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Ocean color data assimilation with material conservation for
improving model estimates of air-sea CO2 flux

by John C. P. Hemmings1, Rosa M. Barciela2 and Michael J. Bell2

ABSTRACT
A nitrogen balancing scheme for ocean color data assimilation in general circulation models is

described and its potential for improving air-sea CO2 flux estimates is demonstrated. Given increments
for phytoplankton, obtainable from a univariate surface chlorophyll analysis, the scheme determines
mixed layer concentration increments for the other nitrogen pools: zooplankton, detritus and dissolved
inorganic nitrogen (DIN). The fraction of the phytoplankton increment to be balanced by changing
DIN varies dynamically with the likely contributions of phytoplankton growth and loss errors to the
error in the background state. Further increments are applied below the mixed layer wherever positive
DIN increments in shallower layers would otherwise cause the creation of unrealistic sub-surface
minima. Total nitrogen at each grid point is conserved where possible.

The scheme is evaluated by 1-D twin experiments for two contrasting locations in the North
Atlantic, in which synthetic chlorophyll observations are assimilated in an attempt to recover known
system trajectories generated by perturbing model parameters. Dissolved inorganic carbon (DIC)
and alkalinity tracers, controlled by the nitrogen dynamics, determine the biological modification of
sea-water pCO2 at the ocean surface. Assimilation affects DIC and alkalinity directly, the increments
being inferred from the nitrogen increments, as well as having a post-analysis effect via the dynamics.
It gives major improvements in surface pCO2 at 50N but less improvement at 30N where errors
in the phytoplankton nitrogen:chlorophyll ratio cause it to have a detrimental effect in summer.
Beneficial effects of nitrogen balancing are demonstrated by comparison with experiments in which
only phytoplankton and DIC are updated in the analysis.

1. Introduction

Changes in biogeochemical cycles in response to anthropogenic forcing of the global
climate system have the potential to introduce strong climate feedbacks. However, system
complexity prevents us making reliable predictions of the magnitude or even the sign of such
feedbacks at present. Biological modification of the oceanic uptake of CO2 and the vertical
carbon flux within the ocean seems likely to play an important role and it is important to
improve our understanding of the processes controlling these fluxes and how they might
vary in the future. Ocean color data from satellites, now available as a continuous time-series
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with near global coverage since the launch of the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) in 1997, provide a particularly important resource in this context because of
their spatial and temporal coverage, unachievable with in situ measurements. However, the
data relate almost exclusively to the near surface phytoplankton and must be combined
with information about other components of the system to quantify net carbon fluxes. This
necessitates assimilating the data into models of the global ocean that provide a synthesis
of our understanding from theory and observation.

Present understanding of pelagic ecosystems has led to a number of ocean general circu-
lation models (OGCMs) with explicit plankton sub-models, providing different represen-
tations of the global carbon cycle (e.g. Six and Maier-Reimer, 1996; Palmer and Totterdell,
2001; Aumont et al., 2003; Gregg et al., 2003; Moore et al., 2004). The plankton mod-
els represent elemental cycles in terms of flow of material between compartments, each
compartment representing a biotic or abiotic component of the system. The number of
compartments varies between models. The degree of complexity desirable is dictated in
part by the application but the amount that can be justified in the absence of appropriate
observational constraints is also an issue (Anderson, 2005). Progress in quantifying impor-
tant feedbacks will require the development of more accurate simulation systems in which
models are constrained by earth observation data from satellite and in situ measurements.
Sequential data assimilation procedures are needed that combine information from simula-
tions and observations to provide optimal estimates of the ocean state. In addition, because
biogeochemical models are necessarily empirical, with many constant parameters repre-
senting factors that in nature are highly variable, data assimilation has an important role to
play in improving the models themselves by constraining the values of these parameters.
Parameter estimation techniques are valuable, not only for improving individual models,
but also for allowing different models of varying complexity to be objectively evaluated
against each other in the presence of parameter uncertainty (Friedrichs et al., 2006).

Most data assimilation work in the biogeochemical modeling field to date has focussed
on parameter estimation using inverse methods. These require a large number of model
integrations, which has restricted their application to 0-D or 1-D models or short period
integrations of 3-D models of limited spatial extent or resolution. Studies are typically
based on in situ data sets from individual time-series sites (Matear, 1995; Fasham and
Evans, 1995; Prunet et al., 1996a,b; Hurtt and Armstrong, 1996; Spitz et al., 1998, 2001;
Fasham et al., 1999, 2006; Fennel et al., 2001; Schartau et al., 2001; Friedrichs, 2002;
Faugeras et al., 2003, 2004; Dadou et al., 2004; Kuroda and Kishi, 2004; Weber et al., 2005).
Calibrated models are rarely tested at other sites so it is unclear how widely applicable the
resulting parameter sets might be. Recent North Atlantic studies have started to address
this problem by optimizing over multiple time-series sites in different parts of the basin
simultaneously (Hurtt and Armstrong, 1999; Schartau and Oschlies, 2003a,b). Oschlies and
Schartau obtained promising results from a basin-scale validation of a 3-D model calibrated
in 1-D mode with data from 3 different sites. However, model-data misfits remained much
larger than the observational error estimates.
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The need for globally applicable models and the sparse nature of in situ measurements
makes the use of satellite data in model calibration highly desirable, ideally in combination
with data from multiple time-series sites. Some recent studies using satellite ocean color
data have explored how optimal model parameters might vary spatially. Garcia-Gorriz
et al. (2003) calibrated a 3-D model of the Adriatic Sea to fit SeaWiFS chlorophyll data
and found differences between optimal parameters for northern and southern regions. In a
similar study, in the Bay of Biscay, Huret et al. (2007) also found differences in parameter
values between different study areas. Tjiputura et al. (2007) assimilated seasonal maps of
SeaWiFS chlorophyll into a coarse resolution model of the global ocean, performing separate
calibrations for each season. When the domain was divided, assimilation of data for different
latitude regions produced different results, with assimilation of high latitude data producing
greater variance in parameter values between seasons than tropical data. Other studies using
0-D models have optimized parameters for the whole annual cycle. Hemmings et al. (2003)
assimilated SeaWiFS chlorophyll data and in situ estimates of winter-time nitrate at points
on a 5◦ grid in the North Atlantic, testing their results against unassimilated data at alternate
grid points. They found that regional calibrations gave a better fit to the validation data
than that given by the optimal parameter set for the whole domain. Hemmings et al. (2004)
introduced an objective method for finding the number and geographic scope of parameter
sets that would allow the best fit to be achieved. Losa et al. (2004) investigated spatial
variation in optimal model parameters by assimilating chlorophyll data at individual points
on a similar grid using a weak constraint technique that allows for model error. Introducing
the resulting parameter variations into a 3-D simulation greatly improved the representation
of regional scale chlorophyll patterns (Losa et al. 2006). Together, these studies suggest that
any attempt to calibrate present models for the global ocean invites the prospect of obtaining
parameter sets that are a poor compromise for all locations. Allowing spatial variation in
parameter values might be a useful way of learning about model deficiencies with a view
to developing more general parameterizations.

Although the inherent uncertainties associated with plankton models have encouraged
the use of biogeochemical data for parameter estimation rather than state estimation, there
has been some progress with sequential state estimation techniques too (Armstrong et al.,
1995; Anderson et al., 2000; Popova et al., 200a,b; Allen et al., 2003; Beşiktepe et al.,
2003; Hoteit et al., 2003; Losa et al., 2003; Natvik and Evensen, 2003; Magri et al.,
2005; Dowd, 2006; Torres et al., 2006; Raick et al., 2007; Gregg, 2007; Lenartz et al.,
2007). One of these, a property-conserving Monte Carlo method known as the Sequen-
tial Importance Resampling filter, has been used to estimate parameters concurrently with
the model state (Losa et al., 2003; Dowd, 2006). In this case, the parameters are not con-
strained to be invariant in time. Seasonal cycles of parameter values derived from long
hindcasts with the SIR filter could potentially replace fixed parameters in operational
models (Brasseur et al., 2005). Alternatively, the parameter time series might suggest
improved parameterizations of the ecosystem response to seasonal change in the physical
environment.
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The spatial coverage provided by satellite data makes them particularly well suited to
sequential state estimation schemes in 3-D circulation models. In early work by Ishizaka
(1990), chlorophyll data from the early Coastal Zone Color Scanner (CZCS) sensor were
used to re-initialize the phytoplankton field in an embedded NPZD model of the nitrogen
cycle. This is a type of model with 4 nitrogen compartments representing dissolved inorganic
nitrogen (DIN), phytoplankton, herbivorous zooplankton and detritus. Nitrogen, as a lim-
iting nutrient for phytoplankton growth, is one of the most important factors controlling the
carbon cycle. The analysis was multivariate, the other nitrogen variables being updated to sat-
isfy a temperature based total nitrogen criterion. Only one chlorophyll map was assimilated
and the simulation state was found to revert to that of the free running model within 2 days.

In the first truly sequential assimilation of satellite chlorophyll, Armstrong et al. (1995)
used a nudging scheme to assimilate CZCS chlorophyll data into a 7 compartment nitro-
gen cycle model of the North Atlantic. Here, the analysis was univariate. Instability in one
of the unassimilated variables led to unsatisfactory results with the 7 compartment model
but experiments with a more complex ‘multi-food chain’ version showed more promising
results. Natvik and Evensen (2003) used an ensemble Kalman filter (EnKF) to assimilate
SeaWiFS chlorophyll data into a similar North Atlantic model. The EnKF is appropriate
for biogeochemical models because of its effectiveness in simulating the evolution of mul-
tivariate error statistics in non-linear systems. However, the number of ensemble members
required in the simulation makes it computationally expensive. Multivariate assimilation of
chlorophyll allowed the system to produce a pattern of spring bloom development over the
basin that was consistent with the data. Gregg (2007) assimilated daily SeaWiFS data into a
model of the global ocean with 8 nitrogen compartments, 4 of which represented different
phytoplankton functional types. A simple univariate scheme, the Conditional Relaxation
Analysis Method (CRAM), was used and the resulting chlorophyll increments were par-
titioned between the phytoplankton types in the analysis, retaining their relative concen-
trations. Model chlorophyll was validated against satellite and in situ chlorophyll data. In
addition, primary production was validated against alternative estimates derived directly
from satellite data. Results for chlorophyll were greatly improved over the free run and
production was also improved but to a lesser extent. Nerger and Gregg (2007a) performed a
similar univariate experiment with a simplified version of the SEIK filter as a step towards
a multivariate assimilation system. The SEIK filter is an efficient ensemble-based Kalman
filter that uses a low rank approximation of the covariance matrix to describe the state
error characteristics. Static error statistics were used in this implementation. Nevertheless,
a small improvement in performance over the bias correction method was obtained for
surface chlorophyll. Further improvement was achieved with the addition of an online bias
correction method (Nerger and Gregg, 2007b). Unassimilated variables were not validated
against independent observations in any of these studies so the benefits of chlorophyll
assimilation with respect to other components of the system remain unclear.

Our focus in the present work is on estimating the air-sea flux of CO2, driven by the
pCO2 difference across the air-sea interface. The primary aim of assimilating ocean color
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is therefore to improve estimates of the seawater pCO2. The biological controls on surface
pCO2 result from biotic modification of the total dissolved organic carbon (DIC) and the
alkalinity by a combination of photosynthesis, respiration and calcification. In this context,
an ocean color assimilation scheme must make the best possible use of phytoplankton-
related information for correcting not just the phytoplankton biomass but all components
of the system affecting DIC and/or alkalinity.

We present here a computationally efficient scheme for balancing daily surface phyto-
plankton increments in an NPZD nitrogen cycle model. The phytoplankton increments can
be derived directly from univariate analyses of surface chlorophyll performed by existing
sequential assimilation schemes. Its potential for improving surface pCO2 estimates is eval-
uated by identical twin experiments in a 1-D test-bed. The design of the scheme is described
in Section 2 and the evaluation experiments are described in Section 3. The results are then
presented and the scheme’s potential discussed.

2. The nitrogen balancing scheme

a. Principles

The nitrogen balancing scheme takes daily surface phytoplankton increments and deter-
mines surface increments for DIN, zooplankton and detritus and sub-surface increments
for all four nitrogen tracers. The nitrogen increments are added to the existing or back-
ground state to obtain an analysis state which provides the initial conditions for the next
24 h of the simulation. The scheme is designed to correct for model error arising from
inadequate representation of biological processes that transfer nitrogen between the four
nitrogen compartments. While errors in physical transport processes will also have a strong
effect on surface phytoplankton concentration, via their effects on the availability of DIN
and light and the redistribution of biomass, it is inappropriate for a biogeochemical assimi-
lation scheme to attempt to compensate for these effects. They should ideally be addressed
by improving the physical simulation and are not considered in the design of the scheme
presented here. In addition, there is no explicit treatment of errors in biogeochemical pro-
cesses affecting the sinking rate of particles or errors in biological transport processes. In
most models these are errors of omission: detritus is given a constant sinking velocity and
plankton are treated as passive tracers. The importance of such errors, relative to errors
in the inter-compartmental fluxes, will be model-dependent and is difficult to quantify at
present, so their potential impact on the scheme’s performance is unclear.

In the absence of gravitational sinking and biological transport, an ideal material con-
serving circulation model with perfect representation of advection and diffusion would
introduce no errors in the distribution of total nitrogen, irrespective of errors in the parti-
tioning of material between compartments. On this basis, balancing increments are made
in such a way that the analysis conserves total nitrogen at each grid point if possible. Grav-
itational sinking and biological transport do not affect all nitrogen pools equally and, even
if accurately represented, will interact with errors in partitioning between compartments to
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cause errors in the total nitrogen field. The scheme cannot directly correct for such errors
but aims to reduce them by making frequent corrections to the individual tracers.

The scheme uses two different local balancing models to calculate the required increments
at individual grid points. In the upper mixed layer and below, down to its maximum depth
over the last 24 hours, a local balancing model for phytoplankton increments is used to
calculate increments for the other tracers. Below the current mixed layer, the situation is
more complicated. Balancing increments made to surface DIN concentration sometimes
leave behind unrealistic sub-surface DIN minima. Sub-surface DIN increments are then
required to correct the profile, which introduces the need for a second local balancing
model that responds to DIN increments instead of phytoplankton increments.

b. Increments to nitrogen tracers in the upper mixed layer

i. Overview. The nitrogen balancing model for phytoplankton increments calculates a
time varying factor for each of the other tracers, referred to as a balancing factor, that sets
the magnitude of its surface layer increment relative to that for phytoplankton. The absolute
surface increments for DIN, zooplankton and detritus are

∆N = −bN∆P (1)

∆Z = −bZ∆P (2)

∆D = −bD∆P, (3)

where bN, bZ and bD are the calculated balancing factors for each tracer. The negated balanc-
ing factors can be interpreted as estimates of the ratio of the background error covariances
to the phytoplankton background error variance. Importantly though, the balancing factors
are not independent of the background state. For nitrogen conservation

bN + bZ + bD = 1. (4)

Eq. 4 is satisfied by the balancing factor model, subject to the availability of nitrogen at the
model grid point.

Material conservation provides a valuable constraint on the analysis but the issue of how
best to partition the balancing increments remains. The optimal solution depends on the
extent to which different processes contribute to the net phytoplankton error introduced
since the last analysis. The time evolution of the phytoplankton concentration is given by

dP

dt
= (G• − L•)P + transport (5)

where G• is the phytoplankton specific growth rate and L• is the phytoplankton specific
loss rate. Ignoring the effect of errors in transport, the phytoplankton error is caused by a
combination of errors in growth and loss. Over a 24 h period, growth involves primarily the
transfer of nitrogen between DIN and phytoplankton. A fraction of the nitrogen required
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Figure 1. Intercompartmental nitrogen flows in an NPZD model. The compartments representing
separate nitrogen pools are dissolved inorganic nitrogen (N), phytoplankton (P), herbivorous zoo-
plankton (Z) and detritus (D). While there are differences between different NPZD models, the flows
shown here indicate the dominant pathways. Some models do not include zooplankton grazing on
detritus (e.g. Schartau and Oschlies, 2003a). Phytoplankton growth is accompanied by an uptake
of DIN. Phytoplankton losses are dominated by grazing and mortality, a fraction of grazing being
egested as detritus. A small loss direct to DIN due to exudation may be included (not shown). In a
24 h period, a relatively small fraction of the nitrogen lost due to grazing and mortality is returned
to DIN either directly (fluxes not shown) or via zooplankton excretion and detrital breakdown.

for growth does originate from zooplankton and detritus but this only becomes significant
when DIN is low. In contrast, loss effects are dominated by the transfer of nitrogen between
phytoplankton and the combined zooplankton and detritus pools, a much smaller fraction
being transferred to DIN. (The inter-compartmental flows are shown in Figure 1.) Partition-
ing of error variance is likely to reflect the amount of nitrogen transferred by each process
so, in general, DIN errors will tend to be negatively correlated with phytoplankton error
caused by errors in the growth rate, while errors in zooplankton and detritus will tend to be
negatively correlated with phytoplankton error caused by errors in the loss rate.

The examples in Figure 2 show relative nitrogen errors in two different cases. In the first
case, growth rate errors dominate so the positive phytoplankton error is associated with a
negative error in DIN. In addition, smaller positive errors occur in zooplankton and detritus.
This is because the excess concentration of phytoplankon increases the turnover of nitrogen
from DIN to zooplankton and detritus via phytoplankton (i.e. the part of flux G•P balanced
by L•P such that P is unaffected). The extent to which this occurs varies, depending on
the phytoplankton specific turnover rate T • = min (G•, L•). In the second case, loss rate
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Figure 2. An example of relative errors in DIN (N), zooplankton (Z) and detritus (D) for the same
error in phytoplankton (P) under different conditions. (See text for details.)

errors dominate and the same phytoplankton error, now attributable to insufficient loss, is
associated primarily with negative errors in zooplankton and detritus with a small negative
error in DIN. Turnover associated with the excess phytoplankton acts to increase the size
of the DIN error and reduce the sizes of the zooplankton and detritus errors.

The variable inputs to the nitrogen balancing model are the model phytoplankton growth
and loss rates, the nitrogen tracer concentrations and the phytoplankton error estimate −∆P .
It uses a two phase approach to calculate the required balancing factors. Initial approxi-
mations, referred to as pre-adjustment factors, are first determined using information about
the simulation since the last analysis together with the phytoplankton error information.
Then, in the second phase, the balancing factor estimates are adjusted, taking into account
the current background state, to satisfy a number of restrictions. The adjustment phase is
important because of the large uncertainty associated with the initial estimates.

ii. Phase 1: pre-adjustment balancing factor determination. In the first phase, the value of
the DIN balancing factor bN is determined directly from the time-varying data. The sum of
the zooplankton and detritus balancing factors bZ+bD is 1−bN, from the conservation equa-
tion (Eq. 4), and the relative magnitudes of bZ and bD are fixed by a parameter fZ such that

bZ = fZ(1 − bN) (6)

and

bD = (1 − fZ)(1 − bN). (7)

fZ is referred to as the zooplankton error fraction. Of the model error in the phytoplankton
nitrogen lost to the combined zooplankton and detritus pools and remaining therein at the
end of the 24 h period since the previous analysis, it indicates the fraction expected to
contribute to zooplankton error. fZ is prescribed as an external parameter (i.e. a parameter
specified a priori as an input to the assimilation system).
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For the purposes of deriving the initial value for bN, the phytoplankton error estimate
−∆P is expressed as the sum of an error component x attributed to errors in the phyto-
plankton growth rate and an error component y attributed to errors in the phytoplankton loss
rate. A model for bN in terms of the unknown x and y is given by a function B, referred to as
the DIN balancing function. B(x, y) is defined in Appendix A (Eq. 20). It has a minimum
value prescribed by an external parameter BMIN. BMIN indicates the fraction of the total
phytoplankton loss error expected to contribute to DIN error. This is referred to as the DIN
error fraction. (The zooplankton error fraction defined above is a fraction of the remaining
error.) B also includes a time-varying turnover term dependent on the model phytoplankton
specific growth and loss rates, denoted G•

0 and L•
0 respectively, and the model phytoplank-

ton concentration P0. The model values are those for the surface mixed layer, averaged
over the 24 h assimilation time step. They are taken to be zeroth-order estimates of the true
quantities. The unknown error components x and y are treated as particular values of two
random variables X and Y , the joint distribution of which is modeled as a time-varying
probability density function p(x, y). Like the turnover term in B, p(x, y) is dependent on
G•

0, L•
0 and P0. Details are given in Appendix A.

The pre-adjustment DIN balancing factor is set to the expected value of B, conditional
on the estimated phytoplankton error:

bN = E
{
B

(
X, Y, P0, G

•
0, L

•
0

) | X + Y = −∆P
}
, (8)

where E is the expectation operator. For particular values of P0, G•
0 and L•

0, bN can be
interpreted geometrically as a weighted average of B(x, y) along the line y = −(x + ∆P)

in the 2-D error component space, with the weighting function given by the estimated joint
probability density p(x, y). The reason for the dependence of bN on the phytoplankton error
becomes obvious if we consider, for example, the situation where the model phytoplankton
growth rate is zero. A positive error, in this case, cannot be due to excessive growth and
must therefore be wholly due to insufficient loss, whereas a negative error could be due to
errors in growth or loss. Clearly, different balancing factors are appropriate for positive and
negative phytoplankton errors.

iii. Phase 2: balancing factor adjustment. The balancing factor adjustment phase ensures
that state-dependent restrictions on the size of the balancing increments are strictly enforced,
while attempting to conserve nitrogen if possible. The restrictions are controlled by external
parameter values. Firstly, to avoid excessive perturbation of the phytoplankton specific
growth rate, DIN increments are not allowed to change the DIN limitation factor controlling
growth rate in the model by more than a specified amount, relative to the value associated
with the background state. In addition, zooplankton concentration cannot be changed by
more than a specified amount, relative to the background concentration and detritus cannot
be reduced below zero.

Adjustment of the balancing factors to satisfy the restrictions is carried out in a sequence
of steps as follows. (1) If the background DIN is too low to allow the increment implied by
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the pre-adjustment value of bN to proceed, bN is reduced. bZ and bD are then calculated from
Eqs. 6 and 7 using the new value. (2) If the background zooplankton is too low to allow
the implied zooplankton increment to proceed, bZ is then reduced to transfer the excess
zooplankton increment to detritus, bD being increased accordingly to satisfy Eq. 4. (3) If, at
this stage, there is insufficient detritus to satisfy a required negative increment, bD must be
reduced, transferring the excess to the combined zooplankton and DIN pools. In an attempt
to contain the adjustment within the combined zooplankton and detritus pools, the excess
is passed to zooplankton in preference to DIN by increasing bZ if there is still scope for
zooplankton adjustment. (4) Any remaining component of a negative detritus increment is
transferred to DIN by increasing bN instead, subject to the DIN restriction. If the restriction
must be imposed at this stage, Eq. 4 cannot be satisfied and nitrogen is not conserved.

The DIN restriction is particularly important. The parameterization of the DIN limitation
factor is model-specific but, in general, it increases rapidly with increasing DIN at low con-
centrations and saturates as DIN becomes plentiful. Basing the restriction on the limitation
factor rather than the DIN concentration per se means that it only has a significant impact
at low concentrations. Under such conditions, the recycling of organic nitrogen becomes
important for growth causing the negative correlation between errors in phytoplankton and
DIN to break down, so large DIN balancing increments are inappropriate. Critically, in fact,
they will tend to cause undesirable positive feedback by increasing the magnitude of the
growth rate errors. The DIN restriction compensates for the absence of a DIN dependent
term in the DIN balancing function B.

The zooplankton restriction forces a transfer of increment from zooplankton to detritus
when low zooplankton concentrations occur in combination with relatively large phyto-
plankton errors. This is consistent with the expectation that mortality, rather than grazing, is
likely to be the dominant loss process when zooplankton concentration is low. The restriction
compensates for the absence of a zooplankton dependency in fZ.

c. Increments to nitrogen tracers below the upper mixed layer

The surface layer increments are applied down to the current mixed layer depth. Below
this depth, compound increments for each tracer are possible. These are the sum of primary
and secondary partial increments. The primary increments are based on the surface incre-
ments and are calculated using the phytoplankton-driven local balancing model described in
Section 2b. They extend the analysis updates down to the maximum depth of the mixed layer
in the last 24 hour assimilation time step, reducing the sensitivity of the vertically integrated
biomass changes to the phase of the diel cycle at which the analysis occurs. The secondary
increments are the DIN profile correction increments, together with balancing increments
to the other tracers calculated by the DIN-driven local balancing model, described below.
The basis for the secondary increments is the expectation that DIN concentrations increase
monotonically with depth throughout most of the ocean, due to light limitation of photo-
synthetic uptake. They are required only in the event that the surface-layer and primary
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increments alone would create an unrealistic sub-surface DIN minimum. The potential for
this exists whenever there are positive DIN increments in shallower layers.

i. Primary increments. The primary phytoplankton increment is the surface increment
scaled to the local background phytoplankton concentration so that the relative increment is
constant with depth, subject to the restriction that the size of the increments must decrease
monotonically with depth. The restriction avoids inappropriate updates to deep phytoplank-
ton maxima where the phytoplankton error is unlikely to be positively correlated with that
for the surface layer. Balancing increments for the other nitrogen tracers are based on the
pre-adjustment balancing factors applied at the surface. These are adjusted to satisfy the
restrictions described in Section 2b in the context of the sub-surface concentrations.

ii. Secondary increments. Non-zero secondary increments occur whenever the DIN con-
centration, after the addition of any primary increment, is still less than the analysis con-
centration for the level above, subject to the constraint that the total DIN increment must
decrease monotonically with depth. The constraint protects against inappropriate updates
to pre-existing sub-surface minima which could be due to the presence of different water
masses below the surface.

A set of secondary increments at a model grid point consists of a positive DIN increment
∆2N plus negative balancing increments for the organic nitrogen tracers required for nitro-
gen conservation. The low sub-surface DIN is assumed to reflect uncorrected errors due to
excessive DIN uptake by the model phytoplankton. However, it is not assumed that all of
the missing nitrogen has remained in the phytoplankton pool. The fraction will depend on
the phytoplankton loss rate in the model. Appropriate balancing increments are therefore
determined for phytoplankton, zooplankton and detritus on the basis of the loss rate, taking
into account the tracer concentrations.

The balancing increments are:

∆2P = −b2P∆2N (9)

∆2Z = −b2Z∆2N (10)

∆2D = −b2D∆2N, (11)

where balancing factors b2P, b2Z and b2D are the balancing model’s negated estimates for
the ratios of the background error covariances for phytoplankton, zooplankton and detritus,
to the DIN background error variance. Nitrogen is conserved where possible by attempting
to satisfy the equation

b2P + b2Z + b2D = 1. (12)

As in the phytoplankton-driven balancing model, a two-phase approach is used. In the
first phase, the pre-adjustment value of the phytoplankton balancing factor is given by

b2P = 1

1 + 0.5∆t (1 − BMIN)L•
0

. (13)
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where ∆t is the assimilation time step (24 h). The second term in the denominator is the
estimated amount of the excess uptake ∆2N lost to zooplankton and detritus, expressed as
a fraction of that remaining as phytoplankton ∆2P . This loss is taken to be proportional
to the mean phytoplankton error over the assimilation time step, estimated at −0.5∆2P . A
fraction BMIN of the loss is assumed to return to DIN over the period ∆t . For levels below
the deepest into which the surface mixed layer penetrated over the assimilation time-step,
the 24 h average mixed layer loss rate L•

0 is replaced by the current loss rate determined
from the background state. The balancing factors for zooplankton and detritus are:

b2Z = fZ(1 − b2P) (14)

and
b2D = (1 − fZ)(1 − b2P). (15)

In the adjustment phase, the values for the balancing factors are adjusted to satisfy the
restrictions on zooplankton and detritus reduction and a further restriction that the phyto-
plankton cannot be reduced by more than a specified factor by the secondary increment. The
maximum reduction factor for phytoplankton applies to the size of the secondary increment
relative to the intermediate concentration, i.e. the concentration present after any primary
increment has been applied. This is in contrast to the zooplankton maximum reduction fac-
tor, which is a constraint for the whole analysis and applies to the total increment relative
to the background concentration. Adjustment of the balancing factors is carried out using
rules analogous to those described in Section 2b.

d. Summary

In summary, the steps in the balancing procedure at each point on the horizontal grid are
as follows.

• Determine surface increments for DIN, zooplankton and detritus using the
phytoplankton-driven local balancing model.

• Assign surface increments to each level above the mixed layer depth.
• For each layer below the mixed layer depth (until done), assign compound increments

equal to the sum of any primary and secondary increments calculated as follows.

Primary increments, above maximum mixed layer depth only:

• Determine phytoplankton increment to match relative increment at surface, subject
to the constraint that increment decreases with depth.

• Determine increments for DIN, zooplankton and detritus using the phytoplankton-
driven local balancing model.

Secondary increments, where DIN concentration after the primary increment (if any) is less
than in the layer above:
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Figure 3. Two example analyses (a and b) showing the background state (open circles, joined),
analysis state (black) and the tracer values corresponding to primary increments only (grey). The
current mixed layer depth and the 24 h maximum mixed layer depth are shown for reference. (See
text for details.)

• Determine positive DIN increment needed to match layer above, subject to the con-
straint that total increment decreases with depth.

• Determine increments for phytoplankton, zooplankton and detritus using the DIN-
driven local balancing model.

To illustrate the procedure, two example analyses are shown in Figure 3. In Figure 3a a
positive surface phytoplankton increment is balanced by negative increments to zooplank-
ton and detritus. No negative increment to DIN is possible beacuse DIN is already depleted.
Below the current mixed layer some DIN is available but concentrations are low and the
sizes of the negative DIN increments are restricted, despite a relatively large pre-adjustment
DIN balancing factor. The analysis preserves the shape of the phytoplankton profile below
the current mixed layer, down to the level immediately above the pre-existing deep phyto-
plankton maximum. At the level of the phytoplankton maximum, the size of the increment
is constrained to that at the level above. The other tracer increments differ from those at the
level above because the impact of the DIN restriction is reduced as a consequence of the
higher DIN concentration.
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In the example in Figure 3b, a negative surface increment to phytoplankton is balanced
by positive increments to the other tracers in ratios given by the pre-adjustment balancing
factors. DIN concentrations are sufficiently high that the DIN restriction has no effect.
Below the current mixed layer, the primary increments to DIN are insufficient to bring its
concentration up to that at the surface, so secondary increments are required; the positive
DIN increments are balanced by negative increments to phytoplankton, zooplankton and
detritus. Below the 24 h mixed layer depth maximum, the existence of a sub-surface DIN
minimum prior to the analysis constrains the size of the DIN increment to that of the total
DIN increment at the level above. However, because primary increments are zero at this
depth, the secondary increment is larger than the secondary increment above. Phytoplankton
and zooplankton concentrations are too low to supply all of the nitrogen demanded by the
pre-adjustment balancing factors (given maximum reduction factors for phytoplankton and
zooplankton of 10 and 2 respectively), so a larger fraction of the required nitrogen is taken
from detritus at this level.

3. Assimilation experiments

a. Test-bed

An initial off-line evaluation of the material balancing scheme has been carried out
in a 1-D test-bed. The test-bed comprises a biogeochemical model forced by physical
fields from a 3-D general circulation model. Forcing data representative of 2 different
locations along the 20W meridian (30N, 50N) are used. The model is a version of the
biogeochemical component of the Hadley Centre Ocean Carbon Cycle Model (HadOCC;
Palmer and Totterdell, 2001). It is an NPZD model carrying dissolved inorganic carbon
(DIC) and alkalinity as additional tracers coupled to the nitrogen dynamics for determina-
tion of the sea surface pCO2. The carbon:nitrogen (C:N) ratio for each organic compart-
ment is fixed. The version of the model used here differs from that described by Palmer
and Totterdell (2001) in having a variable phytoplankton carbon:chlorophyll ratio, reflect-
ing acclimation of the photosynthetic apparatus to the available light and DIN accord-
ing to the model of Geider et al. (1997). In addition, it incorporates the light penetration
and photosynthesis model of Anderson (1993), some modifications to the pathways of
material resulting from grazing and mortality (Totterdell, pers. comm.) and a slow relax-
ation of DIN towards climatological nitrate (Conkright et al., 1994). Relaxation simu-
lates the effect of unmodeled horizontal DIN fluxes and only occurs below both the
1% light level and the bottom of the upper mixed layer. Model equations are given in
Appendix B.

The physical forcing fields are from a 1◦ global integration of the Forecasting Ocean
Assimilation Model system (FOAM; Bell et al., 2000) assimilating temperature data in the
form of satellite sea-surface temperature and in situ vertical profiles. The biogeochemistry is
forced by daily mean solar irradiance, mixed layer depth, surface temperature and surface
salinity. The temperature and salinity affect only the derivation of pCO2 from DIC and
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alkalinity and the air-sea flux of CO2. Although the diel mixed layer depth cycle from the
3-D model is removed by the daily averaging, some variation over the 24 h assimilation
time step remains as the daily means are treated as point-in-time values and interpolated
linearly. The 1-D test-bed is configured with the same depth levels (see Appendix B) and
the same model time-step (1 h) as the 3-D model. After each time step, the tracer values
are homogenized within the mixed layer. Partial mixing of the layer below the deepest fully
mixed layer introduces some diffusion between the mixed layer and the interior but there
is no explicit vertical diffusion scheme. Vertical advection is also omitted.

HadOCC biogeochemistry is included in the 3-D model and the annual cycles obtained
in the test-bed are generally similar to those in the 3-D model. However, neither have been
properly validated against biogeochemical observations at this stage. The environment for
the test-bed experiments should therefore be considered only broadly representative of
actual locations in the eastern North Atlantic, with the 30N configuration representing
oligotrophic conditions in the sub-tropical gyre and the 50N configuration representing
eutrophic conditions at temperate latitudes.

b. Twin experiment design

The tests are based on identical twin experiments in which synthetic data, from a randomly
perturbed version of the model run, are assimilated. Twin experiments allow all aspects of
an assimilation system’s performance to be quantified with reference to known truths. In
experiments with real-world data, this is not possible and interpretation is made more
complicated by the presence of errors in the physical model. The effect of these errors
can seriously compromise assessments of biogeochemical schemes, with respect to their
long-term value in the context of improved physical simulations. Twin experiments provide
an analytical tool for examining the strengths and weaknesses of individual parts of an
assimilation system in isolation, avoiding the need to address all problems simultaneously.
Their main disadvantage is their reliance on assumptions about the likely errors in the
model. Here, it is assumed that much of the error is associated with the absence of temporal
variability in model parameters but there are other numerous other ways that uncertainty
could be introduced.

Trajectories representing the true system state evolution were generated by randomly
perturbing 10 model parameters during the integration (see Appendix B for details). To
allow error statistics for assimilating and non-assimilating runs to be estimated, an ensemble
of 100 possible truths was generated in this way. Each parameter was initialized from a
normal distribution with a mean p̄ equal to the nominal parameter value (i.e. that used in
the standard run) and a standard deviation σp of 25% of its nominal value. At the start of
each day of integration, each parameter value p was both randomly perturbed and weakly
relaxed toward its nominal value p̄ to get a new value

p′ = p + 0.5Zσp − 0.1(p − p̄), (16)
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where Z is a normally distributed random variable with zero mean and unit standard devi-
ation. The value p′ was then adjusted if necessary to bring it within the range p̄ ± 2σp. The
same parameter values were used at all depths.

In all assimilation experiments, increments were made to the DIC and alkalinity tracers
during the analysis to balance the increments from the nitrogen balancing scheme. For
each of the organic tracers (phytoplankton, zooplankton and detritus) a nitrogen increment
implies an associated change in carbon, given by the model’s fixed C:N ratio for that
component. Increments to DIC are applied such that total carbon is conserved at each grid
point, given these implicit carbon increments. Alkalinity is incremented in the opposite sense
to DIN, consistent with the model dynamics. Assimilation thus affects DIC and alkalinity
directly as well as having a post-analysis effect via the impact of the nitrogen increments
on the dynamics.

Assimilation results are presented in Section 4 for two complete calendar years. The
ensemble runs and the standard run, into which data from the ensemble are to be assimilated,
are all started with initial conditions extracted from 3-D model output at the beginning
of February in year 1 and allowed to run for 11 months prior to assimilation. The same
physical forcing is used for each of the 3 calendar years. Figures 4 and 5 show the true
system trajectories for 3 ensemble members for the two calendar years of the assimilation
experiments (years 2 and 3).

The data assimilated are daily mean surface concentrations from the truth ensemble
with no observation error added. The surface values for the assimilated variables are fully
corrected in the analysis so analysis errors in the mixed layer are non-zero for unassimilated
variables only. Investigation into the sensitivity of the scheme’s performance to missing
data and realistic observation errors is beyond the scope of the present paper. In the first
experiment, chlorophyll data only are assimilated and chlorophyll increments are converted
to phytoplankton increments using the nitrogen:chlorophyll ratio from the model, which is
directly proportional to its carbon:chlorophyll ratio. In later experiments, both chlorophyll
and phytoplankton nitrogen are assimilated in order to focus on the performance of the
balancing scheme itself. The external parameter values used for the nitrogen balancing
scheme are given in Table 1. Further parameter values are specified in Appendix A for the
probability model used in the pre-adjustment DIN balancing factor determination.

4. Results

a. Overall performance of the chlorophyll assimilation scheme

Figures 6–7 show the performance of the scheme for synthetic daily chlorophyll obser-
vations (Experiment A) compared with its performance when both chlorophyll and phyto-
plankton nitrogen are assimilated (Experiment B). Statistics for the free run (i.e. the standard
run with no assimilation) are also shown for reference. The first year of the assimilation
(year 2) is preceeded by 11 months with no assimilation and the second is preceeded by
12 months of assimilation. There are only minor differences in the results between years.
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Figure 4. Surface values of (a) phytoplankton, (b) zooplankton, (c) detritus (d) DIN and (e) pCO2
at 30N 20W for the free run (black) and for 3 randomly selected members of the truth ensemble
(colored). The range for the whole 100 member ensemble is shaded in grey.
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Figure 5. Surface values of (a) phytoplankton, (b) zooplankton, (c) detritus, (d) DIN and (e) pCO2
at 50N 20W for the free run (black) and for 3 randomly selected members of the truth ensemble
(colored). The range for the whole 100 member ensemble is shaded in grey.
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Table 1. Nitrogen balancing scheme parameters.

Parameter Symbol Value

DIN error fraction BMIN 0.1
Zooplankton error fraction fZ 0.7
Nutrient limitation max. reduction factor RQ 1.1
Nutrient limitation max. amplification factor AQ 1.1
Zooplankton max. reduction factor RZ 2
Zooplankton max. amplification factor AZ 2
Phytoplankton max. reduction factor∗ RP 10

∗Only applies to secondary increments.

A strong correlation exists between DIN and pCO2 errors because of coupling between
biologically driven changes in DIN and DIC that are imposed by the fixed carbon:nitrogen
ratios of the organic compartments. The ratio of these changes varies by only a small
amount, the variation being due to different model carbon:nitrogen ratios for phytoplankton,
zooplankton and detritus (6.625, 5.625 and 7.5 respectively). The correlation breaks down
at low DIN concentrations as uptake of CO2 by phytoplankton continues to draw down
DIC, which is still plentiful, but DIN concentration is determined by a balance between
uptake and positive fluxes, only some of which are biological. Positive fluxes can often be
dominated by a strong entrainment flux driven by mixed layer depth variations acting on
large DIN gradients.

The r.m.s. errors for Experiment A at 50N (Fig. 7) show major improvements in all
variables except zooplankton, with no sign of any detrimental effect. For zooplankton, the
r.m.s. errors are better than the free run in year 2 but worse in year 3. The situation is less
satisfactory at 30N. Here, pCO2 errors are greatly improved during winter and spring, when
DIN concentrations are relatively high, but summer and early autumn r.m.s. errors in pCO2

are greater than those for the free run. The pattern is reflected in the DIN errors, especially
over the summer period and there are adverse effects of assimilation on phytoplankton and
zooplankton concentrations in summer too. The DIN error is largely due to a positive bias
that starts to develop over winter and reaches a peak in late spring. This is accompanied
by a negative bias in zooplankton, indicating too much transfer of nitrogen back to DIN
in the case of negative phytoplankton increments or too much transfer of nitrogen from
zooplankton to satisfy positive phytoplankton increments. There is a small positive bias in
chlorophyll (indicative of a larger bias in the background chlorophyll concentration since the
analysis error is zero), showing that negative phytoplankton increments tend to dominate.
There is actually less positive bias in phytoplankton than in chlorophyll and sometimes
the bias is reversed implying that the negative phytoplankton increments are not always
improving the model state. Certainly, there is much less improvement in phytoplankton
than at 50N. Although the low latitude summer pCO2 results are poor compared with the
free run, this is a period when the uncertainty associated with biological activity is low (Fig.
4) and the pCO2 errors are relatively small.
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Figure 6. Ensemble bias and r.m.s. errors at 30N 20W for Experiment A: assimilating chloro-
phyll only (blue) and Experiment B: assimilating chlorophyll and phytoplankton (red). The free
run is shown in black. Statistics are shown for daily mean surface values of (a) chlorophyll,
(b) phytoplankton, (c) zooplankton, (d) detritus, (e) DIN and (f) pCO2.

In Experiment B, model errors in the carbon:chlorophyll ratio (or equivalently nitro-
gen:chlorophyll) do not affect the analysis and assimilation improves pCO2, DIN and detri-
tus throughout the year at both stations. Zooplankton is also noticeably improved at 30N,
though not at 50N. From these results it is clear that, in the twin experiment at least, model
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Figure 7. Ensemble bias and r.m.s. errors at 50N 20W for Experiment A: assimilating chloro-
phyll only (blue) and Experiment B: assimilating chlorophyll and phytoplankton (red). The free
run is shown in black. Statistics are shown for daily mean surface values of (a) chlorophyll,
(b) phytoplankton, (c) zooplankton, (d) detritus, (e) DIN and (f) pCO2.

drift in carbon:chlorophyll is a major source of error. The greater variation in this ratio
at 30N is the main reason for the difference between the Experiment A results at high
and low latitudes. Nutrient limitation of phytoplankton growth at 30N strongly affects the
carbon:chlorophyll ratio, increasing its variance and that of the nitrogen:chlorophyll ratio
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dramatically. The standard deviation in nitrogen:chlorophyll over the ensemble at 30N is
0.68 mmol N (mg Chl)−1, with values ranging from 0.28 to 2.51, compared with a stan-
dard deviation of 0.10 mmol N (mg Chl)−1 at 50N, with values from 0.26 to just 1.62.
The encouraging results for Experiment B show that the scheme has the potential to make
major improvements in surface pCO2 estimates over a wide range of oceanic conditions if
an effective method can be found for correcting errors in the carbon:chlorophyll ratio.

b. Impact of the nitrogen balancing scheme

To examine the impact of the nitrogen balancing scheme, the combined chlorophyll and
phytoplankton assimilation was repeated with nitrogen balancing switched off (Experiment
C). In this experiment, only the phytoplankton and DIC tracers are updated in the analysis;
carbon is conserved but nitrogen is not. The results are shown in Figures 8 and 9.

The most obvious point to note is that without nitrogen balancing the DIN errors are
much worse than the free run at both stations. These errors are associated with positive
biases in the DIN concentration. Moreover, unlike the other experiments where there are
only relatively minor differences between the first and second years of assimilation, there
are much higher errors in DIN at the beginning of the second calendar year of assimilation
at both latitudes. The system does not recover over the winter from the errors introduced
by assimilation in the previous year. The positive bias in DIN is attributable to a tendency
in the experimental set-up for the free-running model to underestimate phytoplankton. In
this situation, the net effect of assimilation without nitrogen balancing is to create excess
nitrogen as phytoplankton which is recycled, mostly via zooplankton and/or detritus, to
accumulate in the DIN pool.

Importantly for air-sea CO2 flux estimation, there are marked periods of negative bias
in pCO2 at 30N. These seem to be caused by excess production fueled by excess DIN
in spring. There is a less dramatic effect at 50N, where significant nutrient limitation of
primary production occurs only late in the summer: positive DIN biases cause negative
pCO2 biases to develop here in late July. It can be seen from these results that, although
much of the improvement in pCO2 is due to improvements in phytoplankton, especially at
50N, the nitrogen balancing scheme is clearly having a beneficial effect. Nitrogen balancing
is particularly important for obtaining good estimates of DIN concentration and this has
important consequences for pCO2 in oligotrophic areas.

The other advantage of nitrogen balancing is local nitrogen conservation. Incidences
of non-conservation do occur during analyses but are uncommon, particularly when both
chlorophyll and phytoplankton biomass are assimilated. This is illustrated by a review of
total surface nitrogen increments. In Experiment B, there are no incidences at 50N. At 30N,
the maximum total nitrogen increment is 0.016 mmol m−3. The mean increment here over
all ensemble members for the 2 year period is tiny (5 × 10−6 mmol m−3). Total nitrogen
increments greater than 0.001 mmol m−3 are restricted to 0.1% of analyses. In Experi-
ment A, non-conservation is more of an issue with maximum total nitrogen increments of
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Figure 8. Ensemble bias and r.m.s. errors at 30N 20W for Experiment C: assimilating chlorophyll and
phytoplankton without nitrogen balancing (cyan). Results for the same assimilation with nitrogen
balancing (Experiment B) are reproduced here for comparison (red). The free run is shown in
black. Statistics are shown for daily mean surface values of (a) phytoplankton, (b) zooplankton,
(c) detritus, (d) DIN and (e) pCO2.

1.28 mmol m−3 at 30N and as much as 2.78 mmol m−3 at 50N. The corresponding means
are 0.00042 mmol m−3 and 0.00017 mmol m−3. Incidences of total nitrogen increments
greater than 0.001 mmol m−3 affect 2.3% of analyses at 30N but only 0.02% at 50N.

Any increase in the model’s total nitrogen as a result of the non-conservative analyses is
ultimately compensated for by the DIN relaxation to climatology, avoiding a detrimental
effect on the nitrogen budget. For application in models designed to conserve total nitrogen
explicitly, some form of correction would be required for any deficit arising. If it is assumed
that the deficit is primarily the result of excessive export from the upper layers due to sinking
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Figure 9. Ensemble bias and r.m.s. errors at 50N 20W for Experiment C: assimilating chlorophyll and
phytoplankton without nitrogen balancing (cyan). Results for the same assimilation with nitrogen
balancing (Experiment B) are reproduced here for comparison (red). The free run is shown in
black. Statistics are shown for daily mean surface values of (a) phytoplankton, (b) zooplankton,
(c) detritus, (d) DIN and (e) pCO2.

particles, this could sensibly take the form of a small adjustment distributed over the whole
water column, maintaining relative tracer concentrations.

c. Balancing factor adjustment

Although nitrogen balancing appears to have a beneficial effect, the individual contribu-
tions of the pre-adjustment balancing factor determination and balancing factor adjustment
phases are less clear. These have been examined in some detail with reference to Experi-
ment B. The extent of balancing factor adjustment occurring in Experiment B is examined
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Table 2. DIN balancing factor adjustments in Experiment B (surface analyses only).

30N 50N

Small ∆P Medium ∆P Small ∆P Medium ∆P Large ∆P

10−4 to 0.1 0.1 to 0.5 10−4 to 0.1 0.1 to 0.5 > 0.5
mmol N m−3 mmol N m−3 mmol N m−3 mmol N m−3 mmol N m−3

Number of
analyses

69429 2403 58893 9501 233

Fraction adjusted 33% 31% 5% 1% 1%
Number of -ve

adjustments
22585 734 47 109 2

Mean -ve
adjustment

−0.23 −0.32 −0.32 −0.32 −0.49

Largest -ve
adjustment

−0.86 −0.90 −0.84 −0.87 −0.53

Number of +ve
adjustments

22 0 2637 17 0

Mean +ve
adjustment

0.14 – 0.30 0.01 –

Largest +ve
adjustment

0.36 – 0.60 0.05 –

first and the effect of the pre-adjustment balancing factors is then considered in the follow-
ing section. Adjustment statistics for the DIN balancing factor bN are shown in Table 2.
Table 3 shows the same statistics for adjustment of the zooplankton increment as a fraction
of the total increment to zooplankton and detritus. This fraction, referred to as the fractional
zooplankton increment, is given by

f ′
Z = bZ

bZ + bD
. (17)

It’s pre-adjustment value is the prescribed zooplankton error fraction fZ(=0.7). Because the
size of the phytoplankton increment determines the sensitivity of the other tracer increments
to their respective balancing factors, any given adjustment will have a greater influence on
the model state when phytoplankton increments are large. To aid appreciation of their
significance or otherwise, the adjustment statistics are therefore tabulated according to
different ranges of the phytoplankton increment. The statistics are for all 100 ensemble
members and both years of the assimilation. Only surface layer analyses are included.

The first thing to note is that adjustment occurs only in the minority of analyses. Never-
theless, when it does occur the adjustments can be large. Negative adjustments to bN occur
as a result of restrictions to the change in the model phytoplankton’s DIN limitation factor,
whereas positive adjustments occur in response to negative adjustments in the zooplankton
and/or detritus balancing factors in the case where both zooplankton and detritus increments
are restricted. Negative adjustments dominate at 30N where significant DIN limitation is
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Table 3. Adjustments to the fractional zooplankton increment f ′
Z in Experiment B (surface analyses

only).

Small ∆P Medium ∆P Small ∆P Medium ∆P Large ∆P

10−4 to 0.1 0.1 to 0.5 10−4 to 0.1 0.1 to 0.5 > 0.5
mmol N m−3 mmol N m−3 mmol N m−3 mmol N m−3 mmol N m−3

Number of
analyses

69429 2403 58893 9501 233

Fraction adjusted 1% 1% 26% 28% 80%
Number of -ve

adjustments
580 19 15113 2640 187

Mean -ve
adjustment

−0.42 −0.33 −0.62 −0.66 −0.66

Largest -ve
adjustment

−0.70 −0.70 −0.70 −0.70 −0.70

Number of +ve
adjustments

34 2 0 0 0

Mean +ve
adjustment

0.09 0.08 – – –

Largest +ve
adjustment

0.18 0.09 – – –

common and, as expected, they are rare at 50N where more eutrophic conditions prevail.
Positive adjustments are much more common at the northerly station.

Negative adjustments to f ′
Z occur as a result of the impact of zooplankton restrictions

on bZ; positive adjustments occur in response to negative bD adjustments. Clearly negative
adjustments to f ′

Z are much more common and at 50N there are no positive adjustments. At
either station, the negative adjustments can be large enough to remove virtually all of the
zooplankton increment implied by the pre-adjustment balancing factor. However, the result
does not imply that the fZ parameter is generally too high, as the incidence of adjustment
is actually rather low. At 30N, adjustment of f ′

Z is particularly rare (1% of analyses). At
50N, f ′

Z is adjusted in a higher proportion of analyses, especially when the phytoplankton
increment is large.

The higher frequency of negative adjustments to f ′
Z at 50N can be explained with refer-

ence to the model runs shown in Figure 5. The annual zooplankton cycle here is characterized
by extremely low winter-time concentrations that remain much smaller than those of phy-
toplankton for a long period in early spring. The same tendency is true in the assimilation
runs, making frequent negative adjustment of bZ inevitable because the analysis is not per-
mitted to change the zooplankton concentration by more than a factor of two. f ′

Z is reduced
as a consequence except in cases when there is a similar or greater relative adjustment to
bD because of insufficient detritus. The imposed zooplankton restriction plays an important
role because of the scheme’s reliance on a constant fZ. However, the parameter values
controlling the restriction (RZ and AZ) are essentially arbitrary so the scheme’s dependence
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Table 4. Sensitivity of surface pCO2 error statistics to pre-adjustment balancing factor
parameterization.

30N 50N
Bias R.m.s. error Bias R.m.s. error

Parameterization µ atm µ atm µ atm µ atm

Control (Expt. B) 0.08 0.82 0.31 2.87
No balancing (Expt. C) −0.91 2.74 −0.38 2.95

fZ = 0 0.24 1.03 0.36 3.95
fZ = 1 0.07 0.84 0.03 2.94

Turnover term omitted 0.03 0.80 −0.08 3.42
Pre-adj. bN = 0.1 −0.26 1.04 −2.37 8.98
Pre-adj. bN = 1 −0.07 1.24 −0.36 3.25
Pre-adj. bN = 0.6 −0.21 0.89 −0.93 3.61
Pre-adj. bN = 0.8 −0.19 0.94 −0.17 2.90

on them is undesirable. Its behaviour suggests that it might benefit from a more sophisticated
zooplankton error fraction parameterization.

The lack of freedom to adjust zooplankton due to its low concentration explains the rel-
atively high incidence of positive bN adjustments at 50N. However, the incidence is low
compared with the number of negative adjustments to f ′

Z. In most cases, the detritus factor
compensates for reduction in bZ either because the zooplankton and detritus increments are
positive or because the detritus concentration is sufficiently high not to introduce a detritus
restriction. The number of positive bN adjustments indicates the total number of analyses
in which a zooplankton restriction affects the DIN concentration, while the number of neg-
ative f ′

Z adjustments indicates the minimum number of analyses in which the zooplankton
increment is restricted. From the numbers in Tables 2 and 3, it can therefore be inferred that
the zooplankton restriction affects the DIN concentration in at most 14% of cases.

d. Sensitivity to pre-adjustment balancing factors

To examine the influence of the pre-adjustment balancing factor parameterization on the
results, a number of sensitivity experiments were performed with Experiment B as a control.
In Experiment B, the zooplankton error fraction parameter fZ was 0.7. This value gave the
minimum pCO2 r.m.s. error values at both stations independently. pCO2 error statistics
for experiments in which fZ was set to its minimum and maximum values, 0 and 1, are
presented in Table 4. The table also summarizes the effect of using simpler parameterizations
for bN. Again, the statistics are for all 100 ensemble members and both assimilation years.
The statistics for the control experiment and Experiment C, in which there is no nitrogen
balancing, are shown for comparison.

The upper value of fZ (fZ = 1) causes only a small increase in pCO2 error over the control
experiment (about 2% at 30N and less than 1% at 50N) and actually reduces the overall
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positive bias, especially at the more northerly station. However, the apparent improvement
here is not due to any reduction in the positive peaks in bias occurring in May (Experiment
B in Figs. 7f and 9f) but to the development of a compensating negative bias in late summer
(data not shown). This occurs in both years of the assimilation but is greater in the second
year, reaching −2 µatm and remaining below −1 µatm for a period of about 40 days. Using
the lower value of fZ (fZ = 0) causes much larger increases in the pCO2 error (26% at
30N and 38% at 50N). There is an adverse impact on the positive bias too, especially in the
south where it is larger by a factor of 3.

Two alternatives to the standard parameterization of the pre-adjustment DIN balancing
factor were examined. In the first, the turnover term in the DIN balancing function (Eq. 20)
is omitted which restricts the upper bound of the balancing factor to 1. In the second, the
pre-adjustment DIN balancing factor was kept constant but treated as a tunable parameter.
Different bN values were required to give the minimum pCO2 r.m.s. error values for the
different stations. The optimal pre-adjustment factor at 30N was 0.6, while a factor of 0.8
gave the lowest error at 50N. The results for these values are tabulated along with those for
the minimum value (bN = 0.1) and the maximum value possible with zero turnover offset
(bN = 1).

Omitting the turnover term from the DIN balancing function actually seems to have a
beneficial effect at 30N where it reduces the pCO2 r.m.s. error by about 2.5%. However,
this is outweighed by a 19% increase at 50N, where omitting nitrogen balancing altogether
only increases the error by about 3.5%. Interestingly though, improvements in bias over the
control are seen at both stations. The apparent improvements at 50N are a consequence of
a similar temporal pattern of positive and negative bias as that described above for fZ = 1
but the reduced bias at 30N is temporally more consistent, suggesting that the positive bias
here is the result of over-correction for the turnover effect.

The minimum r.m.s. error in pCO2 obtainable with a constant pre-adjustment balancing
factor is greater than that for the standard parameterization used in the control experiment
by about 8.5% at 30N and 2.5% at 50N. Relatively large negative biases are also incurred at
both stations. Using extreme values increases the errors further, with a value of 0.1 giving
very poor performance at 50N. For this low value, again there are large negative biases at
both stations. Much smaller biases are seen for bN = 1, similar in magnitude to those for
the control but of opposite sign.

In general, the inferior performance of the constant pre-adjustment DIN balancing factor
parameterization demonstrates the value of the calculations in the first phase of balancing
factor determination. In combination with the adjustment statistics presented in the previous
section, these results show that both phases play an important role.

5. Discussion

A computationally inexpensive nitrogen balancing scheme for ocean color data assimila-
tion has been developed. Updating a model’s nitrogen variables on the basis of information
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relating to phytoplankton only is challenging. Much of the model error affecting DIN, zoo-
plankton and detritus does not affect phytoplankton directly and some of the errors that do
will cancel out leaving no evidence in the phytoplankton concentration. Even in the ideal-
ized case of a perfect phytoplankton analysis with optimal balancing factors, some analysis
error will therefore remain in the other variables. These errors can accumulate over time,
with the consequence that increments correcting for recent errors can sometimes increase
the overall error. Essentially, observations of phytoplankton properties only cannot fully
constrain an imperfect model.

Despite these inherent problems, the tests show that the nitrogen balancing scheme per-
forms well in the sense that, on average, it improves estimates for most of the biogeochemical
variables under most conditions in a way that cannot be achieved in the twin experiments by
a simple scheme without nitrogen balancing. This demonstrates that the improved perfor-
mance is not solely attributable to the improvements in phytoplankton. The results suggest
that univariate assimilation schemes could introduce much larger biases in surface pCO2

with serious implications for air-sea flux estimates. Nitrogen balancing is clearly benefi-
cial and the scheme’s performance might be further improved by optimizing its external
parameters. Although the scheme is designed to conserve nitrogen at individual grid points,
it has performed well in the presence of errors in total nitrogen caused by errors in detritus
concentration and detrital sinking rates. In real-world applications, errors in total nitrogen
will also occur as a consequence of errors in the physical simulation.

The scheme described here is a baseline scheme. Non-zero analysis error in phytoplank-
ton has not been explicitly allowed for in the calculation of the pre-adjustment balancing
factors. This is partly because of an expectation that it is often likely to be small relative
to the model error introduced during the assimilation time-step and partly because of the
difficulty in estimating its variance in advance of the scheme’s implementation in a 3-D
assimilation system. In the experiments presented here where both chlorophyll and phyto-
plankton nitrogen are assimilated, the analysis error is forced to be zero. Significant analysis
error in phytoplankton is present in the chlorophyll only assimilation experiment though
and it will certainly be present in real-world applications. Ignoring this source of error may
mean that the analysis gives excessive weight to the recent model dynamics and to cur-
rent observations. One relatively simple solution might be to carry forward pre-adjustment
balancing factors from the previous analysis and combine them with the new factors with
appropriate weightings.

It is useful to compare the approach used here with the more traditional Kalman filter
algorithm employed by Natvik and Evensen (2003). The Kalman filter uses a purely sta-
tistical approach to solving the problem of updating the unassimilated variables, while the
nitrogen balancing scheme places more emphasis on material conservation and the relation-
ship between the analysis increments and the actual background state. Natvik and Evensen
(2003) did take the model state into account though, in that their EnKF analysis was followed
by a step in which negative fields were set to zero. The EnKF analysis itself conserves the
total inventory of nitrogen (because this will be identical in all ensemble members used to
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calculate the covariances) but does not conserve nitrogen at individual grid-points. While the
nitrogen balancing scheme is designed primarily to correct for model error occurring since
the previous analysis and ignores the issue of analysis error, the EnKF treats the analysis
error explicity: the ensemble representing the error covariances is evolved using the model
to forecast the background statistics for the next analysis. Model error can be included in
the EnKF and other Kalman filter-based schemes but the model error covariances must be
prescribed.

The extent to which Kalman filter-based schemes assimilating chlorophyll only will be
able to update unassimilated variables reliably in the analysis remains to be seen. Eknes
and Evensen (2002) have shown in 1-D twin experiments that the EnKF has the potential
to handle the strong non-linearities present in biogeochemical models and is able to track
zooplankton and DIN in an NPZ model when only phytoplankton data are assimilated.
Other types of Kalman filter too have shown promising results in twin experiments where
synthetic ocean color data are assimilated into more complex 3-D models (Carmillet et al.,
2001; Hoteit et al., 2005). In real-world applications, the main problem is likely to be
the dependency of the results on the assumed characteristics of the model error. Present
understanding of the error characteristics of biogeochemical models is limited and may
inhibit the development of robust Kalman filter-based schemes. Nevertheless, the strengths
of the Kalman filter should not be overlooked and combining Kalman filter techniques for
evolving error statistics with the nitrogen balancing scheme might lead to better performance
than is possible using either method on its own.

Another state estimation technique which should be considered is four-dimensional vari-
ational assimilation (4DVAR). It has been applied with some success to non-linear problems
in atmospheric prediction, as discussed by Park and Zupanski (2003), but has yet to be eval-
uated for biogeochemical models. A 4DVAR analysis involves a weighted minimization of
the misfit between the analysis and background states and the misfit of the model forecast
for some period after the analysis time to observations within that period. The method is
efficient for non-linear problems over short time intervals. It allows dynamical constraints
from the model to contribute directly to the determination of the increments, reducing their
dependence on the specified background error covariances and the observations available at
the analysis time. Weak-constraint 4DVAR techniques can be used to allow for model error
but, as with the Kalman filter schemes, the specification of model error statistics is likely
to be a difficult issue. A hybrid scheme combining the strengths of the nitrogen balancing
scheme with those of 4DVAR is conceivable.

The susceptability of the assimilation to errors in the model nitrogen:chlorophyll ratio is
an area of some concern. In the present work, the nitrogen:chlorophyll ratio is proportional to
the carbon:chlorophyll ratio and both are controlled by a phytoplankton acclimation model,
in which the biomass specific rate of change of chlorophyll depends on the biomass specific
growth rate and the ambient light. Improvements in the DIN concentration due to chloro-
phyll assimilation have some beneficial effect on this ratio via the growth rate. However, a
more direct means of correction is desirable. Ocean color products other than chlorophyll
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may provide an effective way to address the problem. The most direct solution would be
to use ocean color-based estimates of phytoplankton carbon (Behrenfeld et al., 2005) in
conjunction with the chlorophyll product. In addition, ocean color information relating to
the light field or perhaps even to the biomass specific growth rate of the phytoplankton
directly could potentially be used to improve the performance of the acclimation model.
Any information regarding the biomass specific growth rate could also be used to improve
the nitrogen balancing scheme itself by modifying the probability model for growth and
loss error components used in the DIN balancing factor calculation.

In conclusion, assimilation of satellite ocean color data in ocean general circulation mod-
els promises great benefits in the context of efforts to monitor and predict carbon fluxes
in the global climate system. The most effective methods for combining these and other
earth observation data with models are yet to be established but it is clear that sequential
and inverse methods will both play an important role. Our initial experiments show the
nitrogen balancing scheme to be a valuable sequential assimilation tool. Such tools are best
applied to accurate models: model improvement through application of inverse methods
should improve the performance of state estimation schemes in general, by reducing bias
in the background state. For the nitrogen balancing scheme in particular, more accurate
models will also provide better estimates of growth and loss rate for estimating the optimal
DIN balancing factor. Improvements to the biogeochemical models will also be particu-
larly important in long-term forecast applications where the sensitivity to initial conditions
provided by a sequential assimilation system is low.
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APPENDIX A

Determination of the pre-adjustment DIN balancing factor

Three simplifying assumptions are made for the purposes of defining the DIN balancing
function B(x, y) and the phytoplankton error component probability distribution p(x, y):
(1) relative errors in phytoplankton are small, (2) variations in phytoplankton over the assim-
ilation time-step are small relative to the concentration and (3) recently entrained phyto-
plankta with significant histories of sub-surface growth and loss rates over the assimilation
period make up only a small fraction of the stock. Assumption (1) allows the interaction
between X and Y via the concentration to be ignored so they can be treated as independent
variables. The other assumptions then allow x to be related directly to the error in the mean
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phytoplankton specific growth rate and y to the error in the mean phytoplankton specific
loss rate:

x = ∆tP0
(
G•

0 − G•) (18)

and

y = −∆tP0
(
L•

0 − L•), (19)

where G• and L• are the unknown true mean specific growth and loss rates for the mixed
layer.

The assumptions are largely pragmatic, being introduced in order to avoid complexity that
cannot easily be justified given the inherent uncertainties in the process of estimating opti-
mal balancing factors. They are not considered generally robust. The validity of assumption
(1) depends on the performance of the assimilating model so we might expect the balancing
scheme to perform better as the model is improved. Assumption (2) is reasonable in most
circumstances but is violated during intense bloom periods, when phytoplankton concentra-
tion may double in a day or less. Assumption (3) is based on the tendency for phytoplankton
concentration to be lower below the mixed layer than within it. It is violated during sig-
nificant entrainment of stock from a deep phytoplankton maximum or by a combination
of relatively high sub-surface concentrations with a large relative increase in the depth of
mixing over the assimilation time-step.

a. DIN balancing function

B
(
x, y, P0, G

•
0, L

•
0

) = uG(x, y) + (1 − uG(x, y))BMIN

+ 0.5∆t (1 − BMIN)T •
1

(
x, y, P0, G

•
0, L

•
0

)
(20)

where uG is the fraction of the phytoplankton error attributed to errors in the growth rate,
BMIN is the DIN error fraction (the expected DIN fraction of the phytoplankton loss error),
T •

1 is the estimated phytoplankton specific turnover rate and ∆t is the assimilation time
step. If x and y have the same sign then growth and loss errors are additive and

uG = x

x + y
. (21)

Otherwise growth and loss errors partly cancel and uG = 1 if |x| > |y| or uG = 0 if
|x| < |y|. The last term in B is a positive offset designed to correct for the effect of
phytoplankton error on the turnover from DIN to zooplankton and detritus (with a fraction
BMIN going back to DIN). The mean phytoplankton error for calculating the correction is
taken to be half that at the analysis time.
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The true phytoplankton specific turnover rate is the balanced fraction of the phytoplankton
specific growth rate, i.e. min (G•, L•). Instead of the model estimate T •

0 = min (G•
0, L

•
0) a

refined estimate based on Equations 18 and 19 is used:

T •
1 = min

(
G•

0 − x

∆tP0
, L•

0 + y

∆tP0

)
. (22)

b. Error component probability model

The joint p.d.f. p(x, y) is the product of p.d.f.s p(x) and p(y) describing the distributions
of X and Y respectively (since X and Y are treated as independent). The magnitude of the
rate errors is expected to increase as the rates increase, consistent with the model dynamics
in which both rates are products of uncertain factors. Log-normal distributions are therefore
used.

The p.d.f. for the phytoplankton error component attributed to growth rate error is

p(x) = 1

xMAX − x
N

(
log(xMAX − x) − µG

σG

)
(23)

xMAX = ∆tP0G
•
0 (24)

µG = log
(
∆tP0G

•
1

) − σ2
G

2
(25)

where N is the normal distribution with zero mean and unit standard deviation and σG is
an external parameter specifying the uncertainty of the growth rate estimate. xMAX is the
maximum value of x from Eq 18, occurring when the true growth rate is zero. G•

1 is a
model-based estimate of G•:

G•
1 = βG + G•2

0

4βG
, G•

0 < 2βG (26)

G•
1 = G•

0, G•
0 >= 2βG (27)

where βG is a low growth bias correction parameter. G•
1 diverges from G•

0 to allow for
expected bias due to a non-vanishing error variance in a positive quantity. From Eq. 18, the
expected value of the true specific growth rate based on the distribution of X is

xMAX − E(X)

∆tP0
.

The definition of µG (Eq. 25) equates this to G•
1.
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Table 5. Probability model parameters.

Parameter Symbol Value

Low rate bias correction for growth rate estimator βG 0.05 d−1

Low rate bias correction for loss rate estimator βL 0.05 d−1

Error s.d. of estimated growth rate σG 0.2 log10 units
Error s.d. of estimated loss rate σL 0.4 log10 units

Similarly, for the error component attributed to loss rate error

p(y) = 1

y − yMIN
N

(
log(y − yMIN) − µL

σL

)
(28)

yMIN = −∆tP0L
•
0 (29)

µL = log
(
∆tP0L

•
1

) − σ2
L

2
(30)

where the external parameter σL specifies the uncertainty in the loss rate estimate. yMIN is
the minimum value of y from Eq. 19, occurring when the true loss rate is zero. L•

1 is the
model based estimate of L•:

L•
1 = βL + L•2

0

4βL
, L•

0 < 2βL (31)

L•
1 = L•

0, L•
0 >= 2βL (32)

where βL is the low loss bias correction at L•
0 = 0. Eq. 30 ensures that the expected value

of the true specific loss rate
E(Y ) − yMIN

∆tP0

is equated to L•
1.

The parameter values used for the error component probability model in the present study
are given in Table 5.

APPENDIX B

HadOCC biogeochemical model

The process parameterizations and time evolution of the biogeochemistry at vertical grid
points in the test model (depths: 5, 15, 25, 35, 48, 67, 96, 139, 204, 301, 447 m) are as
specified below. Vertical transport fluxes, i.e. sinking and mixing, are omitted for clarity.
Table 6 gives the values of the model parameters. The parameterizations are described in
more detail by Palmer and Totterdell (2001).
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Table 6. Test model parameters.

Parameter Symbol Value Perturbed

C:N ratio for phytoplankton θP 6.625 no
C:N ratio for zooplankton θZ 5.625 no
C:N ratio for detritus θD 7.5 no
Maximum photosynthetic rate Vmax 2 d−1 yes
Initial slope of photosynthesis v

irradiance curve
α 5.56 mg C (mg Chl)−1 (E m−2)−1 yes

Half-saturation conc. for
nutrient uptake

kN 0.1 mmol N m−3 yes

Conc. dependent phytoplankton
specific mortality

m0 0.05 d−1(mmol N m−3)−1 yes

Phytoplankton specific respiration η 0.05 d−1 no
Base zooplankton

specific mortality
µ1 0.05 d−1 yes

Conc. dependent zooplankton
specific mortality

µ2 0.3 d−1(mmol N m−3)−1 yes

Maximum grazing rate gmax 0.8 d−1 yes
Half-saturation conc. for grazing kF 0.5 mmol N m−3 yes
Biomass-equivalent:N ratio

for phytoplankton1
BP 1 no

Biomass-equivalent:N ratio
for zooplankton1

BZ 0.87 no

Biomass-equivalent:N ratio
for detritus1

BD 1.11 no

Fraction of grazed material
ingested

φI 0.77 no

Assimilation efficiency
for phytoplankton

βP 0.9 no

Assimilation efficiency
for detritus

βD 0.65 no

Remineralization rate λ(z) 0.1 d−1 (z < 100 m); 8.58/z d−1 (z > 100 m) no
Nutrient relaxation rate r(z) 0 (z < MLD or z < 1% lt. level); 0.0167 d−1 no
Carbonate precipitated per unit

primary prod.
γC 0.013 yes

Detrital sinking velocity 10 m d−1 yes

1parameter derived from C:N ratio

Phytoplankton specific growth: G• = J (Vmax, α)Q, where J is the maximum light-
limited photosynthesis, calculated according to Anderson (1993), and Q is the DIN limita-
tion factor;

Q = N

N + kN
.

Phytoplankton mortality: MP = mP 2; m = 0 for P <= 0.01 mmol N m−3, otherwise
m = m0.

Zooplankton mortality: MZ = µ1Z + µ2Z
2.
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Grazing: phytoplankton and detritus losses due to herbivorous zooplankton activity are
HP = hP and HD = hD repectively, where h is the grazing rate per unit food concentration:

h = BZZ

Ftot
gmax

F 2

F 2 + k2
F

;

F = max (0, Ftot − Fthreshold), where Ftot = BPP+BDD and Fthreshold = 0.01 mmol N m−3.

Phytoplankton specific loss: L• = mP + η + h.

Nitrogen equations:

dP

dt
= (G• − L•)P

= G•P − MP − ηP − HP (33)

dZ

dt
= φI(βPHP + βDHD) − MZ (34)

dD

dt
= θP

θD
(0.99MP) + θZ

θD
(0.33MZ) + θP

θD
aPDHP + (aDD − 1)HD − λD (35)

dN

dt
=

{
0.01 +

(
1 − θP

θD

)
0.99

}
MP + ηP +

{
0.67 +

(
1 − θZ

θD

)
0.33

}
MZ

+ 0.1(1 − φI)(HP + HD) +
(

1 − θP

θD

)
aPDHP

+ λD − G•P − r(N − Nclim) (36)

where aPD = 0.9(1 − φI) + (1 − βP)φI and aDD = 0.9(1 − φI) + (1 − βD)φI and Nclim is
the climatological nitrate.

Equations for DIC (C) and alkalinity (A):

dC

dt
= θP(0.01MP) + θPηP + θZ(0.67MZ)

+ 0.1(1 − φI)(θPHP + θDHD) + φI{(θP − θZ)βPHP + (θD − θZ)βDHD}
+ θDλD − (1 + γC)θPG•P (37)

dA

dt
= −2γCθPG•P − dN

dt
. (38)
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Beşiktepe, Ş. T., P. F. J. Lermusiaux and A. R. Robinson. 2003. Coupled physical and biogeochem-
ical data-driven simulations of Massachusetts Bay in late summer: real-time and postcruise data
assimilation. J. Mar. Syst., 40–41, 171–212.

Brasseur, P., P. Bahurel, L. Bertino, F. Birol, J. M. Brankart, N. Ferry, S. Losa, E. Remy, J. Schröter,
S. Skachko, C. E. Testut, B. Tranchant, P. J. van Leeuwen and J. Verron. 2005. Data assimilation
for marine monitoring and prediction: The MERCATOR operational assimilation systems and the
MERSEA developments. Q. J. R. Roy. Meteor. Soc., 131, 3561–3582.

Carmillet, V., J.-M. Brankart, P. Brasseur, H. Drange, G. Evensen and J. Verron. 2001. A singular evo-
lutive extended Kalman filter to assimilate ocean color data in a coupled physical-biogeochemical
model of the North Atlantic Ocean. Ocean Model., 3, 167–192.

Conkright, M. E., S. Levitus, and T. P. Boyer. 1994. World Ocean Atlas 1994, Volume 1: Nutrients.
NOAA Atlas NESDIS 1, U.S. Department of Commerce, NOAA, NESDIS.

Dadou, I., G. Evans and V. Garçon. 2004. Using JGOFS in situ and ocean color data to compare
biogeochemical models and estimate their parameters in the subtropical North Atlantic Ocean. J.
Mar. Res., 62, 565–594.

Dowd, M. 2006. A sequential Monte Carlo approach for marine ecological prediction. Environmetrics,
17, 435–455.

Eknes, M. and G. Evensen. 2002. An ensemble Kalman filter with a 1-D marine ecosystem model. J.
Mar. Syst., 36, 75–100.

Fasham, M. J. R., P. W. Boyd and G. Savidge. 1999. Modeling the relative contributions of autotrophs
and heterotrophs to carbon flow at a lagrangian JGOFS station in the Northeast Atlantic: The
importance of DOC. Limnol. Oceanogr., 44, 80–94.

Fasham, M. J. R. and G. T. Evans. 1995. The use of optimization techniques to model marine ecosystem
dynamics at the JGOFS station at 47◦N 20◦W. Philos. T. Roy. Soc. B, 348, 203–209.

Fasham, M. J. R., K. J. Flynn, P. Pondaven, T. R. Anderson and P. W. Boyd. 2006. Development of a
robust marine ecosystem model to predict the role of iron in biogeochemical cycles: A comparison
of results for iron-replete and iron-limited areas, and the SOIREE iron-enrichment experiment.
Deep-Sea Res. I, 53, 333–366.

Faugeras, B., O. Bernard, A. Sciandra and M. Lévy. 2004. A mechanistic modelling and data
assimilation approach to estimate the carbon/chlorophyll and carbon/nitrogen ratios in a coupled
hydrodynamical-biological model. Nonlinear Proc. Geoph., 11, 515–533.

Faugeras, B., M. Lévy, L. Mémery, J. Verron, J. Blum and I. Charpentier. 2003. Can biogeochem-
ical fluxes be recovered from nitrate and chlorophyll data? A case study assimilating data in
the Northwestern Mediterranean Sea at the JGOFS-DYFAMED station. J. Mar. Syst., 40–41,
99–125.



124 Journal of Marine Research [66, 1

Fennel, K., M. Losch, J. Schröter and M. Wenzel. 2001. Testing a marine ecosystem model: sensitivity
analysis and parameter optimization. J. Mar. Syst., 28, 45–63.

Friedrichs, M. A. M. 2002. Assimilation of JGOFS EqPac and SeaWiFS data into a marine ecosystem
model of the central equatorial Pacific Ocean. Deep-Sea Res. II, 49, 289–319.

Friedrichs, M. A. M., R. R. Hood and J. D. Wiggert. 2006. Ecosystem model complexity versus
physical forcing: Quantification of their relative impact with assimilated Arabian Sea data. Deep-
Sea Res. II, 53, 576–600.

Garcia-Gorriz, E., N. Hoepffner and M. Ouberdous. 2003. Assimilation of SeaWiFS data in a coupled
physical-biological model of the Adriatic Sea. J. Mar. Syst., 40–41, 233–252.

Geider, R. J., H. L. MacIntyre and T. M. Kana. 1997. Dynamic model of phytoplankton growth and
acclimation: Responses of the balanced growth rate and the chlorophyll a:carbon ratio to light,
nutrient-limitation and temperature. Mar. Ecol. Prog. Ser., 148, 187–200.

Gregg, W. W. 2007. Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global
ocean model. J. Mar. Syst., doi:10.1016/j.jmarsys.2006.02.015.

Gregg, W. W., P. Ginoux, P. S. Schopf and N. W. Casey. 2003. Phytoplankton and iron: validation of
a global three-dimensional ocean biogeochemical model. Deep-Sea Res. II, 50, 3143–3169.

Hemmings, J. C. P., M. A. Srokosz, P. Challenor and M. J. R. Fasham. 2003. Assimilating satellite
ocean-colour observations into oceanic ecosystem models. Philos. T. Roy. Soc. A, 361, 33–39.

——— 2004. Split-domain calibration of an ecosystem model using satellite ocean colour data. J.
Mar. Syst., 50, 141-179.

Hoteit, I., G. Triantafyllou, G. Petihakis and J. I. Allen. 2003. A singular evolutive extended Kalman
filter to assimilate real in situ data in a 1-D marine ecosystem model. Ann. Geophys., 21, 389–397.

Hoteit, I., G. Triantafyllou and G. Petihakis. 2005. Efficient data assimilation into a complex, 3-D
physical-biogeochemical model using partially-local Kalman filters. Ann. Geophys., 23, 3171–
3185.

Huret, M., F. Gohin, D. Delmas, Michel Lunven and V. Garçon. 2007. Use of SeaWiFS data for light
availability and parameter estimation of a phytoplankton production model of the Bay of Biscay.
J. Mar. Syst., 65, 509–531.

Hurtt, G. C. and R. A. Armstrong. 1996. A pelagic ecosystem model calibrated with BATS data.
Deep-Sea Res. II, 43, 653–683.

——— 1999. A pelagic ecosystem model calibrated with BATS and OWSI data. Deep-Sea Res. I,
46, 27–61.

Ishizaka, J. 1990. Coupling of Coastal Zone Color Scanner data to a physical-biological model of the
southeastern united-states continental-shelf ecosystem. 3. Nutrient and phytoplankton fluxes and
CZCS data assimilation. J. Geophys. Res. Oceans, 95, 20201–20212.

Kuroda, H. and M. J. Kishi. 2004. A data assimilation technique applied to estimate parameters for
the NEMURO marine ecosystem model. Ecol. Model., 172, 69–85.

Lenartz, F., C. Raick, K. Soetaert and M. Grégoire. 2007. Application of an ensemble Kalman
filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea. J. Mar. Syst.,
doi:10.1016/j.jmarsys.2006.12.001.

Losa, S. N., G. A. Kivman and V. A. Ryabchenko. 2004. Weak constraint parameter estimation for
a simple ocean ecosystem model: what can we learn about the model and data? J. Mar. Syst., 45,
1–20.

Losa, S. N., G. A. Kivman, J. Schröter and M. Wenzel. 2003. Sequential weak constraint parameter
estimation in an ecosystem model. J. Mar. Syst., 43, 31–49.

Losa, S. N., A. Vézina, D. Wright, Y. Y. Lu, K. Thompson and M. Dowd. 2006. 3D ecosystem
modelling in the North Atlantic: Relative impacts of physical and biological parameterizations. J.
Mar. Syst., 61, 230–245.



2008] Hemmings et al.: Model estimates of air-sea CO2 flux 125

Magri, S., P. Brasseur and G. Lacroix. 2005. Data assimilation in a marine ecosystem model of the
Ligurian Sea. C. R. Geosci., 337, 1065–1074.

Matear, R. J. 1995. Parameter optimization and analysis of ecosystem models using simulated anneal-
ing: A case study at Station P. J. Mar. Res., 53, 571–607.

Moore, J. K., S. C. Doney and K. Lindsay. 2004. Upper ocean ecosystem dynamics and
iron cycling in a global three-dimensional model. Global Biogeochem. Cy., 18, GB4028,
doi:10.1029/2004GB002220.

Natvik, L.-J. and G. Evensen. 2003. Assimilation of ocean colour data into a biochemical model of
the North Atlantic: Part 1. Data assimilation experiments. J. Mar. Syst., 40–41, 127–153.

Nerger, L. and W. W. Gregg. 2007a. Assimilation of SeaWiFS data into a global ocean-biogeochemical
model using a local SEIK filter. J. Mar. Syst., 68, 237–254.

—— 2007b. Improving assimilation of SeaWiFS data by the application of bias correction with a
local SEIK filter. J. Mar. Syst., doi:10.1016/j.jmarsys.2007.09.07.

Oschlies, A. and M. Schartau. 2005. Basin-scale performance of a locally optimized marine ecosystem
model. J. Mar. Res., 63, 335–358.

Palmer, J. R. and I. J. Totterdell. 2001. Production and export in a global ocean ecosystem model.
Deep-Sea Res. I, 48, 1169–1198.

Park, S. K. and A. Zupanski. 2003. Four-dimensional variational data assimilation for mesoscale and
storm-scale applications. Meteorol. Atmos. Phys., 82, 173–208.

Popova, E. E., C. J. Lozano, M. A. Srokosz, M. J. R. Fasham, P. J. Haley and A. R. Robinson. 2002a.
Coupled 3D physical and biological modelling of the mesoscale variability observed in North-East
Atlantic in spring 1997: biological processes. Deep-Sea Res. I, 49, 1741–1768.

Popova, E. E., M. A. Srokosz and D. A. Smeed. 2002b. Real-time forecasting of biological and
physical dynamics at the Iceland-Faeroes Front in June 2001. Geophys. Res. Lett., 29:doi:10.1029/
2001GL013706.

Prunet, P., J. F. Minster, D. Ruiz-Pino and I. Dadou. 1996a. Assimilation of surface data in a one-
dimensional physical-biogeochemical model of the surface ocean. 1. Method and preliminary
results. Global Biogeochem. Cy., 10, 111–138.

Prunet, P., J. F. Minster, V. Echevin and I. Dadou. 1996b. Assimilation of surface data in a one-
dimensional physical-biogeochemical model of the surface ocean. 2. Adjusting a simple trophic
model to chlorophyll, temperature, nitrate, and pCO2 data. Global Biogeochem. Cy., 10, 139–158.

Raick, C., A. Alvera-Azcarate, A. Barth, J. M. Brankart, K. Soetaert and M. Grégoire, 2007. Appli-
cation of a SEEK filter to a 1D biogeochemical model of the Ligurian Sea: Twin experiments and
real in-situ data assimilation. J. Mar. Syst., 65, 561–583.

Schartau, M., A. Oschlies and J. Willebrand. 2001. Parameter estimates of a zero-dimensional ecosys-
tem model applying the adjoint method. Deep-Sea Res. II, 48, 1769–1800.

Schartau, M. and A. Oschlies. 2003a. Simultaneous data-based optimization of a 1D-ecosystem model
at three locations in the North Atlantic: Part I – Method and parameter estimates. J. Mar. Res., 61,
765–793.

Schartau, M. and A. Oschlies. 2003b. Simultaneous data-based optimization of a 1D-ecosystem model
at three locations in the North Atlantic: Part II – Standing stocks and nitrogen fluxes. J. Mar. Res.,
61, 795–821.

Six, K. D. and E. Maier-Reimer. 1996. Effects of plankton dynamics on seasonal carbon fluxes in an
ocean general circulation model. Global Biogeochem. Cy., 10, 559–583.

Spitz, Y. H., J. R. Moisan, M. R. Abbott and J. G. Richman. 1998. Data assimilation and a pelagic
ecosystem model: parameterization using time series observations. J. Mar. Syst., 16, 51–68.

Spitz, Y. H., J. R. Moisan and M. R. Abbott. 2001. Configuring an ecosystem model using data from
the Bermuda Atlantic Time Series (BATS). Deep-Sea Res. II, 48, 1733–1768.



126 Journal of Marine Research [66, 1

Tjiputra, J. F., D. Polzin and A. M. E. Winguth. 2007. Assimilation of seasonal chlorophyll and nutrient
data into an adjoint three-dimensional ocean carbon cycle model: sensitivity analysis and ecosystem
parameter optimization. Global Biogeochem. Cy., 21, GB1001, doi:10.1029/2006GB002745.

Torres, R., J. I. Allen and F. G. Figueiras. 2006. Sequential data assimilation in an upwelling influenced
estuary. J. Mar. Syst., 60, 317–329.

Weber, L., C. Volker, M. Schartau and D. A. Wolf-Gladrow. 2005. Modeling the speciation and
biogeochemistry of iron at the Bermuda Atlantic Time-series Study site. Global Biogeochem. Cy.,
19, GB1019, doi:10.1029/2004GB002340.

Received: 24 May, 2007; revised: 6 February, 2008.


