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A fast numerical solution to the general mass-conservation
equation for solutes and solids in aquatic sediments

by Peter Berg1, Dennis Swaney2, Søren Rysgaard3, Bo Thamdrup4 and
Henrik Fossing5

ABSTRACT
Mathematical modeling of species transformations in aquatic sediments is usually based on

numerical solutions to the same general one-dimensional mass-conservation equation and is likely to
require substantial computation time. In this paper we present a fast numerical solution to this
equation. The solution is suited for both single and multi-component models and it is based on an
implicit control volume discretization of the general mass-conservation equation. The solution
consists of two algorithms, one that decomposes the discretization matrix once and one that
subsequently produces multiple solutions with minimal computational effort. A unique feature of
these algorithms is that values of boundary conditions can vary as a simulation progresses without
requiring new decompositions of the discretization matrix. This feature can reduce computation time
significantly relative to commonly used procedures for modeling dynamic systems. Finally, we
present four examples in which the numerical solution is applied to specific problems. From these
examples guidelines are derived for the discretization in space and time required to obtain precise
solutions of the general mass-conservation equation.

1. Introduction

The numerical mathematical models that are being used extensively to study biogeochemi-
cal transformations in aquatic sediments typically rely on a one-dimensional mass-
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conservation approach and include the vertical transport of one or more species. For
example, many multi-component models have been published on organic matter and
nutrient diagenesis (i.e., Rysgaard and Berg, 1996; Boudreau, 1996; Dhakar and Burdige,
1996; Soetaert et al., 1996; Van Cappellen and Wang, 1996; Luff et al., 2000; Berg et al.,
2003; Meysman et al., 2003). Single-component models also generally require a numerical
approach, for example as a tool to interpret measured concentration-depth profiles of 210Pb
when estimating rates of sedimentation and bioturbation (i.e., Mulsow et al., 1998; Berg et
al., 2001), or for extractions of production and consumption rates from measured
concentration-depth profiles (i.e., Berg et al., 1998; Meile et al., 2001). A key element in
all these studies is a numerical solution to the same general one-dimensional mass-
conservation equation. The equation that includes transient and steady-state conditions,
dissolved and solid species, solutes that adsorb onto the solid sediment, and the transport
contributions by molecular diffusion, bioturbation (described as a diffusive process),
irrigation (described as a non-local transport), and advection, yields

��� � �s�1 � ����
�C

�t
�

�

�x � ����DBw � Ds� � �s�1 � ��DBs��
�C

�x �
�

�

�x
�����u�x � �s��1 � ��w�x��C� � ����C0 � C� � �R1 � R2C�

(1)

where � is the porosity, �s is the density of the solid sediment, C is the concentration, t is
the time, x is the depth, DBw is the biodiffusivity for solutes, Ds is the molecular diffusivity
corrected for tortuosity, DBs is the biodiffusivity for solids, u is the pore water velocity
relative to the sediment-water interface, w is the velocity of solids relative to the
sediment-water interface, � is the irrigation coefficient, C0 is the water column concentra-
tion, R1 is the net production rate per unit volume of sediment, and R2 is the rate constant
for the first order production term. The parameters � and � indicate whether the species is a
solute (� 	 1, � 	 0), a solid (� 	 0, � 	 1), or a solute that adsorb to the solid sediment
(� 	 1, � 	 K
 where K
 is the adsorption constant). Different biodiffusivities are defined
for solutes and solids in Eq. 1 based on recent studies of Berg et al. (2001, 2003) indicating
that the effects of bioturbation on solutes can be many fold stronger than on solids.
Adsorption (and desorption) of solutes onto the solid sediment is included as a reversible
process assumed to be in local equilibrium at any time in a depth-to-depth comparison. As
a result of continuity conditions for the pore water and the solid fraction of the sediment
(�(�u)/� x 	 0, �((1 � �)w)/� x 	 0), the products �u and (1 � �)w are constant with
depth. As a result, each of the terms �u and (1 � �)w can be evaluated at any depth as
indicated with the notation ( )x in Eq. 1. For further details on Eq. 1, see for example Berner
(1980) and Boudreau (1997).

Modeling of organic matter and nutrient diagenesis often requires significant computa-
tion times. For example, Van Cappellen and Wang (1996) ran their model on a SUN Sparc
Station IPX which required 30 min to produce one single steady-state solution. Along the
same lines, Luff et al. (2000) vectorized their code so it was suited to run on a CRAY
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vector processor in order to reduce computation time. The fact that such models usually are
run numerous times when applied to specific sediments or when used in analysis
underscores the importance of choosing the numerical solution algorithm carefully.
Models used as interpretation tools can also require substantial computational effort. For
example, the procedure PROFILE (Berg et al., 1998) often simulates 106-107 independent
steady-state profiles in the interpretation of a single measured concentration-depth profile.

This paper presents a numerical solution to Eq. 1 that is developed specifically to
minimize computation time. The algorithm is suited to both single and multi-component
models, and when utilized it can reduce computation time significantly relative to that of
commonly used procedures. For that reason, it allows models as outlined above to be
implemented on standard microcomputers (desktop and laptop computers) without result-
ing in prohibitive computation times.

2. Numerical solution

The numerical solution to Eq. 1 is based on a control volume approach (Patankar, 1980)
and relies on a separation of the calculation domain into N control volumes each containing
a grid point at its center (Fig. 1). It is assumed that the variation in space and time of
concentration, C, is described by piecewise continuous profiles which are uniquely
determined when the grid point values of C are known. A discretization equation is derived
using these profiles in an integration of Eq. 1 over a time step and a control volume. One
clear advantage of this control volume approach is that mass-conservation is fulfilled
exactly in the discretization equation.

a. Discretization equation

The user-defined control volumes comprising the calculation domain can vary with
depth, allowing a fine resolution to be used near the sediment-water interface where the
most pronounced gradients and second derivatives of concentrations are expected. The
thickness of control volumes 1 and N are zero by definition (Fig. 1). If a diffusive boundary
layer is included in the calculation domain, a control volume indexed M with a thickness of
zero, marks the sediment-water interface. If this control volume separation is used for
multi-component models involving both dissolved and solid species, solute concentrations
are described for control volume 1 to N while concentrations of solids are found for control
volume M to N.

The integration of Eq. 1 over a time step, from time t to t � t, and over control volume
j, from xj�1/2 to xj�1/2, yields

�
xj�1/2

xj�1/2 �
t

t�t

H1

�C

�t
dt dx � �

xj�1/2

xj�1/2 �
t

t�t � �

�x �H2

�C

�x
� H3C�

� H4�C0 � C� � �R1 � R2C��dt dx

(2)
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where

H1 � �� � �s�1 � ���

H2 � ���DBw � Ds� � �s�1 � ��DBs�

H3 � ���u�x � �s��1 � ��w�x�
(3)

H4 � ���

The variables H1, H2, and H4 can vary with depth while H3 as a result of continuity always
will be constant with depth.

In order to perform the integration in Eq. 2, it is now assumed that H1, H2, H3, H4, R1,
and R2 are constant throughout the time step and that the grid point values of H1, H4, R1,
and R2 prevail throughout the control volume as representative mean values. The latter
assumption is not needed for H2 and H3 because these variables are not integrated over the
control volume. With these assumptions Eq. 2 gives

Figure 1. Separation of the water-sediment column into control volumes for a situation when the
diffusive boundary layer, �D, is included in the calculations. Note that size of control volume 1, M,
and N are zero.
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H1 j�Cj
n�1 � Cj

n�xj � �
t

t�t ��H2

�C

�x
� H3C�

j�1/2

� �H2

�C

�x
� H3C�

j�1/2

� �H4j�C0 � Cj� � �R1 j � R2 jCj��xj�dt

(4)

where Cj
n is the old (known) grid point value of C at time t, and Cj

n�1 is the new (unknown)
grid point value of C at time t � t.

The second term on the right side of Eq. 4, �(H2�C/� x � H3C)j�1/ 2, represents the
combined diffusive-advective flux, Jj�1/ 2, over the boundary between control volume j-1
and j (Fig. 1). It has long been known that a straightforward central difference approxima-
tion of Jj�1/ 2 inevitably leads to numerical instability when modeling advection-
dominated systems (Courant et al., 1952). For that reason researchers have suggested
approximations of Jj�1/ 2 that ensure unconditionally stable schemes (i.e., Courant et al.,
1952; Spalding, 1972; Fiadeiro and Veronis, 1977; Patankar, 1980, 1981; Berg, 1985).
Some of the most successful schemes were derived as approximations to the analytical
solution to the one-dimensional steady state mass-conservation equation accounting for
transport by diffusion and advection. These schemes were defined through the 1970s and
early 1980s and their success was evaluated not only in terms of how well they
approximated this analytical solution but also how fast they could be evaluated numeri-
cally. Because computer processors have changed radically since then the relative utility of
these evaluation schemes have changed as well. For this reason, we compare the
performance of a selection of the most popular schemes on a modern microcomputer in
Appendix A.

Common to all these schemes is the expression of flux, Jj�1/ 2, as

Jj�1/2 � F1 jCj � F2 jCj�1 (5)

and the individual schemes are defined through their definition of F1 j and F2 j which are
derived in details for these schemes in Appendix A. Combining Eqs. 4 and 5 gives

H1 j�Cj
n�1 � Cj

n�xj � �
t

t�t

��F1 j�1Cj�1 � F2 j�1Cj � F1 jCj � F2 jCj�1

� �H4j�C0 � Cj� � �R1 j � R2 jCj��xj�dt

(6)

When approximating the time integral in Eq. 6, it is necessary to assume how all the
time-dependent terms vary from time t to t � t. The time integral of Cj can be expressed
as ((1 � �)Cj

n � �Cj
n�1)t where � is a weighting factor, and different schemes will

result depending on the value of �. With � 	 0, an explicit scheme is obtained, while � 	 1
leads to an implicit scheme. With � 	 1⁄2, the Crank-Nicolson scheme, a well-known
hybrid of the explicit and the implicit scheme, is obtained. The implicit scheme is chosen
here for the following reasons. Firstly, it leads to a versatile numerical solution allowing
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transient solutions to be found using appropriately sized time steps, and at the same time,
allowing steady-state solutions to linear problems to be produced with minimal computa-
tional effort in one large time step. Secondly, the implicit scheme is especially attractive in
one-dimensional formulations when computation time is of concern. While the number of
numeric operations per time step in the explicit, Crank-Nicolson, and implicit scheme is
similar, a restrictive upper limit exists for the time steps in the explicit scheme. When
violated, numerical instability occurs. For example, in diffusion-dominated systems this
critical time step equals 1

2
x2H1/H2 where H1 and H2 are given by Eq. 3. In models of

organic matter and nutrient diagenesis where oxygen usually is a key component that
typically penetrates only a few mm into the sediments, a x of � 0.01 cm is required to
accurately describe the oxygen profile. With typical values of H1 and H2 of 0.8 and
10�5 cm2 s�1, the critical time step is 4 s for the explicit scheme. Such small time steps will
lead to prohibitive computation times when multiple-year simulations are required. Upper
limits to the time step obviously also exist for the implicit scheme in such simulations, but
they are of a different nature and are generally markedly less restrictive. For example, in
multi-component models, fast non-linear reactions between species can restrict the size of
the time steps that can be used. However, in such modeling exercises, performed with
realistic reaction rate constants, time steps on the order of 1 h are usually sufficient to
ensure an accurate numerical solution as we demonstrate in an example below. As the
result of the explicit element in the Crank-Nicolson scheme it can, depending on the
application, also suffer from restrictive demands on the time step. As a simple example of
this, it is not possible to produce steady-state solutions to linear problems in one large time
step as is the case with the implicit scheme.

The implicit time integration in Eq. 6 gives

H1 j�Cj
n�1 � Cj

n�
xj

t
� �F1 j�1C j�1

n�1 � F2 j�1C j
n�1 � F1 jC j

n�1 � F2 j C j�1
n�1

� H4j�C0 � C j
n�1�xj � �R1 j � R2 jC j

n�1�xj

(7)

which gives the following tri-diagonal system of equations

AAjCj�1
n�1 � BBjCj

n�1 � CCjCj�1
n�1 � DDj (8)

where the coefficients are defined as

AAj � F2 j

BBj � F1 j � F2 j�1 � H4jxj � R2 jxj � H1 j

xj

t

CCj � �F1 j�1

DDj � �H1 j

xj

t
Cj

n � H4jC0xj � R1 jxj

(9)
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The control volume spanning xj is included deliberately as a factor in Eq. 9 rather than a
denominator allowing xj to equal zero.

b. Boundary conditions

The boundary conditions that bring closure to the tri-diagonal system of equations
(Eq. 7) are imposed implicitly through control volume L and N, where L equals either 1 or
M depending on how the calculation domain is separated into control volumes (Fig. 1). For
control volume L and N, Eq. 8 simplifies to

BBLCL
n�1 � CCLCL�1

n�1 � DDL (10)

and

AANCN�1
n�1 � BBNCN

n�1 � DDN. (11)

The coefficients BBL, CCL, DDL, AAN, BBN, and DDN are given values depending on the
kind of boundary conditions imposed. Three types of boundary conditions are possible: a
known concentration, a known flux, and a known concentration gradient. The assignment
of values to BBL, CCL, DDL, AAN, BBN, and DDN depending on the type and value of the
boundary conditions are outlined in Table 1. The unique set of boundary concentrations,
CL

n�1 and CN
n�1, which ensures that the desired boundary conditions are imposed, is

obtained when the tri-diagonal system of equations (Eqs. 8, 10, 11) is solved.

c. Solution of tri-diagonal system of equations

Several models of biogeochemical transformations in aquatic sediments rely on implicit
schemes. In these models, the tri-diagonal system of equations is typically solved by
Gaussian elimination numerous times in a single simulation (i.e. Dhakar and Burdige,
1996; Van Cappellen and Wang, 1996) using for example the Thomas algorithm (i.e.
Patankar, 1980; Huyakorn and Pinder, 1983). Rather than performing this straightforward

Table 1. Definition of coefficients BBL, CCL, DDL, AAN, BBN, and DDN in Eq. 10 and 11 depending
on the imposed type and value of boundary condition.

Upper boundary condition: BBL CCL DDL

Known concentration 1 0 The known concentration
Known flux F2L�1 F1L�1 The known flux
Known gradient �2/xL�1 2/xL�1 The known gradient

Lower boundary condition: AAN BBN DDN

Known concentration 0 1 The known concentration
Known flux F2N F1N The known flux
Known gradient �2/xN�1 2/xN�1 The known gradient
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Gaussian elimination in every time step, a significant reduction in computation time can be
obtained as follows.

The coefficient DDj in the tri-diagonal system of equations (Eq. 9, Table 1) will
typically vary from time step to time step, in most applications simply because DDj

contains the concentration Cj
n at the old time level t. In contrast, the coefficients AAj, BBj

and CCj are likely to be constant throughout the simulation (Eq. 9, Table 1), or at least vary
at such a slow rate that it is appropriate to treat them as constants through many
consecutive time steps. An example of this is dynamic simulations based on time steps on
the order of minutes and where much slower seasonal temperature variations will affect
variables such as molecular diffusivities, and thus AAj, BBj and CCj. In such simulations,
it is clearly a good approximation only to update or recalculate the coefficients AAj, BBj

and CCj on a weekly or monthly basis. This characteristic can be taken advantage of to
reduce the computational effort significantly in successive solutions of the tri-diagonal
system of equations by decomposing the discretization matrix only once, or only with time
intervals where AAj, BBj and CCj vary markedly. This is done by reformulating the
Thomas algorithm.

The forward substitution in the Thomas algorithm where Eqs. 8, 10, and 11 are solved in
the interval L � j � N yields (i.e. Patankar, 1980; Huyakorn and Pinder, 1983)

PPL � �
CCL

BBL
; QQL �

DDL

BBL

PPj � �
CCj

BBj � AAjPPj�1

QQj �
DDj � AAjQQj�1

BBj � AAjPPj�1

� �j � L � 1 3 N � 1� (12)

QQN �
DDN � AANQQN�1

BBN � AANPPN�1

where PPj and QQj are decomposition variables and AAj, BBj, CCj, and DDj are defined
either by Eq. 9 or in Table 1. The following back substitution that gives the values of Cj

n�1

yields

CN
n�1 � QQN

(13)
Cj

n�1 � PPjCj�1
n�1 � QQj �j � N � 1 3 L�

The significant gain in computational efficiency is now achieved by rewriting Eq. 12 so
that DDj is kept out of the forward substitution by defining an additional decomposition
variable NNj as follows:
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NNL �
1

BBL
; PPL � �CCLNNL

NNj �
1

BBj � AAjPPj�1

PPj � �CCjNNj

� �j � L � 1 3 N � 1� (14)

NNN �
1

BBN � AANPPN�1

With this modification the back substitution that gives the values of Cj
n�1 then yields

QQL � DDLNNL

QQj � �DDj � AAjQQj�1�NNj �j � L � 1 3 N�
(15)

CN
n�1 � QQN

Cj
n�1 � PPjCj�1

n�1 � QQj �j � N � 1 3 L�

There are 5(N � L) � 1 numeric operations in Eq. 15, approximately half the number
used in the original Thomas algorithm (10(N � L) � 1). Because multiplications are
computationally less costly to perform than divisions, the overall result is that Eq. 15 are
2.5 times faster to execute than those of the original Thomas algorithm on a 2.0 GHz
Pentium M PC.

Another important and unique feature of this numerical solution is that the type of
boundary condition is introduced through BBL, CCL, AAN, and BBN (Table 1) while the
values of the boundary condition are imposed through DDL and DDN. This characteristic
allows the values of boundary conditions to vary as a simulation progresses without
requiring new decompositions of the discretization matrix.

The coefficient DDj (Eq. 9) must be calculated in every time step. This is done most
effectively as

DDj � �EEjCj
n � FFjC0 � R1 jxj (16)

where EEj and FFj are defined as

EEj � H1 j

xj

t
and FFj � H4 jxj (17)

which, with the definitions of H1 j and H4 j (Eq. 3), typically need only be evaluated once.
In summary, it is convenient to calculate the coefficients given by Eqs. 3, 9, and 17 and

perform the new forward substitution given by Eq. 14 in one algorithm. We have named
this algorithm CONSTANTS and its content is summarized in Appendix B. The algorithm
includes five optional expressions for the molecular sediment diffusivity (Ds) as a function
of porosity and diffusivity in water. The two first were originally defined by Ullman and
Aller (1982), the third and fourth were given by Iversen and Jørgensen (1993), and the fifth
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was defined by Boudreau (1997). The output from CONSTANTS are input to the second
algorithm, CNEW, which performs the back substitution (Eq. 15) leading to the new
concentrations every time it is utilized. The content of CNEW is summarized in Appendix C.

3. Applications and examples

The numerical solution, separated into the two algorithms CONSTANTS and CNEW, is
rather versatile and can be used to simulate steady state, dynamic, linear, and nonlinear
problems that further can involve one or more dissolved or solid species. The outlined
features of the solution are particularly beneficial in applications where long computation
times are of concern.

Four example applications of the algorithm are presented below, representing computa-
tional gains achieved in diverse problems. The first three focus on rather simple cases, for
which analytical solutions exist. They also serve as a test of the numerical solution and as
an illustration of the discretization in depth, (and in time for transient problems) required to
obtain accurate solutions. In the last example, the solution is implemented in a dynamic,
multi-component, and nonlinear model of organic matter and nutrient diagenesis in a
specific sediment. This example illustrates clearly the significant advantages that can be
achieved in terms of short computation times when applying the numerical solution to
models where components with very different time constants require relatively small time
steps combined with long simulation times to produce quasi-stationary solution on a year
to year basis. All examples are coded in FORTRAN 90 and the simulations are performed
in double precision.

a. Example 1

Four types of solute transport, molecular diffusion, bioturbation, irrigation, and advec-
tion, are represented in Eq. 1. An analytical solution to the equation is possible under
steady-state conditions if advection and first-order production terms are neglected, and if �,
Ds, DBw, �, and R1 are assumed to be constant with depth. Under these conditions Eq. 1
simplifies to

��DBw � Ds�
d2C

dx2 � ���C0 � C� � R1 � 0 (18)

which has the solution

C � A exp��� �

DBw � Ds
x� � B exp�� �

DBw � Ds
x� �

�C0 �
R1

�

�
(19)

where A and B are arbitrary constants (Boudreau 1997).
Berg et al. (1998) calculated a hypothetical O2 profile in the depth interval from �0.05

to 1.0 cm assuming constant consumption rates (R1) of 0.004 and 0.012 nmol cm�3 s�1 for
the depth intervals of 0 to 0.75 and 0.75 to 1.0 cm and then applying Eq. 19 to each of these

326 [65, 3Journal of Marine Research



intervals. In the diffusive boundary layer (�D) from �0.05 to 0 cm, the solution simplifies
to a straight line. It was further assumed that the O2 concentration equals 0 at 1 cm depths
and below. Finally, values of �, DBw, Ds, and �, of 0.75, 3 � 10�6 cm2 s�1, 9 � 10�6 cm2

s�1, and 5 � 10�6 s�1 were assumed by Berg et al. (1998). Here (Fig. 2A) we extended the
solution to also include the depth interval of 1 to 1.25 cm for which Eq. 18 simplifies to R1

	 ���C0.
The O2 profile was simulated repeatedly utilizing the algorithms CONSTANTS and

CNEW while the number of equally spaced control volumes (N) was increased incremen-
tally. The error of the numerical solution was determined as the maximum deviation in the
�0.05 to 1.25 cm depth interval from the analytical solution in percent of the water column
concentration (Fig. 2B). Since the numerical solution is fully implicit each simulated
steady-state profile was determined in one single use of both CONSTANTS and CNEW in
which an “infinitely large” time step (1 � 1030 s) was specified. The error of the numerical
solution declines rapidly with increasing N (Fig. 2B) and errors � 1, 0.1, and 0.01% was
found for N equal to 10, 25, and 80. The local periodic variation of the error was caused by
offsets between the abrupt changes in the imposed O2 consumptions (Fig. 2A) and the
boundaries between control volumes.

b. Example 2

Two types of solid transport, bioturbation and advection, are included in Eq. 1. An
analytical solution to the equation is possible under steady-state conditions if zero order

Figure 2. (A) Hypothetical steady state O2 depth-profile defined analytically (dots) and simulated
numerically by utilizing the algorithms CONSTANTS and CNEW (line). The imposed O2

consumption varies with depth (step function). (B) The error of the numerical solution for different
numbers of equally spaced control volumes separating the -0.05 to 1.25 cm depth interval.
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production terms are neglected and if � is assumed to be constant with depth. Under these
conditions Eq. 1 simplifies to

d

dx �DBs

dC

dx � � w
dC

dx
�

R2

�s�1 � ��
C � 0 (20)

This equation describes for example a radioactive tracer, such as 210Pb, that is supplied to a
sediment surface at a constant rate, is transported to deeper sediment layers, and is
disappearing through a first order decay. In this case the decay constant, �, equals
�R2/�s(1 � �). Swaney (1999) showed that if DBs exhibits a parabolic decrease with
depth as DBs 	 DBs0 (1 � x/L)2, the analytical solution to Eq. 20 in the 0 to L depth interval
is

C � C0� L

L � x
exp�1

2
Pe

x

�L � x��
K��1

2
Pe

L

�L � x��
K��

1
2

Pe�
(21)

where C0 is the concentration at the sediment surface, Pe is Peclet number equal to
wL/DBs0, and K� is the modified Bessel function of the order � and of the second kind

where � 	 ��L2/DBs0 �
1
4
. With values of L, DBs0, w, and � of 10 cm, 0.05 cm2

year�1, 0.05 cm year�1, and 0.0315 year�1, a hypothetical 210Pb profile was calculated
from Eq. 21 (Fig. 3A). As in Example 1, the 210Pb profile was simulated repeatedly for

Figure 3. (A) Hypothetical steady state 210Pb depth-profile defined analytically (dots) and simulated
numerically by utilizing the algorithms CONSTANTS and CNEW (line). (B) The error of the
numerical solution for different numbers of equally spaced control volumes separating the 0 to 10
cm depth interval.
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increasing N and the error of the numerical solution was determined as the maximum
deviation in the 0 to 10 cm depth interval from the analytical solution in percent of the
sediment surface concentration (Fig. 3B). Also in this example each numerical solution
was found in one “infinitely large” time step (1 � 1030 s). The error of the numerical
solution decreases with increasing N (Fig. 3B), but not as pronounced as in Example 1.
Errors of 1 and 0.1% were found for N equal to 31 and 105.

c. Example 3

As an example of nonsteady-state conditions, a conservative dissolved tracer that is
supplied to a sediment from the overlying water is considered. An analytical solution to
Eq. 1 is possible if irrigation is neglected and it is assumed that �, Ds, and DBw are constant
with depth. Under these conditions Eq. 1 simplifies to

�C

�t
� �DBw � Ds�

�2C

dx2 � u
dC

dx
(22)

If the diffusive boundary layer is neglected and the tracer is absent in the sediment at time
zero after which the tracer concentration is increased momentarily to a constant value at the
sediment surface, the analytical solution to Eq. 22 is

C �
1
2

C0�erfc� x � ut

2��DBw � Ds�t� � exp� xu

�DBw � Ds�
� erfc� x � ut

2��DBw � Ds�t�� (23)

where C0 is the tracer concentration at the sediment surface (Bear and Verruijt, 1987).
From Eq. 23 two hypothetical profiles were calculated, one where advection was neglected
and one where advection was included with a downward directed velocity of 5 cm day-1

(Fig. 4A). Both profiles are valid for a time of 1 day after the water column concentration
was increased and based on identical values of Ds and DBw of 5 � 10�6 cm2 s�1. Each of
the profiles were simulated repeatedly over a range of N and time steps (t). The error of
the numerical solution was determined as the maximum deviation in the 0 to 10 cm depth
interval from the analytical solution is a percent of the concentration on the sediment
surface (Figs. 4B and 4C). The error of the numerical solution decreases as expected with
increasing N and t. As a result of numerical diffusion (i.e. Patankar, 1980) the error is
approximately 10-fold larger for the profile influenced by advection. This example shows
that transient simulations of advection-dominated systems demands relatively high num-
bers of control volumes to obtain an accurate numerical solution.

d. Example 4

As a more realistic example from a modeling point of view, the numerical solution was
implemented in a simplified version of the dynamic diagenetic model put forward by
Soetaert et al., (1996). The simplification consists of neglecting the nitrogen cycling. This
leaves three reactions to be simulated (Table 2), oxic mineralization, anoxic mineraliza-
tion, and oxidation of so-called reduced compounds, such as NH4

�, Mn2�, Fe2�, and H2S,
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which was modeled as one component and referred to as ODU (Oxygen Demanding
Units). In addition to ODU, the model included O2 plus a rapidly and a slowly decompos-
ing pool of organic matter (OM). Furthermore, the active transport processes accounted for
were molecular diffusion, bioturbation and burial as in the original model (Soetaert et al.,
1996). The regulation of all reactions was adopted from Berg et al., (2003) (Table 2). The
model was applied to the Arctic sediment of one of the sites in Young Sound, Greenland,
monitored intensively by Rysgaard and Berg (1996) and Rysgaard et al., (1998) through a
full annual cycle. The site is located at 36 m depth, has a constant temperature year round,
and a supply of OM that follows a dynamic pattern strongly affected by a short ice-free
period in mid-summer.

As a realistic test example of the numerical solution, the model contains several rather
challenging elements. For example, the reaction regulations are all clearly nonlinear and
result in nonlinear production terms (Table 2). These production terms couple the mass
conservation equations for the four simulated components, making all four equations
nonlinear. In addition, both the depth and temporal scales of these components are
markedly different. Specifically, O2 penetrates only a few mm into the sediment and
adjusts to dynamic changes on a time scale of 10 to 100 min, while decomposing OM
reaches much larger sediment depths and adjusts to changes on a time scale of 10 to 100
years.

The numerical solution was implemented as follows. As an initial step, coefficients in
the systems of equations, one system for each simulated component, were evaluated and
the systems of equations were decomposed by the algorithm CONSTANTS, utilized only

Figure 4. (A) Hypothetical transient depth-profiles after a one-day intrusion of a conservative
dissolved tracer, defined analytically (dots) and simulated numerically by utilizing the algorithms
CONSTANTS and CNEW (lines). The upper profile is influenced by diffusion only while the
lower profile is the combined result of both diffusion and advection. (B) Iso-plot of errors for the
numerically predicted, diffusion controlled, profile for different numbers of equally spaced control
volumes separating the 0 to 10 cm depth interval and different time steps. (C) Iso-plot of errors for
the numerically predicted, diffusion and advection controlled, profile for different numbers of
equally spaced control volumes separating the 0 to 10 cm depth interval and different time steps.
Note that errors are approximately 10 times larger for the profile under influence of both diffusion
and advection.
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once for each component. In each of the following time steps, first the reaction rates (V1f ,
V1s, V2f , V2s, V3) and then the production terms (ROMf, ROMs, RO2, RODU) were determined
from known concentrations at time t (Table 2). Based on these production terms, new
concentrations for time t � t were determined by the algorithm CNEW, utilized once for
each component in every time step.

This scheme relies on an explicit coupling between the mass balances through the
production terms (ROMf, ROMs, RO2, RODU). In order to avoid instabilities arising from
this explicit coupling, especially in the initial phase of a simulation, none of the
reaction rates were allowed to be negative. This was achieved by applying the intrinsic
function MAX(a, b) which returns the maximum value of arguments a and b.

Site-specific quantities measured by Rysgaard and Berg (1996), Rysgaard et al. (1998)

Table 2. Simplified diagenetic reactions, their regulations, and the constituents included in Example
4. Simulated constituents are written in bold in the reactions. The symbols OM and ODU are used
for organic matter and oxygen demanding units. A rapidly and a slowly decaying pool are utilized
for OM.

Reaction 1 OMf � O2O¡
V1f

CO2 �
1

�C : N�
NH4

�

OMs � O2O¡
V1s

CO2 �
1

�C : N�
NH4

�

Reaction 2 OMf � an oxidantO¡
V2f

CO2 �
1

�C: N�
NH4

� � ODU

OMs � an oxidantO¡
V2s

CO2 �
1

�C: N�
NH4

� � ODU

Reaction 3 ODU � O2O¡
V3

an oxidant

Regulations
Vf 	 KOMf(1 � �)�s[OMf] and Vs 	 KOMs(1 � �)�s[OMs]

�O2� � [O2lim]: � V1f � Vf and V2f � 0
V1s � Vs and V2s � 0

�O2� � �O2lim�: � V1f � Vf �O2�/�O2lim� and V2f � Vf � V1f

V1s � Vs�O2�/�O2lim� and V2s � Vs � V1s

V3 	 K3�[ODU][O2]
Production terms

ROMf 	 �V1f � V2f and ROMs 	 �V1s � V2s

RO2 	 �V1f � V1s � V3

RODU 	 V2f � V2s � V3
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and Berg et al. (2001) were used for many input parameters to the model (1, 2, 3, 6, 7, 8, 9,
10, 11, Table 3). The limiting O2 concentration (12, Table 3) used in the regulation of the
reactions was taken from Van Cappellen and Wang (1996) and Berg et al., (2003) as was
the rate constant for Reaction 3 (15, Table 3). This rate constant was used in these studies
for the reaction of Fe2� with O2 and by adopting this constant here, it was implicitly
assumed that the ODU pool consists mostly of Fe2� in accordance with the findings of
Berg et al. (2003) at this site. The distribution of the OM supply between the rapidly and
the slowly decomposing OM pools (16, Table 3) was taken from Soetaert et al. (1996). All
these parameters were kept constant in all simulations.

The last three input parameters to be assigned, the rate constants for the two OM pools
and the time dependant OM flux supplied to the sediment, were given values by comparing
simulated and measured results repetitively and adjusting the three input parameters. Based
on the measured pattern of O2 fluxes (Fig. 5B) and also two OM sedimentation rates
(Fig. 5A) reported by Rysgaard et al. (1998), it was assumed that the variation of the OM
flux over the year consists of a base contribution plus a short peak summer contribution
with a duration of 1 month (Fig. 5A). With a known annual supply of OM to the sediment
(9, Table 3) also reported by Rysgaard et al. (1998), the dynamic OM flux was uniquely
defined by the ratio between the peak summer contribution and the base contribution (17,
Table 3).

Despite the simplicity of the model, a good agreement was achieved for the O2 uptake

Table 3. Input parameters in Example 4 and their origin.

Parameter Value Source

1 Sedimentation rate w 	 0.12 cm year�1 1, 2
2 Biodiffusivity for solutes x � 4 cm: DBw 	 4.6 � 10�6 cm2 s�1 3, (2)

x � 4 cm: DBw 	 4.6 � 10�6 e�0.35(x�4) cm2 s�1

3 Biodiffusivity for solids DBs 	 DBw/12 3, (2)
4 Molecular diffusivity at 0 °C DO2 	 11.7 � 10�6 cm2 s�1 4
5 Molecular diffusivity at 0 °C DODU 	 3.4 � 10�6 cm2 s�1 5
6 Porosity � 	 0.631 � 0.207 e�1.02x 6, (2)
7 Density of solid sediment �s 	 2.41 g cm�3 6
8 Diffusive boundary layer �D 	 0.03 cm 6, (2)
9 Boundary condition FOM 	 2300 mmol m�2 year�1 6

10 Boundary condition [O2]x	�0.03 	 389 �M 6
11 Boundary condition [ODU]x	�0.03 	 0 �M 2
12 Limiting concentration. [O2]lim 	 20 �M 7, (2)
13 Rate constant KOMf 	 2.0 � 10�6 s�1 *
14 Rate constant KOMs 	 3.0 � 10�9 s�1 *
15 Rate constant K3 	 1.1 � 10�6 �M�1 s�1 7, (2)
16 Ratio FOMf /FOMs 	 0.5 8
17 Ratio FOM peak/FOM base 	 6 *

1) Rysgaard et al. (1996); 2) Berg et al. (2003); 3) Berg et al. (2001); 4) Broecker and Peng (1974); 5)
Li and Gregory (1974); 6) Rysgaard et al. (1998); 7) Van Cappellen and Wang (1996); 8) Soetaert et
al. (1996); *This study.
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throughout the year (Fig. 5B). A similarly good agreement was obtained with the measured
O2 concentration profile determined by Rysgaard et al., (1998) in mid August (Fig. 5C).

All simulations were based on a time step of 1 hour and a separation of the diffusive
boundary layer and the upper 20 cm of the sediment into 100 control volumes. This depth
was required to diminish the slow pool of OM to close to zero concentrations (Fig. 5D).
The upper 1 cm of the sediment was separated into equally sized control volumes of 0.03
cm after which the control volume size was gradually increased with depth. This
discretization in time and space was found to be adequate to obtain precise numerical
solutions in an additional simulation performed with a time step of 15 min and 200 control
volumes which gave the same annual O2 uptake within 0.04%.

From initial conditions of zero OM, O2, and ODU in the sediment, 75 years of simulated

Figure 5. Application of a dynamic, multi-component, and nonlinear model of organic matter and
nutrient diagenesis to an Arctic sediment (Table 2 and 3) by utilizing the algorithms CONSTANTS
and CNEW. (A) Supply of organic matter to the sediment over the year found in the model
parameterization (line) and two measured organic matter fluxes (dots). (B) Simulated (line) and
measured (bars, errors represent �1 SE, n 	 6) O2 uptake over the year. (C) Simulated (line) and
measured (dots) O2 depth-profile in mid August. (D) Simulated depth-profile of decomposing
organic matter. (E) Simulated depth-integrated organic matter content through 75 years of
simulated time. Initial condition in the simulation was a sediment absent of organic matter. (F)
Computation time required per simulated year using the standard Thomas algorithm as equation
solver and the algorithm presented in this study. The results were produced on a 2.0 GHz Pentium
M PC.

2007] 333Berg et al.: Fast solution to mass-conservation equation



time were required to build up the OM pools to quasi-stationary conditions on a year to
year basis (Fig. 5E). Even though some 50 simulations were performed in this model
parameterization, the 75 years of simulated time did not lead to prohibitive computation
times as the model was running at the speed of 0.13 s per simulated year on a 2.0 GHz
Pentium M PC (Fig. 5F). This good performance was the combined result of three factors.
Firstly, the implicit formulation in the numerical solution allowed a relatively large time
step to be used. Specifically, the time step was 100 times larger than the maximum allowed
critical time step of explicit formulations (see above). Secondly, the separation of the
forward and the back substitution in the numerical solution allowed the system of 100
equations per simulated component to be decomposed only once, after which new
concentrations were found with little computational effort in every time step. Thirdly, the
novel implementation of boundary conditions allowed the values of boundary conditions to
vary as simulations progressed without requiring new decompositions of the systems of
equations. This characteristic was clearly taken advantage of here with respect to the
imposed OM flux (Fig. 5A). An additional simulation, performed with the standard
Thomas algorithm as equation solver (Eqs. 12 and 13) instead of our algorithms (Eqs. 14
and 15), required the double amount of computation time (Fig. 5F). It should be
emphasized that this simulation with the standard Thomas algorithm also was optimized
with respect to computation time by only calculating the constants AAj, BBj and CCj (Eq.
9) once. Because the number of numeric operations in multi-component diagenetic models
typically varies linearly with the number of species accounted for, this factor of two
conservatively represents the computational efficiency to be gained over the Thomas
algorithm by using the algorithms proposed in this study.

The explicit coupling used between the mass balances for each component represents the
simplest possible way to overcome the inherent nonlinearities in multi-component diage-
netic models. A more advanced implicit coupling that would allow markedly larger time
steps than used here is also possible. Although this would require iterations to be
performed in every time step to overcome these nonlinearities, it would lead to even faster
overall computation times. In such formulations, the algorithms CONSTANTS and CNEW
can also be used equally as effectively. Details on how to formulate such iterative schemes
most effectively are for example given by Patankar (1980) and Berg (1999).

4. Summary and conclusion

Many researchers modeling species transformations in aquatic sediments have found
that computation times of numerical solutions can become prohibitively long. In many
cases, this is either due to inefficient algorithms or to algorithms being misapplied to
problems inappropriate to them. The numerical solution presented here is suited to both
single and multi-component models, and aims to minimize this problem, taking advantage
of three factors:

1. The numerical solution is based on an implicit formulation of the discretization
equation which provides a versatile approach for solving transient problems using
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relatively large time steps, and at the same time, allowing steady-state solutions to
linear problems to be produced in one single “infinitely large” time step.

2. Care has been taken to re-calculate model variables only when necessary, i.e., as a
simulation progresses when or if they change. For example, in transient solutions all
non-essential numerical operations are eliminated from the repetitive time loop.
Consequently, the numerical solution consists of two algorithms, CONSTANTS and
CNEW, one that decomposes the discretization matrix once and one that subse-
quently can be utilized numerous times with minimal computational effort. In
transient solutions, this will be in every time step.

3. The algorithms are uniquely formulated to allow the values of boundary conditions to
vary as a simulation progresses without requiring new decompositions of the
discretization matrix.

The combined effect of these features can reduce computation times significantly
relative to procedures commonly used for modeling species transformations in aquatic
sediments. Although the last example presented above focuses on a relatively simple
diagenetic model, it illustrates clearly the potential benefits in terms of computation times
that can be achieved with this numerical solution.

Available Software

Copies of the algorithms CONSTANTS and CNEW, coded in FORTRAN 90, can be
obtained free of charge from the corresponding author. For optimal performance, the
algorithms should be applied in double precision.

Acknowledgments. We thank D. Burdige and one anonymous reviewer for their constructive
reviews of this paper. This study was supported by grants from the University of Virginia and the
Danish National Science Research Councils (contract nos. 9501025 and 9700224).

APPENDIX A

Approximation of fluxes

As illustrated by Patankar (1980) a first evaluation of flux-approximating schemes can
be achieved by comparison with the analytical solution of the one-dimensional steady state
mass-conservation equation that accounts for diffusion and advection. This approach is
adapted here, and complemented with computation times for evaluation of the schemes on
modern computer processors. The one-dimensional steady state mass-conservation equa-
tion including diffusive and advective transport contributions can be written in the form

dJ

dx
� 0

(A1)

J � �H2

dC

dx
� H3C
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If H2 and H3 are constant with depth, Eq. A1 have the analytical solution (i.e. Patankar,
1980 or Boudreau, 1997)

x � 0: C � C0

x � L: C � CL
� f J � H3�C0 �

C0 � CL

exp�H3

H2
L� � 1	 (A2)

Assuming for now that xj is constant with depth and referred to as x, and using this
solution to express the intermediate combined diffusive-advective flux, Jj�1/ 2, at the
boundary between control volume j-1 and j, gives

Jj�1/2 � H3�Cj�1 � F�P�
Cj�1 � Cj

P � (A3)

where the function F(P) is given by

F�P� �
P

exp�P� � 1
(A4)

and where P is the Peclet number defined as

P �
H3

H2
x (A5)

Numerical solutions of Eq. 1 can be produced by expressing the fluxes between control
volumes according to Eq. A3. The expression of Jj�1/ 2 in combination with Eq. A4 is
often referred to as the exponential scheme based on the expression for F(P) and was first
put forward by Spalding (1972) and later by Fiadeiro and Veronis (1977). At the time when
the exponential scheme was defined, the exponential function was time consuming to
evaluate on computers of the day. In addition, F(P) needs special attention in its evaluation
as it contains a singularity for P 	 0. For those reasons, researchers derived new schemes
relying on approximations of F(P) that were markedly faster to evaluate (i.e. Spalding,
1972; Patankar, 1981; Berg, 1985). The most popular schemes, including the classic
central difference and upwind schemes (Courant et al., 1952), are shown in Table A1 along
with the normalized computation time for their evaluation on a 2.0 GHz Pentium M PC. As
an example of derivation, the central difference approximation of F(P) can be derived by
approximating the intermediate flux as Jj�1/ 2 	 �H2(Cj � Cj�1)/x � H3(Cj �
Cj�1)/ 2 which is equivalent to Eq. A3 if F(P) 	 1 � 0.5P (Table A1). The exact
function F(P) and its approximations are illustrated in Figure A1.

The central difference scheme provides a good approximation of F(P) only for small
values of P, and is the only scheme in which the divergence from F(P) 3 � as P 3 ��
(Fig. 1A). This characteristic explains why instabilities occur when using central differ-
ence approximation for advection-dominated systems (
P
 �� 0). The normalized
computation times (Table A1) show that the power law scheme which was used exten-
sively in the 1980s and 1990s, is outdated today as its evaluation is more time consuming
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than the exact scheme. Both the hyperbolic and the hybrid scheme appear to be good
choices based on their good approximation of F(P) (Fig. A1) in combination with their
relatively short evaluation times. However, it should be noted that the evaluation time

Table A1. Formulations of the function F(P) in different schemes. The formulations are given on a
form that ensures minimal use of computation time in their evaluations. The normalized evaluation
times are valid for a 2.0 GHz Pentium M PC. The two intrinsic functions, SIGN and MAX, each
have two arguments, and are standard functions in FORTRAN. Function SIGN performs a sign
transfer by returning the absolute value of the first argument multiplied by the sign of the second
argument. Function MAX returns the maximum value of the arguments.

Scheme Approximations of F(P) 	 P/(exp(P) � 1)
Normalized time

for one evaluation Reference

Exact Phelp 	 SIGN(MAX(10�5, 
P
), P)
F(P) 	 Phelp/(exp(Phelp) � 1) 1.0 1), 2)

Power law F(P) 	 MAX(0, (1 � 0.1
P
)5) � MAX(0, �P) 1.2 3)
Hyperbolic F(P) 	 MAX(0, 8/(4 � 
P
) � 1) � MAX(0, �P) 0.093 4)
Hybrid F(P) 	 MAX(0, �P, 1 � 0.5P) 0.062 1)
Upwind F(P) 	 MAX(1, 1 � P) 0.047 5)
Central F(P) 	 1 � 0.5P 0.037

1) Spalding, 1972, 2) Fiadeiro and Veronis, 1977, 3) Patankar, 1981, 4) Berg, 1985, 5) Courant et al.,
1952

Figure A1. The exact function F(P) and its approximation in alternate schemes.

2007] 337Berg et al.: Fast solution to mass-conservation equation



should affect the choice of scheme only in model formulations where numerous evalua-
tions of F(P) are expected.

In this brief comparison it was assumed that x, H2, and H3 are constant with depth.
This is only true for H3 in Eq. 3, and an expression similar to Eq. A3 where variations in x
and H2 are accounted for is derived from Eq. A2 as follows. Assuming that the grid point
values of H2 prevail throughout control volumes as representative mean values, the flux
Jj�1/ 2 can be expressed for control volume j-1 by the variables Cj�1, Cj�1/ 2, xj�1,
H2 j�1, and H3 as

Jj�1/2 � H3�Cj�1 �
Cj�1 � Cj�1/2

exp� H3

H2 j�1

1

2
xj�1� � 1	 (A6)

The same flux can similarly be expressed for control volume j by the variables Cj�1/ 2, Cj,
xj, H2 j, and H3 as

Jj�1/2 � H3�Cj�1/2 �
Cj�1/2 � Cj

exp�H3

H2 j

1

2
xj� � 1	 (A7)

Eliminating Cj�1/ 2 by combining these two expressions leads to (equivalent to Eq. A3)

Jj�1/2 � H3�Cj�1 � F�Pj�1/2�
Cj�1 � Cj

Pj�1/2
� (A8)

where the function F(Pj�1/ 2) is given by (equivalent to Eq. A4)

F�Pj�1/2� �
Pj�1/2

exp�Pj�1/2� � 1
(A9)

and the Peclet number Pj�1/ 2 is defined as the simple average of Pj�1 and Pj (equivalent to
Eq. A5)

Pj�1/2 �
1

2 �H3xj�1

H2 j�1
�

H3xj

H2 j
� (A10)

or alternatively as

Pj�1/2 �
H3

H2 j�1/2

1
2

�xj�1 � xj� (A11)

where H2 j�1/ 2 is given by the weighted harmonic mean of H2 j�1 and H2 j as

H2 j�1/2 �
H2 j�1H2 j�xj�1 � xj�

xj�1H2 j � xjH2 j�1
(A12)
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The general expression of the flux Jj�1/ 2 over the boundary between control volume j-1
and j is defined by the two variables, F1 j and F2 j, (Eq. 5). These variables can now be
derived from Eq. A8 as

F1 j � �F�Pj�1/2�
H2 j�1/2

1
2
�xj�1 � xj� (A13)

F2 j � �F1 j � H3

where the function F(Pj�1/ 2) is taken from Table A1.

APPENDIX B

The algorithm “CONSTANTS”

Below is listed the input to and the output from the algorithm CONSTANTS, followed
by a summary of the algorithm. Units of input and output variables are included as an
example. Other units can be used as long as they are mutually consistent.

Input:

L [-] Number of first control volume (	1 or M, see Fig. 1)
M [-] Number of control volume at the sediment surface (see Fig. 1)
N [-] Number of last control volume (see Fig. 1)
t [s] Time step
xj [cm] Size of control volumes
�j [-] Porosity
D [cm2 s�1] Diffusivity in water
DBw j [cm2 s�1] Biodiffusivity for solutes
DBs j [cm2 s�1] Biodiffusivity for solids
�s [g cm�3] Density of sediment
�j [s�1] Irrigation coefficient
R2 j [s�1] Production rates
(�u)x [m s�1] Porosity times porewater velocity (constant with depth)
((1 � �)w)x [m s�1] One minus porosity times burial velocity (constant with depth)
� [-] Equal to 1 for solutes and equal to 0 for solids
� [cm3 g�1] Coefficient (	0, 1 or K
 where K
 is the adsorption constant)
FL0 [-] Flag for choosing the expression for Ds (	1, 2, 3, 4 or 5)
FL1 [-] Flag for choosing the upper boundary condition (	1, 2, or 3)
FL2 [-] Flag for choosing the lower boundary condition (	1, 2, or 3)

Output:

AAj [cm s�1] Input to CNEW
EEj [cm s�1] Input to CNEW
FFj [cm s�1] Input to CNEW
NNj [s cm�1] Input to CNEW
PPj [-] Input to CNEW
F1 j [cm s�1] Constants for calculation of flux (Eq. 5)
F2 j [cm s�1] Constants for calculation of flux (Eq. 5)

Calculation of Dsj depending of the flag FL0:
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FL0 � 1: Ds j � �jD

FL0 � 2: Ds j � �j
2D

FL0 � 3: Ds j �
D

1 � 2�1 � �j�

FL0 � 4: Ds j �
D

1 � 3�1 � �j�

FL0 � 5: Ds j �
D

1 � ln��j
2�

� �j � L 3 N� (B1)

Calculation of H1j, H2j, H3, and H4j:

H3 � ���u�x � �s��1 � ��w�x�

(B2)H1 j � ��j � �s�1 � �j��
H2 j � ��j�DBw j � Ds j� � �s�1 � �j�DBs j�
H4 j � ��j�j

� �j � L 3 N�

Calculation of F1 j and F2 j. Note that special precautions are taken to avoid division by
zero. The function MAX(a, b) is a standard function in FORTRAN and returns the
maximum value in the argument list. The number 10�36 is close to the smallest value that
can be represented in single precision in FORTRAN.

H2 j�1/2 �
H2 j�1H2 j�xj�1 � xj�

MAX�10�36, xj�1H2 j � xjH2 j�1�

Pj�1/2 �
H3

MAX�10�36, H2 j�1/2�
1
2
�xj�1 � xj�

F�Pj�1/2� � MAX�0, 8/�4 � 
Pj�1/2
� � 1� � MAX�0, �Pj�1/2�

F1 j � �F�Pj�1/2�
H2 j�1/2

1
2
�xj�1 � xj�

F2 j � �F1 j � H3

� �j � L � 1 3 N� (B3)

Calculation of the coefficients AAj, BBj and CCj in the tri-diagonal system of equations:

AAj � F2 j

BBj � F1 j � F2 j�1 � H4 jxj � R2 jxj � H1 j

xj

t

CCj � �F1 j�1

� �j � L � 1 3 N � 1� (B4)

Calculation of the coefficients BBL and CCL for the upper boundary condition. The type of
boundary condition is specified by the flag FL1:
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FL1 � 1: BBL � 1; CCL � 0

FL1 � 2: BBL � F2 L�1; CCL � F1 L�1 (B5)

FL1 � 3: BBL � �
2

xL�1
; CCL � �BBL

Calculation of the coefficients AAN and BBN for the lower boundary condition. The type of
boundary condition is specified by the flag FL2:

FL2 � 1: AAN � 0; BBN � 1

FL2 � 2: AAN � F2 N; BBN � F1 N (B6)

FL2 � 3: AAN � �
2

xN�1
; BBN � �AAN

Calculation of the coefficients NNj and PPj in the forward substitution:

NNL �
1

BBL
; PPL � �CCLNNL

NNj �
1

BBj � AAjPPj�1

PPj � �CCjNNj
� �j � L � 1 3 N � 1� (B7)

NNN �
1

BBN � AANPPN�1

Calculation of the coefficients EEj and FFj used to calculate the right hand side in the
tri-diagonal system of equations:

EEj � H1 j

xj

t

FFj � H4 jxj
� �j � L � 1 3 N � 1� (B8)

APPENDIX C

The algorithm “CNEW”

Below is listed the input to and the output from the algorithm CNEW, followed by a
summary of the algorithm. Units of input and output variables are included as an example.
Other units can be used as long as they are mutually consistent.

Input:

L [-] Number of first control volume (	1 or M, see Fig. 1)
N [-] Number of last control volume (see Fig. 1)
xj [cm] Size of control volumes
AAj [cm s�1] Input from CONSTANTS
EEj [cm s�1] Input from CONSTANTS
FFj [cm s�1] Input from CONSTANTS
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Input (continued):

NNj [s cm�1] Input from CONSTANTS
PPj [-] Input from CONSTANTS
C0 [nmol cm�3] Known water column concentration
Cj

n Solute: [nmol cm�3] Known concentrations at the old time level
Solid: [nmol g�1]

R1 j [nmol cm�3 s�1] Production rates
BCL FL1 	 1: [nmol cm�3] or

[nmol g�1]
Known boundary condition at top

FL1 	 2: [nmol cm�2 s�1]
FL1 	 3: [nmol cm�4] or

[nmol g�1 cm�1]
BCN FL2 	 1: [nmol cm�3] or

[nmol g�1]
Known boundary condition at bottom

FL2 	 2: [nmol cm�2 s�1]
FL2 	 3: [nmol cm�4] or

[nmol g�1 cm�1]
Output:

Cj
n�1 Solute: [nmol cm�3] New concentrations at the new time level

Solid: [nmol g�1]

Calculation of the coefficients QQj:

QQL � BCLNNL

QQj � ��EEjCj
n � FFjC0 � R1 jxj � AAjQQj�1�NNj �j � L � 1 3 N � 1�

(C1)

Calculation of the new concentrations Cj
n�1:

CN
n�1 � �BCN � AANQQN�1�NNN

Cj
n�1 � PPjCj�1

n�1 � QQj �j � N � 1 3 L�
(C2)
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