom pressure term in the x-momentum, tan �p� (�h)/�
which is missing from Phillips’ derivation, must be present here. Furthermore, (
��h

( x) , 
��h
( y))

in (2) are the mean turbulent bottom stress components.
In this problem the oscillatory edge wave motion is influenced by viscosity. In general;

for deep water waves, viscosity will affect the motion in the bulk of the fluid, while for
shallow water the viscous boundary layer at the bottom will dominate. In both cases the
potential part of the wave field, which is the relevant one in flux consideration, will
attenuate exponentially in time. For deep water the damping coefficient will be propor-
tional to the small viscosity coefficient, while in shallow water the damping coefficient will
be larger (no slip at the bottom). In this case it is proportional to the square of the viscosity
coefficient, e.g. Phillips (1977). In any case, we can obtain the potential part of the wave
field by using a friction that is linear in the wave velocity, yielding the small exponential
decay in time. Accordingly, we write the frictional force per unit mass on the linear wave
motion as �r�ũ, where the constant friction coefficient r depends on the viscosity. This
kind of friction does not introduce vorticity into the fluid, so we can apply the potential
theory of Stokes (1846). The linearized relation between the velocity potential 
̃ and the
pressure then becomes

p̃ � ����
̃

�t
� gz � r
̃�. (4)

In the present problem we consider waves with given frequency �. Then, due to friction,
the wave number � in the y-direction (along the coast) will be complex, i.e. � � k � i�,
where k � 0, and � is the small spatial attenuation coefficient (�/k �� 1). In fact, for a
general set of wave problems, the temporal attenuation coefficient is equal to the spatial
one times the group velocity of the wave (Gaster, 1962).

For the spatially damped Stokes edge wave, we can write the complex velocity potential


̃ � �
ia�

k sin �
exp��kxcos� � kzsin� � �y � i�ky � �xcos� � �zsin� � �t		,

(5)

where a is the wave amplitude. The potential part of the velocity is given by �ũ � �
̃, and it
is easily seen that (5) satisfies the Laplace equation, and the tangential flow condition at the
linearly sloping bottom. From the dynamic condition at the free surface, p̃( z � �̃) � 0, we
find to lowest order for the wave frequency and the spatial damping coefficient:

�2 � gk sin �, � �
kr

�
. (6)

Hence waves can propagate in both directions, becoming damped as they progress along
the y-axis. We here consider propagation to the right, i.e. take � � 0.
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To determine the damping rate, we need to quantify the friction coefficient r. If we
neglect the effect of a viscous boundary layer along the sloping bottom, which is
permissible for large depths (i.e. large x), we can determine the temporal wave attenuation
coefficient � from energy considerations (Phillips, 1977). Using real parts from potential
theory, we find for the total mean energy density that

E � �
0

� ��
�h

0 �

2
�ũ2 � ṽ2 � w̃2	dz � �g �

0

�̃

zdz�dx �
�ga2

4k cos �
exp��2�t	, (7)

while the total dissipation D in this problem is readily found to be

D � �
��gka2

2 cos �
exp��2�t	. (8)

Assuming that dE/dt � D (Phillips, 1977) we obtain

� � k2�, (9)

which is exactly half the value for ordinary deep-water surface waves. Utilizing Gaster
(1962), we find the spatial attenuation coefficient for this case:

� �
�

d�/dk
�

2k3�

�
. (10)

For shallow water waves the temporal damping coefficient is related to the eddy
viscosity coefficient � by the relation � � �/(2H�), where H is the mean depth, and � �
(2�/�)1/2 is the viscous boundary-layer thickness (Phillips, 1977). A typical depth here will
be that at the outer edge of the trapping region, i.e. we take H � tan �/k. Then, applying
Gaster’s result, the spatial attenuation coefficient in this case becomes:

� �
k2

tan � � �

2��
1/2

. (11)

It should be noted that (10) and (11) are the two extreme values for frictional damping in
our problem. For realistic field conditions the water will be shallow. Therefore, the value
given by (11) will in practice represent the magnitude of the spatial damping in our
problem. In any case, the friction coefficient is obtained from (6), i.e. r � ��/k.

Utilizing the real part of (5), it is trivial to calculate the right-hand side of (2). The x- and
y-components of the Lagrangian fluxes to second order in wave steepness then becomes

�U�

�t
� gh

���

�x
� �gka

� � 2

�kx cos2 � sin �	 exp��2kx cos � � 2�y	 � 
��h
�x	 /�. (12)

�V�

�t
� gh

���

�y
�

�

2k �gka

� �2

�kx sin 2� � sin �	 exp��2kx cos � � 2�y	 � 
��h
�y	 /�. (13)
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In this calculation we have neglected all terms proportional to (�/k)2, and higher orders.
As demonstrated by Mei (1973) for standing edge waves in the absence of friction, the first
term on the right-hand side of (12) is the divergence of the radiation stress component by
Longuet-Higgins and Stewart (1960) plus the contribution from the dynamic bottom
pressure, i.e. {��S11/� x � tan �p� (�h)}/�. It is easily verified that the first term on the
right-hand side of (13) is just {��S22/� y}/�, where S22 is given by Mei (1973) in the case
when � � 0.

Following Longuet-Higgins (1953), the Stokes drift (u� S, v�S) to second order in wave
steepness for this problem is easily obtained from the linear wave solutions. By integrating
in the vertical, we get the Stokes flux for this problem:

U� S � �
�h

0

u� Sdz � 0,

(14)

V� S � �
�h

0

v� Sdz �
gka2

2� sin2 �
�exp��2kx cos � � exp��2kx sec �		 exp��2�y	.

The total wave momentum in the trapped region thus becomes:

M � � �
0

�

V� Sdx �
�ga2

4� cos �
exp��2�y	. (15)

For inviscid flow (� � 0), and shallow water (cos � � 1), this result conforms to that of
Kenyon (1969). For the spatially damped Stokes edge wave, the energy density (7)
becomes

E �
�ga2

4k cos �
exp��2�y	. (16)

From (15) and (16) we note that E � Mc, where c � �/k is the phase speed. This is in
accordance with Starr’s (1959) general result for waves.

For the total momentum balance in the trapping region, we integrate the alongshore
component (13) in the x-direction from the shore to infinity. Defining

Q � � �
0

�

V� dx, B � �g �
0

�

h�� dx, TB � �
0

�


� �h
�y	 dx, (17)

we find for the rate of change of the total mean Lagrangian momentum Q that

�Q

�t
� �

�B

�y
�

�E

�y
� TB. (18)
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We note the interesting difference between the Stokes edge wave and plane surface waves
in the y-direction. In the latter case the radiation stress forcing on the right-hand side would
be ��(E/ 2)/� y for deep water waves and ��(3E/ 2)/� y for shallow water waves
(Longuet-Higgins and Stewart, 1960). For the Stokes edge wave the water appears shallow
for small x, and deep for large x. Hence, the cross-shore integration yields the in-between
value ��E/� y for the forcing term, as seen from (18).

3. Steady mass transport

We consider the steady mass transport. The turbulent bottom stresses are modeled by the
mean Eulerian velocities. In the direction normal to the coast the velocities are small. Here
we can neglect the bottom friction, and the balance to lowest order in this direction is
between the pressure gradient due to the mean surface slope, the radiation stress
component, and the mean dynamic pressure at the sloping bottom (Mei, 1973). From (12)
we then obtain for the mean surface slope

g�� � �
1

2 �gka cos �

� �2

exp��2kx cos � � 2�y	. (19)

Assuming that the alongshore mean velocity is much larger than the cross-shore one, we
write the turbulent bottom stress in the y-direction:


� �h
�y	 /� � cD�V� E�V� E/h2. (20)

where cD is a bottom drag coefficient. From Longuet-Higgins (1953) we have for the mean
alongshore Eulerian volume flux induced by friction:

V� E � V� L � V� S. (21)

where the Lagrangian flux V� L is equal to V� in (1), and V� S is given by (14). Inserting (19)
and (20) into (13), we obtain for the steady mean Eulerian volume flux:

V� E � �g�a2

2cD
� 1/2

x tan � exp��kx cos � � �y	. (22)

The present approach separates the decay of wave momentum from the frictional influence
on the mean flow, which is physically sound (Jenkins, 1989; Weber and Melsom, 1993;
Ardhuin and Jenkins 2006). We note from (22) that it is the divergence of the radiation
stress through spatial wave decay that drives the mean Eulerian flow, while the magnitude
depends on the turbulence (the roughness etc.) at the sloping bottom. A turbulent decay of
wave energy (� � 0) cannot exist without a turbulent bottom drag on the mean flow, so the
limit: � small and finite, cD3 0 in (22), is unphysical.

From the continuity equation we obtain for the cross-shore flux in a steady state:
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�U� E

�x
� �

��V� S � V� E	

�y
. (23)

We then find, assuming that U� E ( x � 0) � 0:

U� E �
g�a2

2� sin2 � cos �
�sin2 � � exp��2kx cos �	

� cos2 � exp��2kx sec �		 exp��2�y	

� �g�3a2

2cDk4�1/2 sin �

cos3 �
�1 � �1 � kx cos �	 exp��kx cos �		 exp���y	.

(24)

We realize that from this that �U� E/V� E� � O(�/k), which justifies the neglect of the
cross-shore velocity in the bottom drag (20).

We now define the along-shore vertically-averaged Stokes drift �vS�, the and Eulerian
mean current �vE� by

�vS� � V� S/h, �vE� � V� E/h, (25)

where h � x tan �. The vertically-averaged Lagrangian drift thus becomes

�vL� � �vS� � �vE�. (26)

It easily seen that these average velocities have a maximum at the coast ( x � 0).
In order to relate our theoretical results to the natural environment, we consider shallow

water, and take � � 0.1 as a typical beach slope angle. High-frequency edge waves yield
the largest drift velocities, while low-frequency waves related to the motion of atmospheric
low-pressure systems have higher total mass fluxes (Kenyon, 1969). We here focus on drift
velocities, and use the classic observation by Munk (1949) in the surf-beat range, giving a
wave period T � 60 s, and a wave amplitude a � 0.1 m. For the modeling of tidal currents
in the Barents Sea typical values of the eddy viscosity and bottom drag coefficients are
� � 10�3 m2 s�1 (Nøst, 1994), and cD � 3 � 10�3 (Gjevik et al., 1994; Nøst, 1994),
respectively. At a sloping beach, eddy viscosity estimates are higher by a factor of 10
to 50 (Apotsos et al., 2007), mainly due to turbulence induced by breaking waves.
Reported drag coefficients seaward of the surf zone is comparable with those used for
tidal current modeling. From Feddersen et al. (2003) we find that cD � 2 � 10�3 outside
the surf zone. Normally, we will expect a considerable amount of turbulence within the
trapping region of edge waves. Without specifying the source of turbulence, which
is outside the scope of this paper, it seems reasonable to take � � 5 � 10�3 m2 s�1 and
cD � 2.5 � 10�3 in quantifying the drift induced by the Stokes edge wave. In Figure 2 we
have plotted the vertically-averaged velocities (25) and (26) as function of seaward
distance for the physical parameters given here. We note that the Eulerian mean velocity is
the dominating component of the Lagrangian drift velocity. In the present example we find
�vL� ( x � 0, y � 0) � 6 cm s�1. This is in fact a mean mass transport velocity which is
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comparable to traditional wind surge velocities. The drift velocity components decay
exponentially in the seaward direction. The alongshore drift becomes negligible outside the
wave trapping zone x � L, where L � �/k � 280 m in this example.

4. Discussion and concluding remarks

In this paper we have shown for the Stokes edge wave that the time rate of change of the
total Lagrangian mean momentum is forced by the divergence of the total energy density
�E/� y, independent of the bottom slope. This is exactly mid-way between the deep and
shallow water values for ordinary surface waves (Longuet-Higgins and Stewart, 1960).
This appears to be a novel result.

Furthermore, we have derived an analytical expression for the vertically-averaged
Lagrangian drift velocity induced by the Stokes edge wave. This drift is composed of a
Stokes drift component plus an Eulerian mean velocity, where the latter arises from the
effect of bottom friction. Examples from moderately sloping beaches show that the mean
Eulerian part of the velocity dominates, and are by far the largest contribution to the
Lagrangian drift velocity, as seen from Figure 2. This has not been reported in the literature
before.

Figure 2. Mean drift velocity components (25) and (26) at y � 0, vs. distance from the coast x.
Dashed line depicts �vS�, dotted and solid lines depict �vE�, and �vL�, respectively. The physical
parameters are: a � 0.1 m, T � 60 s, � � 5 � 10�3 m2 s�1, and cD � 2.5 � 10�3.
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For given wave amplitude, the drift velocities increase with decreasing slope angle. In
the example given by Kenyon (1969), the slope angle was 0.02 radians, yielding a Stokes
drift at the shore of 15 cm s�1. This is rather extreme. For a more reasonable slope like 0.1
radians, as in the present example, the Stokes drift at the shore becomes 0.1 cm s�1, which
is negligible, compared with the Eulerian mean component of about 6 cm s�1, as seen from
Figure 2. The contribution from the Stokes drift increases with increasing amplitude. This
is obvious from Figure 3, where we have plotted the drift velocity components when the
amplitude is 0.3 m, which is probably on the larger side for high-frequency edge waves.
Still we must conclude that the Stokes drift contribution is negligibly small. The Stokes
drift contribution also increases with decreasing value of the viscosity coefficient.
However, even with a molecular viscosity coefficient (� � 1.2 � 10�6 m2 s�1) in this
problem, which is highly unrealistic, the Stokes drift contribution would be smaller than
the mean Eulerian flow.

The present approach does not resolve the viscous bottom boundary layer, so the results
should not be used to assess the drift of heavy bottom sediments. However, it yields the
vertically-averaged drift in the water column as function of the seaward distance. In
practice, the maximum of this drift current occurs near the shore. We think that this drift
may be of importance for the transport along the shore of biological material, pollutants, as
well as light sediments in suspension. The Stokes edge wave and the associated drift

Figure 3. Same as in Figure 2, but with wave amplitude a � 0.3 m.
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current can have either direction along a straight coast. This is important to keep in mind
when we try to estimate the whereabouts of effluents released in the near-shore zone.
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