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The geography of linear baroclinic instability
in Earth’s oceans

by K. Shafer Smith1

ABSTRACT
Satellite observations reveal a mesoscale oceanic circulation dominated by turbulence that is cor-

related, in most cases, with local baroclinicity. Linear baroclinic instability theory has proved useful
in understanding the time and space scales of atmospheric eddies. The question addressed here is,
to what degree can the observed oceanic eddy activity be understood through a local, linear stability
analysis? This question is addressed as follows. A local quasigeostrophic linear stability calculation is
performed on a grid of wavenumbers, ranging in magnitude about the local deformation wavenumber,
for each vertical profile in a dataset of neutral density for the world’s oceans. The initial results show
that nearly the entire ocean is unstable, but in many places, particularly in low latitudes, the instability
is dominated by surface intensified modes, resulting in very small-scale, quickly growing waves. At
higher latitudes, the primary instabilities are due to thermocline depth shears and have a broader
vertical structure. For each unstable wave, at each location, the mean-to-eddy energy conversion rate
is also calculated and used to select the growing waves that are both fast and have significant energetic
conversion potential. This procedure removes most of the surface-instabilities, which cannot lead to
significant energy conversion, and reveals the slower but more powerful thermocline-level instabilities
where they exist.

The time and space scales of these growing waves are compared to estimates of the Eady growth
rate and deformation scale, respectively. It is found that while the timescale is well-approximated by
the Eady-estimate, the spatial scales are uniformly smaller than the deformation scale, typically by a
factor of 4. The zonally averaged spatial scales are then compared to observed eddy scales. The spatial
scales of maximum growth are everywhere significantly smaller than the observed eddy scales. In
the Antarctic Circumpolar Current, for example, the scale of maximum growth is about 5 km, much
smaller than the observed eddy scales, estimates of which range from 30–100 km. A possible, and
unsurprising conclusion is that the observed eddy scales are the result of an inverse cascade, and
cannot be understood by linear theory alone.

1. Introduction

Satellite altimetric observations of the ocean surface reveal a circulation dominated by
turbulent flow on scales of 50 to 250 km, the oceanic mesoscale. The apparent eddy dom-
inance at the oceanic mesoscale was first noted, however, from ship-going observations in
the early 1970s. Using available data, Gill, Green, and Simmons (1974, hereafter GGS)
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noted the concurrence of eddy activity with steep isopycnal gradients, and pointed out that
the oceanic mean available potential energy resulting from these isopycnal gradients is
about 1000 times larger than the kinetic energy of the gyre-scale circulation. These two
facts, they argued, are consistent with the hypothesis that eddies are generated by baroclinic
instability. Baroclinic instability develops in flow where both rotation and stratification are
important, as they are at the oceanic mesoscale, and acts to convert mean available potential
energy to eddy kinetic energy. GGS also perform some idealized linear instability calcula-
tions and show that the resulting growth rates are roughly consistent with observed eddy
timescales.

Recent analyses of the global statistics of eddies using satellite altimetry (Stammer, 1997;
Chelton et al., 2007) are consistent with most aspects of this picture, demonstrating that
eddy frequencies, for example, are well correlated with the approximate Eady growth rate
f 〈Ri−1/2〉 from hydrographic data. Stammer (1997) also analyzes the horizontal scale of the
observed eddies, and argues that it is linearly correlated with the local first deformation scale.
In the simplest examples of linear baroclinic instability, such as the Eady and Phillips models
(see, e.g., Pedlosky, 1987), the scale of fastest linear growth is also near the deformation
scale, and so this apparent correlation seems to be reasonable. Therefore, one might argue
that the observed eddy structure can be largely predicted and understood through linear
theory. The implication is that the ocean is in a near-linear state, characterized by weakly
growing waves and mild turbulence. Is this a reasonable conclusion?

One can go beyond estimates of the Eady timescale and deformation scale by system-
atically investigating the local linear instability of the oceanic mean state, as envisioned
by GGS. There appears to be only the calculation by Killworth and Blundell (2007) of the
full instability problem using observed hydrography (and their purposes and presentation
were quite different than that undertaken here), likely because only recently have global
hydrographic atlases approached completeness. The goals of this paper are

1. To present a systematic analysis of the linear stability characteristics of the oceanic
mean state—a reference calculation—, and

2. To compare the scales of fastest, energetically significant growth to observed eddy
statistics.

The dataset of Gouretski and Koltermann (2004, denoted GK04 hereafter) provides monthly,
seasonal and annual averages of temperature and salinity gridded at 1/2 degree in the hor-
izontal, on 45 fixed depth levels, from 72S to 90N, at all longitudes. In the present study
we use annually averaged data, though comparisons were made to seasonally averaged
results, showing negligible differences. Notably, the GK04 dataset interpolation is per-
formed in such a way that neutral stability is ensured (this is not the case for the World
Ocean Atlas 2001 dataset). See GK04 for details and an explicit comparison to the World
Ocean Atlas 2001 dataset. The intrinsic buoyant stability of the dataset allows for the
straightforward computation of “neutral” density (Jackett and McDougall, 1997) for the
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entire world ocean. Topographic slopes are included in the calculation via estimates from
the Smith and Sandwell (1997) topographic atlas.

The complete wave and instability characteristics are presented for a few prototypical
locations, and these demonstrate a number of important features. First and foremost, it
is found that in most locations, fastest growth occurs at a scale smaller than the internal
deformation scale. Unlike the Eady instability, the primary instabilities are typically due
to mean PV gradient zero crossings of the internal shear at thermocline depths. While
Eady instabilities have fastest growth at scales larger than the first deformation radius
(Ready = NH/(1.6f ) = 1.96R1 for constant N ), these internal instabilities have scales
of order R1/4 and smaller. Moreover, in many locations there is significant growth at
much smaller scale (down to scales of 100s of meters) due to the strong shears and weak
stratification near the surface. However, (1) at these scales, quasigeostrophic scaling is
not valid, in particular because the stratification is weak and the shears strong; (2) the
mean hydrography is not accurate on such small space and time scales; and (3) it is
shown here that these surface instabilities are less energetically potent (in terms of their
potential energetic transfer rate for a given perturbation amplitude) than the thermocline
shear-driven instabilities. This is not to say that these instabilities are unimportant—they
are likely a crucial part of the submesoscale dynamics of the surface mixed layer, as
demonstrated by the more complete analysis of Boccaletti et al. (2007). The focus of
the present analysis is the larger scale and energetically potent instabilities of the mean
hydrography.

The global picture that emerges indicates that while the time-scales of observed eddies are
close to that predicted by linear theory, the spatial scales are uniformly larger than the fastest
growing modes. The discrepancy in scale is most extreme in the Antarctic Circumpolar
Current, where eddy scales are of order 30–100 km (Stammer 1997; Chelton et al. 2007, and
R. Scott, pers. comm.), while the largest scales with significant growth are on order 5 km, and
the fastest growing modes are at much smaller scale still. Possible explanations are that other,
larger-scale instabilities missed by the present analysis lead to the observed eddy scales,
or that errors in the mean state lead to spurious results. Scott and Wang (2005), however,
present striking evidence of a strong inverse cascade throughout the ocean, consistent with
the finding here that linear analysis is insufficient to predict eddy scales.

The paper is organized as follows. Basic quantities of relevance to mesoscale eddy dynam-
ics, such as the local neutral modes and deformation scales, and the Eady timescale, are
calculated from hydrography in Section 2. The details of the linear normal mode calcu-
lation are presented in Section 3, and basic results of linear analysis are reviewed. As is
well known, sufficient conditions for instability are based on the mean potential vorticity
and buoyancy gradients—these quantities, as well as an estimate of the Charney depth,
are computed for the global dataset in Section 4. Linear instability calculations for four
profiles at different locations are performed in Section 5, and from these generic features
are identified. The local results guide a complete calculation of linear instability at every
horizontal location in the ocean in Section 6. Energetic conversion rates are also computed
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and used to discriminate the growth rates by energetic relevance. The paper concludes with
a discussion in Section 7, and includes three appendices.

2. Neutral modes, deformation scales and the Eady growth rate

The baroclinic instabilities of the oceanic mean state are typically assumed to be charac-
terized by a length-scale near the first Rossby radius of deformation, and a timescale given
by an estimate of the Eady growth rate. Therefore, before calculating the linear wave solu-
tions, we explain and compute these fundamental characteristics of the mean hydrography.
These computations appear elsewhere in the literature, but are repeated here to provide a
self-contained baseline to which the full instability calculation can be compared.

First, neutral density is computed from the GK04 dataset using the Ocean Data View
software package. As done earlier by Chelton et al. (1998), we then compute the neutral
modes and deformation scales of the neutral density field. The neutral modes are the vertical
structure of solutions to the quasigeostrophic equations linearized about a state of rest (see,
e.g., ref. Pedlosky, 1987). Specifically, the neutral modes are solutions φm = φm(z) with
eigenvalues Km to the Sturm-Liouville eigenvalue equation

Γφm ≡ d

dz

(
f 2

N2

dφm

dz

)
= −K2

mφm, with
dφm

dz

∣∣∣∣
0

= dφm

dz

∣∣∣∣−H

= 0, (2.1)

where N2(z) = −(g/ρ0)dρ̄/dz, for each vertical profile of neutral density ρ̄ = ρ̄(z). In
the above, f = 2Ω sin(θ) is the Coriolis parameter at latitude θ, with rotation rate Ω, g is
the gravitational acceleration and ρ0 is the mean oceanic density, and here we assume a flat
bottom at depth z = −H (though topography is included in the instability calculation later)
and a rigid lid at z = 0. The resulting eigenvalues Km are the local internal deformation
wavenumbers, or the reciprocals of the Rossby deformation radii Rm = 1/Km, and the
eigenfunctions φm form a complete set.

Solutions to (2.1) are computed numerically using centered differences. Note that there
are a number of GK04 profiles with levels at which the centered estimate of the vertical
derivative of the density between two prescribed depth levels is zero. At these points we
simply skip down to the next level at which there is an increase in density, and so always
retrieve a non-zero vertical profile of the density derivative. The resulting contours of the
first deformation radii are plotted in Figure 1a. More detailed analysis and discussion of the
deformation radii can be found in Chelton et al. (1998).

An intrinsic eddy timescale can be estimated by consideration of the energy conversion
generated by baroclinic instability. Assuming horizontally constant flow in thermal wind
balance with the density field, the mean available potential energy in a square area of length
L is

APE = ρ0

2

∫ 0

−H
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N2
Ψ2

zdxdydz = ρ0L
4
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Figure 1. (a) The first internal deformation radii, R1, as calculated from the GK04 dataset, plotted
with logarithmic color scale ranging from 6 km in red to 200 km in blue. Contours at 12, 25, 50
and 100 km are overlayed. (b) The Eady timescale σ−1, from (2.3), in days.

where Ψ = −Uy + V x is the streamfunction for the mean flow, quasigeostrophic scaling
has been assumed and the subscript z denotes a partial derivative. Neglecting the cross term,
the APE can be expressed as

APE � ρ0L
4

6

∫ 0

−H

f 2

Ri(z)
dz,

where

Ri = N2

U 2
z + V 2

z

(2.2)
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is the Richardson number. We can compare this quantity to the growth rate in the Eady
problem for baroclinic instability between two rigid surfaces with a uniform temperature
gradient, 0.31f/

√
Ri—since Ri is constant in the Eady problem, no integral is necessary.

Accordingly, a natural estimate of baroclinic growth rates is

σ = f

√
1

H

∫ 0

−H

dz

Ri(z)
∝ √

APE, (2.3)

and we call the inverse of this quantity the “Eady timescale”. The Eady timescale σ−1 for
the global ocean is calculated using the thermal wind shear (see Appendix A for details of
the mean shear computation), and the result is shown in Figure 1b. Stammer (1997) and
Treguier et al. (1997) both compute similar quantities, but use only hydrography from the
upper ocean. As was shown by Stammer (1997), the locations of high σ are correlated with
locations of high observed eddy kinetic energy—this is the primary reason to assign eddy
generation to baroclinic instability. In Section 6 we show that the inverse Eady timescale
calculated here is, in fact, a good estimate of the actual growth rates of the energetically
significant instabilities.

3. Linear normal-mode instability

The inviscid quasigeostrophic equation, linearized about the local mean state character-
ized by U = U(z)ı̂ + V (z)ĵ , N2 and ∇Q, is

qt + U · ∇q + u · ∇Q = 0, −H < z < 0, (3.1a)

ψzt + U · ∇ψz + u · ∇(Ψz + f −1N2η) = 0, z = −H, 0, (3.1b)

where q = ∇2ψ + Γψ is the eddy quasigeostrophic potential vorticity (QGPV), u =
−ψy ı̂ +ψx ĵ is the eddy velocity field expressed in terms of the horizontal streamfunction,
ψ = ψ(x, y, z, t), Γ is defined in (2.1), ∇Ψz = Vz ı̂ − Uzĵ is proportional to the mean
buoyancy gradient and η is the height of the topography at z = −H (set η = 0 at z = 0 of
course). The mean quasigeostrophic potential vorticity gradient ∇Q is

∇Q = ΓV ı̂ + (β − ΓU)ĵ = βĵ − f sz,

where β = 2ΩR−1
e cos(θ), with Re the radius of the Earth, Ω its rotation rate and θ the

latitude. In the second expression, thermal wind balance is used to express the mean vortex
stretching in terms of s = −∇ρ̄/ρ̄z, the isopycnal slope vector.2

2. Here we have used thermal wind balance to write

f
∂

∂z
(−V, U) = g

ρ0
∇ρ̄

and that N2 = −(g/ρ0)∂ ρ̄/∂z to write the mean vortex stretching in terms of the mean isopycnal slope. Formally,
we have violated QG scaling by allowing horizontal variations in N2, but this approximation is necessary to
compute the mean shears from hydrography.
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The mean velocity and stratification are taken to be horizontally local and slowly varying,
hence at each horizontal location depend only on z (see Pedlosky, 1984). Consistent with the
assumption of a slowly-varying background state that is locally horizontally homogeneous,
the domain is taken to be horizontally-periodic. Substitution of a plane-wave solution of the
form ψ = Re{ψ̂(z) exp[i(kx + �y − ωt)]}, where ψ̂ is the complex amplitude, into (3.1)
gives

(K · U − ω)(Γ − K2)ψ̂ = −Πψ̂, −H < z < 0, (3.2a)

(K · U − ω)ψ̂z = Λψ̂, z = −H, 0, (3.2b)

where K = (k, �), K = √
k2 + �2, Π = Π(z) = kQy − �Qx and Λ = Λ(z) = k(Uz −

N2αy/f ) + �(Vz + N2αx/f ). In the expression for Λ, αx,y = 0 are the mean topographic
slopes at the bottom (and are 0 for the upper boundary condition). Equations (3.2) form
an eigenvalue problem for the normal modes ψ̂ (the eigenfunctions) and the frequencies ω

(the eigenvalues). If the frequency has a nonzero imaginary part, the wave solution grows
exponentially. The wavenumber of fastest growth Kmax is defined such that ωi (Kmax) =
max(ωi ), where ωi = Im{ω}.

The vertically discrete problem is derived in Appendix B. There it is shown that the
boundary conditions (3.2b) are included in the construction of the discrete stretching oper-
ator, Γnm. Before proceeding to the direct calculations, though, it is useful to consider the
structure of the mean gradients and their influence on the nature of the instabilities.

4. Mean hydrographic gradients

Much can be understood about the instability characteristics of the mean state by con-
sidering the mean potential and relative vorticity gradients. In the special case of a zonal
mean flow (V = 0), a necessary condition for an imaginary frequency is given by the
Charney-Stern-Pedlosky criterion (Charney and Stern, 1962; Pedlosky, 1964), which states
that one of the following must hold: (a) Qy changes sign in the interior, (b) Uz has the same
sign at the upper and lower boundaries (as in the Eady problem Eady, 1949), (c) Uz at the
upper boundary has the opposite sign of Qy in the interior, or (d) Uz at the lower boundary
has the same sign as Qy in the interior (as in the Charney problem Charney, 1947). See
Pedlosky (1987) or Vallis (2006) for a review. Since we have explicitly removed horizontal
gradients from the mean velocities, sign changes in Qy must be due solely to sign changes
of mean vertical vortex stretching in the vertical. In the more general case considered here
(V �= 0), one can derive a similar necessary condition, but there are many more possibil-
ities for instability (see Appendix C). Nonetheless, one can generalize the instabilities as
resulting from the interaction of the shears at the upper and lower surfaces, the interaction
of the interior PV gradient with boundary shears, or from sign changes of the interior PV
gradient alone. These three types of interactions will be termed Eady-type, Charney-type
and Phillips-type (after Phillips, 1954), respectively.
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a. Quasigeostrophic potential vorticity gradients

The mean meridional QGPV gradient includes the environmental vorticity gradient β.
Where flows are non-zonal, instability is present with any shear, whereas for zonal flow,
the planetary vorticity gradient β can suppress instability if it is large enough compared to
the mean stretching term. The ratio ∇Q/β is a rough measure of the supercriticality of the
flow (an exact measure in the two-layer, zonal flow case), and for energetically significant
instabilities, its magnitude is an indicator of the strength of eddy generation (Held and
Larichev, 1996).

Figure 2 displays the nondimensional zonal and meridional mean QGPV gradients along
the transect at 31W. The figure demonstrates the overwhelming dominance of the mean
stretching term relative to the background planetary vorticity gradient for latitudes above
about 30 degrees, and especially in the southern ocean, where the ratio can exceed 100.
The large increase in the magnitude of the mean QGPV gradients with latitude is due to
the increase in the mean vortex stretching term, ΓU = (f 2/N2Uz)z. The increase in mean
vortex stretching is due both to the increase in the Coriolis term f , as well as to the decrease
in static stability N . In the ACC, the effect is more pronounced because the shear itself (and
its curvature) are so large.

Figure 2. Zonal (a) and meridional (b) QGPV gradient in the upper 3000 m of the Atlantic, along
31W. Values are nondimensionalized by local values of β. The zero contour is drawn with a
solid line. The color-scale is saturated at ±50, but the maxima and minima are in the 100s for
each panel.
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Figure 2 shows a clear pattern of gradient reversals with depth, most prominently in
the meridional gradient (panel b). Results are presented here for a transect rather than
a zonal average, since it is necessary to preserve the sign of the gradient. The patterns
vary somewhat along other transects, but generically, one finds strong gradient reversals,
exceeding β by factors of 10–100, at all longitudes and in both northern and southern
hemispheres. Moreover, the strongest gradient reversals are in the upper 600 meters in the
northern hemisphere, but extend to well below 1000 meters (and with larger gradients) in
the Southern Ocean. The structure of the mean QGPV gradient demonstrates the likelihood
of active baroclinic instability in much of the extratropical ocean, concentrated at depths
between the surface and 600 meters in the northern oceans, and between the surface and
about 1500 m in the Southern Ocean.

b. The Charney depth

The structure of the mean QGPV gradients indicates that the mean state is highly sus-
ceptible to baroclinic instabilities of the Phillips type (generated by interior QGPV gradient
sign changes). However, there are also strong shears at the surface. To what extent are
Charney-type instabilities present, and what can we expect of their structure? The original
Charney instability problem considers a mean vertical shear of horizontal velocity that is
constant with height over a rigid lower boundary, with decay conditions above. The interior
QGPV gradient is Qy = β, and so the instability is of type (d) above. The calculation is
mathematically challenging (see Pedlosky, 1987), but the important result is that growing
waves from this type of instability have a self-selecting scale height hC = Uzf

2/βN2,
where N = N(z = 0), independent of the depth of the fluid (which in this case is infinite).
The horizontal length of fastest growth scales like NhC/f and the growth rate scales like
f Uz/N .

For an interior QGPV gradient set by the interior shear instead of β (as is apparently
the case in most of the extratropical ocean), we can generalize the Charney height as
hC = Uzf

2/QyN
2 = ssurf/sint

z , where s = −|∇ρ̄|/ρ̄z is the isopycnal slope. Thus we
expect horizontal growth at a scale Nssurf/f sint

z and a growth rate that scales the same
as in the original problem. Figure 3 shows the estimated Charney depth scale hC , where
ssurf is averaged over the top 50 m and sint

z is averaged over depths 75–500 m. Apart from
some isolated areas, the typical effective Charney depth is on order 100–300 m. Given that,
as found above, sz 	 β, it is not surprising that hC is rather small. In the full instability
calculations presented in the next two sections, surface-intensified Charney-like instabilities
are common.

c. Relative vorticity gradients

The likelihood of barotropic instability can be assessed by considering the mean merid-
ional vorticity gradient at the upper surface, where velocities are strongest. Consider the
nondimensional estimate of the mean relative vorticity gradient (β − Uyy)/β. If no vortex
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Figure 3. (a) The estimated depth hC of eddies generated by Charney-type baroclinic instabilities, in
meters (see Section 3b). (b) The zonal average of hC .

stretching were present, negative values of this quantity would indicate sufficient condi-
tions for barotropic instability. In fact, this quantity never goes below 1/2 (plot not shown,
but is available from the author), and given that the strength of the vortex stretching term
outside the tropics is between 20 and 100 times larger than β, we may safely conclude that
barotropic instability is not actively produced by the mean circulation. Of course, in regions
near coastlines and possibly near the equator (both filtered from this analysis), as well as
in intermittently generated sharp currents, barotropic instability may be important—the
present results pertain only to the annually averaged hydrography outside the equatorial
region.

5. Analysis of a few specific locations

We first consider the solutions at a few individual locations, and identify some generic
features. For each location, the linear wave solutions are calculated for a range of k and �
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distributed about the local first deformation wavenumber K1. For each wavenumber, there
are as many eigensolutions as there are levels on the local vertical grid. The eigensolution
with with the largest imaginary frequency (growth rate) is chosen and the others discarded
(typically only a few other modes have imaginary parts—most are stable).

a. The Gulf-Stream Jet: 60W, 40N

The mean neutral density and mean horizontal velocity profiles are shown in Figure 4a–b.
The location chosen is in the region of the Gulf Stream jet extension in the western North
Atlantic, dominated by westward flow in and above the thermocline. The density structure
is characterized by two regions of rapid increase: the first in the upper 100 m, the second at

Figure 4. Mean stratification, horizontal velocity and linear instability at 60W, 40N. (a) Neutral
density (kgm−3); (b) Zonal (solid) and meridional (dashed) mean velocity (m/s). (c) Growth rate
in days−1 as a function of horizontal wavenumber nondimensionalized by the local first deformation
wavenumber,K1. (d) Amplitudes |ψ̂| for growing modes at four particular wavenumbers. Amplitude
‘1’ corresponds to the largest growth rate in panel c, and ‘2’ corresponds to a point very near the
origin. Amplitudes ‘3’ and ‘4’ correspond to the labeled peaks in panel c. The peaks have growth
rates and locations as follows. ‘1’: ωi = 0.11 days−1, K/K1 = (3.1, 1.5); ‘2’: ωi = 0.082 days−1,
K/K1 = (0.59, 0.59); ‘3’: ωi = 0.079 days−1, K/K1 = (−9.8, 8.2); and ‘4’: ωi = 0.054 days−1,
K/K1 = (−16, 22).
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about 400 m. The zonal velocity structure is simpler, smoothly decreasing from the surface to
about 1000 m depth, then more gently in the abyss (as mentioned before, the absolute mean
velocity profiles are chosen to have no barotropic component). The meridional velocity is
about 1/2 the magnitude of the zonal velocity, but peaks at about 150 m depth.

The linear instabilities were calculated on a grid of wavenumbers in the upper half plane
ranging from K1/10 to 500K1 in each horizontal direction. The resulting growth rate is
shown in Figure 4c, as a function of k/K1 and �/K1, and the nondimensional amplitudes
|ψ̂|(z) of the four largest distinct growth rate peaks labeled numerically in panel c are
shown in Figure 4d. The growth rates in Figure 4c are shown on the full k-� plane (the
lower half plane is given by conjugate symmetry), but only for wavenumbers ranging in
absolute value from K1/10 to 30K1 in either direction. There are no significant instabilities
at smaller scales.

We can summarize the results as follows:

• The largest peak (fastest growth rate—labeled ‘1’) corresponds to an amplitude with
its peak at a depth of about 800 m, and has a horizontal wavenumber of 3.4K1,
or equivalently a horizontal scale R1/3.4, where R1 is the first Rossby radius of
deformation. This length is consistent with a scaling down from R1 by the ratio
of the vertical extent of the instability to the full depth of the ocean, or Rmax �
(N/f )hthermocline. The vertical structure of this instability indicates that it likely results
from interior PV gradient sign changes (Phillips-type).

• Peak ‘2’ is not obviously a peak in this figure, but a detailed closeup of the small-
wavenumber region reveals that it is a separate instability. These larger-scale modes,
found generically, are Green modes (Green, 1960), and accordingly have much
smaller growth rates than the primary peak. The vertical structure, while surface
intensified, has amplitude at all depths. Such modes are also found in the idealized
computations of GGS.

• Peak ‘3’ occurs at one twelfth the local deformation radius, and ‘4’ is at R1/28. The
small scales of these instabilities are consistent with their vertical structures: both
are extremely surface intensified—their amplitudes are entirely contained in the top
100 m of the ocean (see inset in Fig. 4d). The orientation of these instabilities in the
k − � plane is nearly orthogonal to those of the larger-scale instabilities, consistent
with the reversal of the meridional shear near the surface. The vertical scale is consis-
tent with the typical vertical scale estimated for Charney-like instabilities, and so it
seems likely that these modes result from the interaction between surface shears and
subsurface QGPV gradients. Another possibility is that they arise from small kinks
in the density or shear profile, resulting in a ‘defect’ instability (Samelson, 1999).

b. Antarctic Circumpolar Current: 142E, 51S

This location is just south of Tasmania, in the Antarctic Circumpolar Current (ACC),
and is the location of a field campaign reported on by Phillips and Rintoul (2000). A more
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Figure 5. Same as Figure 4, but for 142E, 51S, in the Antarctic Circumpolar Current, south of
Tasmania. The peaks have growth rates and locations as follows. ‘1’: ωi = 0.18 days−1, K/K1 =
(−3.7, 0.86); ‘2’: ωi = 0.11 days−1, K/K1 = (−0.55, 0.15); and ‘3’: ωi = 0.048 days−1,
K/K1 = (−11, 4.2).

detailed investigation of the dynamics of ACC instabilities and the eddies they produce,
as well as a comparison to the field data in this particular location, is taken up in Smith
and Marshall (2008). The mean state and instability structure are presented in Figures 5a–d
in the same format as for the previous location. The location chosen is near the axis of
the ACC jet and so the velocity is primarily zonal, with most of the shear located near
thermocline depths. The density structure is nearly exponential with depth, apart from
a mixed layer near the surface, and a vertical jump near 400 m. Overall the stratifica-
tion is weaker than in the previous location, and the vertical structure is less surface-
intensified.

The apparently simple structure of the mean velocity and density profiles nevertheless
leads to mean QGPV gradients that are complex, with multiple zero-crossings in the vertical
(refer to Fig. 2). The linear instabilities are calculated as for the previous location, and the
results are again displayed as a function of horizontal wavenumber in Figure 5c. Unstable
scales range from greater than the local deformation scale down to scales less than R1/10
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(at this location, R1 � 10 km, and so growth at K/K1 � 10 corresponds to less than 1
km). The strongest instability has a growth rate of 0.16 days−1, almost twice the maximum
for the Gulf Stream location (0.09 days−1). There are weak instabilities at much smaller
scales (down to R1/100), but these are not shown (all are surface-trapped, Charney-like
instabilities, and are occurring at scales not resolved by the hydrography, and are not well-
represented by quasigeostrophic scaling).

The amplitudes |ψ̂|(z) of the three most prominent, distinct instabilities are shown in
Figure 5d. These are similar to those in the Gulf Stream location, and the generalizations
made for those instabilities apply here as well.

c. The Mid Pacific: 172E, 44N

We consider this location, in the Kuroshio extension, because the mean current is directed
northeastward, not zonally. Baroclinic instability generated by nonzonal mean flow is not
inhibited by β, and so even weak shears can lead to nonlinear growth. However, at latitudes
outside the tropics, as shown in Figure 2, the mean QGPV gradient due to vertical shear of
the horizontal mean velocity is 20–100 times larger than the planetary gradient, β, and so the
orientation of the flow with respect to the planetary vorticity gradient is largely irrelevant for
the linear instabilities. Nevertheless, we consider this current location as before. The linear
instability calculation and the format of the Figures 6a–d is identical to the previous two
examples. Note first that the fastest growth rate, 0.035 days−1, is smaller by less than one
half that of the Gulf Stream location showed in the first example. The maxima are oriented
along the direction of the mean shear near the surface.

The vertical structures of the modes corresponding to the labeled peaks in Figure 6c are
shown in Figure 6d. Notably both peaks here have their maxima at or within 200 m of the
surface. The largest instability has no amplitude at depths below 2000 m, while the second
(larger-scale) instability again has amplitude at all depths. In broad terms, the structure of
the instability is similar to the other locations, albeit with the main instability more surface
intensified (due to weaker stratification and weaker shears), and no small-scale surface
modes.

d. The Mid North Atlantic: 60W, 23.5N

This last location, in the Sargasso Sea, is chosen as a representative example of the kind
of very small scale, surface instability that dominates the low latitudes. The mean structure
and resulting instability are shown in Figure 7, with the same format as for the previous
example locations. The mean flow at this location is characterized by a southwestward shear
concentrated in the upper thousand meters, with a reversal in U in the upper 200 m (a turning
velocity field). The instability is dominated by surface instabilities, but also exhibits one
larger-scale mode that is peaked at 500 m depth. Note that the growth rate in panel (c)
extends to ±100K1 in each direction, and that in panel (d) the vertical structures for the
two prominent growth rate peaks are shown only for the top 2000 m. The maximum growth
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Figure 6. Same as Figure 4, but for 172E, 44N, in the western Pacific, just north of the Kuroshio
extension. The peaks have growth rates and locations as follows. ‘1’: ωi = 0.036 days−1, K/K1 =
(1.8, 1.1); and ‘2’: ωi = 0.015 days−1, K/K1 = (0.16, 0.51).

rate is almost as large as that in the Gulf Stream location analyzed in Section 5a, yet it is
confined to a very small portion of the water column. The degree to which such spatially
confined but quickly growing instabilities can affect the mean state will be addressed in the
next section.

6. Analysis of the global dataset

The global dataset is analyzed as follows. For each location, a discrete grid of k and �

values in the upper-half spectral plane is formed, with domain−kmax ≤ k ≤ −kmin
⋃

kmin ≤
k ≤ kmax and �min ≤ � ≤ �max. The discrete values of k and � are distributed logarithmically
between their respective minimum and maximum values, with kmin = �min = 0.1K1 and
kmax = �max = 100K1, where K1 is estimated by latitude using the functional fit proposed
by Chelton et al. (1998). At each location, 31 values of � and 62 values of k are used, for a
total grid size of 1922 wavenumbers.

If the horizontal spatial scale of the fastest growing wave at each location in the ocean is
plotted without filtration, the field is dominated by values more than an order of magnitude



670 Journal of Marine Research [65, 5

Figure 7. Same as Figure 4, but for 60W, 23.5N, in the Sargasso Sea. Note that the range of nondimen-
sional wavenumbers shown in panel c is −50 to 50, a much larger range than in the previous three
growth rate figures. Also note that the vertical scale in panel d runs only from 0 to −300 m. The
peaks have growth rates and locations as follows. ‘1’: ωi = 0.072 days−1, K/K1 = (−12, 23);
and ‘2’: ωi = 0.017 days−1, K/K1 = (2.2, 0.48).

smaller than the local deformation radius (not shown, but see thin solid line in Fig. 11 for
zonal average). Similarly, the temporal scales of the fastest growing waves are characterized
in an average sense by values on order days (also not shown). This result was foreshadowed
by Figure 3 and the local analyses of Section 5—the fastest growth at many locations is
dominated by surface modes. The relevance of the sea of instabilities, however, depends
on the degree to which each can affect the mean state. Given an unstable wave, how much
energetic conversion from the mean state can the wave generate? We address this question
before plotting growth rates and scales.

a. The baroclinic conversion rate

A growing wave will lead to a conversion of mean available potential energy (MAPE)
to eddy kinetic energy (EKE). The rate of conversion can be calculated from the
energy budget equation, obtained by multiplication of the quasigeostrophic equation
of motion (3.1) by −ρ0ψ and integration over the local spatial domain. The energy
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conversion results from the advection of eddy potential vorticity by the mean shear, and is
given by

G = ρ0

∫ 0

−H

ψU · ∇qdz = ρ0

∫ 0

−H

f 2

N2

∂U

∂z
·∇ψ

∂ψ

∂z
dz,

where integration by parts is used in x and y (boundary terms and the horizontal vorticity
fluxes vanish due to the double periodicity of the domain), and in z (where ψzψxz =
ψzψyz = 0 by periodicity again). Note that G has units Wm−2. For a given unstable
wavenumber K = (k, �), we can write the streamfunction as

ψ = exp(ωi t)|ψ̂| cos[kx + �y − ωr t + θ(z)].

Substituting this expression into the expression for G above gives, after horizontal integra-
tion over one cycle,

G =
∫ 0

−H

R(z)dz (6.1)

where

R = exp(2ωi t)
ρ0

2

f 2

N2

dθ

dz
|ψ̂|2K · dU

dz
.

The amplitude |ψ̂| that arises from the instability calculation has units [UL] but has no
meaningful value, since it is the response to an infinitesimal perturbation. We follow GGS
and normalize ψ̂ such that it corresponds to a maximum eddy velocity of

Ve = max
z

[K|ψ̂| exp(ωi t)],

thus

R = V 2
e ρ0

2

f 2

N2

dθ

dz

(
|ψ̂|

|ψ̂|max

)2
K

K2
· dU

dz
. (6.2)

In all cases, we set Ve = 0.1 m s−1. A useful value to which G can be compared is
the estimated rate at which energy is imparted to the oceanic mean state by the winds:
10−3 Wm−2 = 1 mWm−2 (GGS).

The conversion rate G is calculated at each horizontal location for the fastest growing
mode and displayed in Figure 8a, in units of mWm−2. Only values of G that exceed
0.5 mWm−2 are plotted, despite that lower values are present. The depth at which the
integrandR in (6.2) has its maximum, for the same instabilities, is displayed in Figure 8b. The
emergent pattern is that the surface-trapped instabilities that dominate the low-latitudes have
very little baroclinic conversion potential, while the higher-latitude instabilities associated
with the ACC, the Gulf Stream and the Kuroshio all have conversion maxima deeper in the
water column, and much greater energetic conversion potential.
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Figure 8. (a) The baroclinic conversion rate (6.1) (in mWm−2) for the fastest growing wave at each
location, and (b) the depth of maximum conversion (the depth at which R of equation 6.2 is
maximum) for the fastest growing wave (in m). Plotted values in each panel are subjected to the
condition that the baroclinic conversion rate G > 0.5 mWm−2 at each location.

In order to focus on the energetically important instabilities, we re-compute the linear
instabilities at each location, but this time condition the search for the fastest growing modes
on the requirement that G exceed 0.5 mWm−2. The inverse growth rates and scales of fastest
growth filtered in this way are shown in Figure 9a–b, respectively. At many locations, slower
but more energetically significant instabilities were missed by searching only for the fastest
growth rates; at other locations, we now find no significant instabilities.

The results of the filtered calculation give a cleaner picture of the most energetically
important baroclinic instabilities. A posteriori, the filtering operation has also selected
the instabilities that are most most likely to have been accurately calculated in this QG
framework. The smaller-scale, faster instabilities near the surface will typically involve
ageostrophic effects not represented here (Boccaletti et al., 2007).

The filtered maximum growth rates and their scales are plotted in nondimensional units
in Figure 10a–b, respectively. Specifically, growth rates are compared to the APE timescale
estimate σ−1 of (2.3), and scales of fastest growth are compared to local first deformation
radii R1. Apparently, the inverse Eady timescale is a good estimate of the energetically
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Figure 9. (a) Inverse growth rate (in days) for fastest growing wave at each location, and (b) scale of
fastest growing wave (in km). A logarithmic color scale is used for each panel. Plotted values in
each panel are subjected to the condition that the baroclinic conversion rate G > 0.5 mWm−2 at
each location.

significant growth rates3. The first radius of deformation, on the other hand, is not a good
estimate for the spatial scale of maximum growth, even when the results are filtered for
energetic significance. In regions where the instabilities are strong (which are also regions
where eddies are most prominent), the scale of maximum growth is typically about R1/4,
and much smaller still in many parts of the ACC.

As an indication of the degree to which the instabilities arise from zonal versus non-
zonal mean shears, one can compute the angle of fastest growth, arctan |�max|/|kmax| at
each location. In a large fraction of the ocean, where meridional mean shears exist, the
fastest growth happens in non-zonal directions (figure not shown). The implications of such
growth on non-zonal currents is discussed in Spall (2000), Arbic and Flierl (2004) and
Smith (2007).

3. The inverse Eady timescale is not, however, a good estimate of the unfiltered growth rate, which are much
greater than σ in regions dominated by surface instabilities. The figure demonstrating this is not shown.
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Figure 10. (a) Nondimensional inverse growth ratef/(
√

Riωi ) and (b) nondimensional scale of fastest
growth Rmax/R1, for results filtered by requirement that baroclinic conversion G > 0.5 mWm−2.

b. Comparison of linear growth and observed eddy scales

The scales of fastest linear growth can be compared directly to different estimates of
eddy scale from analysis of satellite altimetry data. Stammer (1997) computes spectra of
eddy kinetic energy for local regions throughout the global ocean, and summarizes the
results in various ways. Eddy scales are estimated as the lag of the first zero crossing of
the spatial autocorrelation function. A scatter plot of eddy scale versus deformation radius
shows a correlation (see Figs. 21a and 24 of Stammer, 1997), to which a line of the form
Rmax = 0.8R1+88 km is fit. The scatter plot data indicates that a linear fit is only marginally
justified, but nevertheless it provides a useful functional form, and demonstrates that the
observed scales are everywhere larger than the deformation scale. The scale estimate as
a function of deformation radius is converted to a function of latitude using the zonally
averaged deformation radii computed in Section 2.

A second estimate of eddy scale can be computed from the analysis of Chelton et al.
(2007), who use combined TOPEX/Poseidon, ERS-1 and ERS-2 data to track coherent
vortices at the ocean surface. Coherent vortices are identified using a computation of the
Okubo-Weiss parameter (W) from the geostrophic surface velocity field: closed contours of
W with values less than −2×10−12 s−2 that last for more than 18 weeks are called coherent
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Figure 11. Zonally averaged scales (in km) of: maximum growth, filtered by condition that baroclinic
conversion G > 0.5 mWm−2 (bold solid line); scale of absolute maximum growth (thin solid
line); the inverse of the centroid wavenumber of surface kinetic energy spectra from analysis of
satellite observations by R. Scott (line with x’s); the radii of coherent vortices from the analysis
of satellite observations by Chelton et al. (2007) (dashed line); the zero-crossing of the lag of
the spatial autocorrelation function from the analysis of satellite observations by Stammer (1997)
(dash-dotted line); and the first deformation radius (dotted line).

vortices, and for these they estimate their number, sizes and trajectories. Zonally averaged
vortex radii data were provided by D. Chelton for the present study. A third estimate,
provided by R. Scott (pers. comm.) is made by taking the inverse of the centroid of the
spatial energy spectra, computed from TOPEX/Poseidon and ERS data on overlapping
10◦by 10◦boxes.

In Figure 11 we show the zonally averaged values for each eddy scale estimate, as well
as the zonally averaged first deformation radii, and both filtered and unfiltered scales of
fastest growth (see caption for additional details). Note that the estimates for eddy scale
from observations differ, most likely for the following reason. The analysis by R. Scott
provides a scale R = 1/Kpeak, the spectral radius for the peak of the kinetic energy spectra.
The analysis by Chelton et al., on the other hand, provides actual radii4 Rvortex of coherent
vortices. The spectral transform of a field of coherent vortices will not, in general, yield
a spectral peak at K = 1/Rvortex, and so we do not expect the two estimates to coincide
exactly.

4. D. Chelton actually provided diameter values, and these were divided by 2
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This discrepancy between observed eddy scales is significant, but even the smallest esti-
mate is considerably larger than the scales of maximum linear growth, even when restrict-
ing the comparison to the energetically important instabilities at each location (the bold
solid line); the scales of fastest growth are much smaller than the observed eddy scales.
This is especially true at high latitudes. In the ACC, for example, deformation scales are
of order 10–20 km, while the observed eddy scale is about 30–100 km. Given that the
scale of maximum linear baroclinic growth is typically 1/4 the deformation radius, one
can safely conclude that linear theory, while fairly accurate in predicting timescales and
locations of eddy activity, fails to predict the spatial scale of the eddies. Nonlinear stud-
ies of baroclinic growth in the presence of vertical shears and density structures similar
to those found in the ACC (Smith and Vallis, 2002) indicate that a strong inverse cascade
should ensue, resulting in an eddy scale much larger than the scale of maximum linear
growth. Thus a nonlinear cascade of energy seems necessary to explain the observed eddy
statistics.

7. Discussion

Classical quasigeostrophic linear stability analysis, applied systematically to the global
ocean hydrography of Gouretski and Koltermann (2004), has been shown to provide a
good estimate of eddy timescales and locations of eddy activity, but a systematically
too-small estimate of eddy space scales, by up to an order of magnitude at high lati-
tudes. The discrepancy between spatial scales predicted by linear theory and the observed
scales of eddies is minimized by selecting only those growing waves that can convert sig-
nificant amounts of mean potential to eddy kinetic energy, but the discrepancy remains
large.

Regional correlations can be appreciated by comparing Figure 7 of Stammer (1997) to
Figure 1b (and 9a) in the present paper. Stammer’s Figure 7 shows observed eddy kinetic
energy as a function of horizontal location, filtered by spatial scale; panel (d), for instance,
shows eddy kinetic energy for scales between 30 and 100 km. Given the close relation of
the inverse Eady timescale (and hence growth rate) to the mean available potential energy,
the degree of correlation between eddy kinetic energy and growth rate is a direct indication
of the degree to which instabilities locally generate eddies. Some features in the figures are
immediately apparent. Eddy kinetic energy is prominent at all scales in the ACC, Kuroshio
and Gulf Stream, but strongest at large scale (30–100 km). Growth rates are also largest
in these areas. Weaker eddy kinetic energy is more widespread, particularly in the western
Pacific, mid-Atlantic and in the Indian Ocean, but these eddies are smaller scale—most
of that weaker kinetic energy is restricted to spatial scales of less than 30 km. Consistent
with this picture, we find weaker (but non-zero) growth rates throughout these areas. The
smallest growth rates (and areas of zero significant energy conversion rate—see Fig. 8a) are
also the areas of insignificant eddy kinetic energy. If one also considers the filtered scale of
fastest growth in the present paper (Fig. 9b), it is apparent that in areas of weaker kinetic
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energy, the spatial scale of the eddies is closer to the scale of maximum growth (but still
generally larger).

The correlation between growth rate and eddy kinetic energy offers rationalization for the
use of local closures in mesoscale eddy parameterization schemes for general circulation
models. On the other hand, the results here indicate the need to include better estimates
of eddy scale—the deformation scale estimate of Stone (1972), for example, should be
least accurate where eddies are most important. Visbeck et al. (1997) find some success
by using the Green (1970) estimate from the ‘width of the baroclinic zone’, but this is a
dauntingly complex scale to estimate on-the-fly in an ocean general circulation model. The
nonlinear prediction of Held and Larichev (1996), which assumes a Rhines mechanism for
eddy scales, is Reddy ∼ σ/β (almost at least—their estimate of timescale has the square-
root outside the integral in Eq. 2.3). This parameterization has the advantage that it is
larger where σ is large, but unfortunately predicts larger eddies at higher latitudes (in an
absolute sense) due to the decrease of β with latitude. This is consistent with the analysis
of Stammer (1998), who showed theHeld and Larichev (1996) theory to be a poor fit to
surface data.

The dynamics that control the scale of observed ocean eddies, it must be concluded, are
more complex than can be described by linear theory alone. This should not be surprising,
since even weakly unstable states produce turbulence (Schneider, 2004, , for example, makes
the argument that the atmosphere is thus characterized), while the oceanic mean state is
clearly very unstable. The process of fully-developed baroclinic instability is not a linear
process, but rather itself a turbulent process by which many scales are excited and cascades
are catalyzed. Studies such as Held and Larichev (1996), Smith and Vallis (2002), Arbic and
Flierl (2004) and Thompson and Young (2006) convincingly show that baroclinic instability
in ocean-like environments leads to an inverse cascade of energy, and this is consistent with
the observations of Scott and Wang (2005). If this is the right perspective, then a continuous
feedback between the turbulence and the mean state must occur and be in balance with
the large-scale forces that restore the mean to its unstable state. How this process might
occur is taken up in detail by Smith and Marshall (2008), where it is found that such eddy-
mean-forcing feedbacks are necessary to explain local observations in the ACC.

Instabilities with weak energetic conversion potential are suppressed in the primary anal-
ysis. These suppressed modes are typically due to instabilities of shears in or near the mixed
layer, and may actually be quite important in understanding the interactions of the mixed
layer with eddies, and in general the submesoscale dynamics of the upper ocean. For a more
complete analysis of these issues, see Boccaletti et al. (2007) and Thomas et al. (2007).
They may also generate a significant surface-trapped forward energy cascade and so may
be an important part of the eddy energy cycle (see, e.g. Tulloch and Smith, 2006).
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APPENDIX A

The mean geostrophic shear

The geostrophic velocity field for the entire GK04 dataset is computed as follows. Given
the neutral density field ρ̄ = ρ̄(λ, θ, z), where λ is longitude, θ is latitude, and z is depth
(z = 0 is at the ocean surface, and z increases upwards), the hydrostatic pressure field is

P(λ, θ, z) = g

∫ 0

z

ρ̄(λ, θ, z′)dz′ + p0(λ, θ)

where p0 is the surface pressure. The numerical integral for the discrete neutral density field
is calculated using Simpson’s rule. The geostrophic velocity field is

u(λ, θ, z) − u0(λ, θ) = − 1

ρ0f (θ)

1

a

∂P

∂θ
,

v(λ, θ, z) − v0(λ, θ) = 1

ρ0f (θ)

1

a cos(θ)

∂P

∂θ

where f (θ) = 2Ω sin(θ) and u0 and v0 arise from the horizontal derivatives of the unknown
surface pressure p0. The horizontal derivatives of the hydrostatic pressure field are estimated
using centered finite differences applied directly to the 1/2 by 1/2 degree grid without
interpolation (and so high-latitude estimates are slightly more accurate). The unknown
velocity constants are irrelevant to the linear instability calculation, but for computational
reasons are set at each location to remove the barotropic component of the flow, i.e.

u0(λ, θ) = −
∫ 0

z

1

ρ0f (θ)

1

a

∂P

∂θ
(λ, θ, z′)dz′,

v0(λ, θ) =
∫ 0

z

1

ρ0f (θ)

1

a cos(θ)

∂P

∂λ
(λ, θ, z′)dz′.

APPENDIX B

The vertical discretization

The discrete stretching operator. The vertical finite-difference grid used in all calculations
is shown in Figure 12. On this grid, the discrete stretching operator Γnm is
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Figure 12. The grid used to represent vertical structure. ∆n is the spacing between ψn and ψn+1,
while δn is the distance between half spaces: δn = (∆n−1 + ∆n)/2.

Γnmψm = f 2ρ0

g

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

δ1

(
ψ2 − ψ1

ρ̄2 − ρ̄1

)
, n = 1

1

δn

(
ψn−1 − ψn

ρ̄n − ρ̄n−1
− ψn − ψn+1

ρ̄n+1 − ρ̄n

)
, n = 2 .. N − 1

1

δN

(
ψN−1 − ψN

ρ̄N − ρ̄N−1

)
, n = N

(B.1)

where ρ̄n the background neutral density at level n, ρ0 the average density and N is the
total number of discrete levels. This discretization encompasses the boundary conditions
(3.2b) in the manner specified by Bretherton (1966), where the infinitesimal distance below
(above) the upper (lower) boundary in the δ-sheet representation is replaced by δ1(δN) in
the discrete case. Therefore calculations using this discretization will have vertical errors
of order δ and horizontal errors of order Nδ/f (where δ is δ1 or δN ).

The approximate δ-sheet. That the above operator includes a discrete approximation of
δ-sheets can be shown as follows. Referring to Figure 12, density values ρ̄ are located at ψ

points, and w and N2 are located at b points (where b = f ψz is the buoyancy). The QGPV
equation is obtained by combining the vorticity equation

Dζ

Dt
= f

∂w

∂z

and the buoyancy equation
Db

Dt
= −N2w,
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where ζ = ∇2ψ and D/Dt is the horizontal advection operator. At the upper level in the
discrete case,

Dζ

Dt

∣∣∣∣
1

= f
∂w

∂z

∣∣∣∣
1

= −f
D

Dt

[
1

δ1

(
b0

N2
0

− b1

N2
1

)]
.

The boundary condition we wish to implement is D/Dt(b0/N
2
0 ) = 0. Using this, the above

equation can be combined to form

D

Dt

(
ζ1 − 1

δ1

f

N2
1

b1

)
= 0 −→ D

Dt

(
ζ − f

N2
b

∣∣∣∣−ε

δ(z)

)
= 0.

where the arrow denotes the continuous limit. Formally, in the continuous limit, ε → 0. In
the discrete case, ε is replaced by the finite value δ1.

Finally, using the grid specified in Figure 12,

b1

δ1N
2
1

= f 2ρ0

g

(
ψ2 − ψ1

ρ2 − ρ1

)

just as implemented in (B.1). Similar arguments apply to the lower boundary.

Topographic slopes and the mean discrete PV gradient. At each horizontal location, topo-
graphic slopes were calculated from the Smith and Sandwell global seafloor topography
dataset (Smith and Sandwell, 1997). Specifically, at each point a 2

◦ × 2
◦

section of topog-
raphy, centered on the location of interest, is extracted from the dataset. A plane is then fit
to the topography via linear regression, so that the bottom relief is estimated as

η(x, y) � η0 + αxx + αyy.

The discrete mean PV at the bottom level is then

QN = ΓNmV mx + (β − ΓNmUm)y + f

∆N
η.

Therefore

∇QN =
(

f αx

∆N
+ ΓNmV m

)
ı̂ +

(
β + f αy

∆N
− ΓNmUm

)
ĵ . (B.2)

The discrete instability problem. Letting ψ̂i be the discrete amplitude vector, the gener-
alized eigenvalue problem (3.2a) may be written

ωBij ψ̂j = Aij ψ̂j

where

Bij = Γij − K2δij ,

Aij = (
kQm

y − �Qm
x

)
δijm + (kUm + �V m)δinmBnj ,
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and the δs are Kronecker tensors, equal to unity when all indices are equal, and zero oth-
erwise. The discrete stretching operator is given by (B.1), and so the boundary conditions
(3.2b) are included. The tensor products with δ in the second line generate diagonal matrices
with the vectors kQm

y −�Qm
x and kUm +�V m on the diagonals, respectively. In the discrete

problem with N levels, there will be N eigenvectors ψ̂ and eigenvalues ω. In order to avoid
unnecessary complexification, we omitted the index for these above.

APPENDIX C

Necessary conditions for instability in arbitrarily oriented flow

The derivation of necessary conditions follows the standard route, but the resulting con-
ditions allow more possibilities than in the zonal-flow case. Dividing (3.2a) by K · U − ω,
multiplying by ψ̂∗ and integrating in z from −H to 0 gives

∫ 0

−H

(
f

N

)2

|ψ̂z|2 + K2|ψ̂|2dz =
∫ 0

−H

Π|ψ̂|2
K · U − ω

dz +
[(

f

N

)2
Λ|ψ̂|2

K · U − ω

]0

−H

,

where (3.2b) was used to replace the ψ̂z in the boundary term arising from the integral of
ψ̂∗(Γψ̂). Since the left hand side is real, the imaginary part of the right-hand side must
vanish, so

ωi

⎧⎨
⎩

∫ 0

−H

Π|ψ̂|2
|K · U − ω|2 dz +

[(
f

N

)2
Λ|ψ̂|2

|K · U − ω|2
]0

−H

⎫⎬
⎭ = 0.

Therefore, for nonzero ωi , the term in braces must vanish identically. If � = 0, the result is
exactly that of Charney and Stern. If k = 0, Charney-like instabilities involving Qx require
either Vz at the top be of the same sign, or Vz at the bottom be of opposite sign as Qx . When
k and � are both non-zero, there are many ways for the term in braces to vanish. Also note
that even in the absence of surface shears at the lower boundary, topographic slopes can
yield instabilities through their interaction with either interior mean PV gradients or with
upper-surface shears.
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