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Accounting for unresolved spatial variability
in marine ecosystems using time lags

by Philip J. Wallhead1,2, Adrian P. Martin1, Meric A. Srokosz1,
and Mike J. R. Fasham2

ABSTRACT
The formulation and calibration of models is a vital method for probing and predicting the behav-

ior of marine ecosystems. The ability to do this may suffer, however, if the calibrating data set is
subject to significant spatial variability between samples that is not resolved in the model. We pro-
pose that some of this variability might be accounted for by variable time lags between sampled
water masses which are otherwise assumed to follow a common pattern of ecosystem variability
(dynamical trajectory). Using twin tests of fitting models to simulated data sets, we show that real-
istic levels of meso/sub-mesoscale variability in time lags may have significant distortion effects on
the parameter fits from standard methods which do not account for it. The distortion is such as to
‘smooth out’ or underestimate the magnitude of temporal variability within sampled water masses,
causing loss of accuracy and robustness of biological parameter estimates and functions thereof
(e.g. gross primary production). A new method of model fitting is shown to avoid these effects,
allowing improved estimates over a broad range of spatial time lag variability and measurement
noise levels, assuming accurate estimation of the time lag variance, for which we also suggest a
method.

1. Introduction

Marine ecosystems exhibit variability on a broad range of temporal and spatial scales.
Temporal variability tends to be dominated by seasonal cycles, but may also be significant
on timescales of days (e.g. biological interactions) and years (e.g. El Niño effects). Spatial
variability is strongest over the largest scales of oceanic gyres (O(103) km), but also pervades
the meso/sub-mesoscale (1–100 km) and to a lesser degree yet smaller scales, giving rise to
the ‘patchy’ distributions of plankton long-observed in the ocean (Bainbridge, 1957). This
variability may have significant impact on estimates of quantities of practical interest such
as primary productivity (Martin and Richards, 2002) which in turn affects higher trophic
levels (e.g. fish recruitment), and nutrient uptake/export rates important in global nutrient
cycles (Prunet and Minster, 1996).
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The ability to predict and to test hypotheses concerning these important quantities requires
the construction of ecosystem models. These models must be fitted to oceanographic data,
of limited quantity and quality, with often a significant number of poorly known biological
model parameters which must therefore be estimated from the data. Accurate hind-/forecasts
and hypothesis tests rely on good model formulations with accurate estimates of the free
parameters. Good formulations should contain a degree of complexity/resolution that is
supported by the data: too little, and important processes may be misrepresented or not
captured in the model, resulting in highly biased parameter estimates (underfit); too much,
and surplus freedom in the model may be fitted to noise in the data set, resulting in highly
variable, poorly constrained estimates (overfit—see e.g. Burnham and Anderson (1998) for
further discussion).

Accounting for all the important influences of spatio-temporal variability on marine
ecosystems is particularly challenging, because the advective/diffusive movements of the
fluid, and limitations on our ability to track them, result in a mixing or confusion of spa-
tial and temporal variability in the sampled data set. This applies to all marine data sets,
whether acquired from cruise ships, fixed mooring stations, satellites (which only measure
near-surface concentrations), or ‘Lagrangian’ sampling surveys (which cannot track the
mixing and dispersion of water masses over sustained periods—even the weekly scale of
a short cruise). Neither can we rely on physical circulation models to separate the two
sources of variability, since these too are subject to limitations of resolution and data con-
straint (uncertainty in forcings and initial and boundary conditions, and model error due to
subgrid-scale parameterizations). Yet, we would like to somehow filter out or allow for the
effects of unresolved spatial variability on the data set, so that the fitted biological model
may accurately represent the temporal variability within water masses (the ‘Lagrangian
trajectory’), rather than the combination of spatial and temporal variability represented in
practical (non-Lagrangian) data sets. A biological model so-fitted may provide more accu-
rate tests of biological hypotheses, and better hind-/forecasts of mean ecosystem variables
when combined with a model of the spatial variability, perhaps involving a physical model
of the mesoscale circulation or even a General Circulation Model.

A first approach to modeling marine ecosystems is to neglect spatial variability within a
region of interest, and fit a ‘single box model’ to the regional data (i.e. a set of ODEs, one for
each field of interest). This itself is a challenging problem: first, because the dearth of reliable
a priori information about the biological model results in a significant number of poorly
known parameters (typically O(10)), which require a high-dimensional search for optimal
values; second, because the nonlinearity of the biological system can result in multiple ‘local
minima’ within the range of a priori uncertainty in the parameter values when searching for
optimal parameter sets. Nevertheless, progress has been made using nonlinear regression
techniques, first applied in this context by Matear (1995) and Fasham and Evans (1995).
Matear (1995) demonstrated the powerful Simulated Annealing method to estimate optimal
parameters for ecosystem models with O(10) free parameters. The variance-covariance
matrices of the optimal parameters were also estimated, revealing groups of covarying
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estimates and hence limitations of the observational data to constrain more than 10 free
parameters independently in any of the 3, 4 and 7 compartment models used to fit the
data. Such underconstraint was also observed in the single box model studies of Fennel
et al. (2001) and Spitz et al. (1998). In Fasham and Evans (1995), by contrast, a single box
model employing the 7-component formulation of Fasham et al. (1990) provided poor fit to
data despite having 28 free parameters, although it was not optimized using such powerful
techniques as Simulated Annealing. Thus no firm conclusions have been reached on how
to optimally formulate and fit a model to available oceanographic data whilst not explicitly
accounting for spatial variability.

The single box approach has been extended to account for large-scale variability between
spatially separate regions of the ocean, using models consisting of multiple, non-interacting
boxes with different ecosystem parameter sets. This was effectively the approach of
Hemmings et al. (2004). In such model fits, at least some of the ecosystem parameters
(coefficients, forcing or initial conditions) must be allowed to differ between regions (boxes)
to allow for their different ecologies, whilst parameters common to several regions may be
better constrained than for single data set fits. In general, such global models require higher
complexity (measured by number of parameters) in order to maintain quality of fit to data
in contrasting regions, whilst this level of complexity may not be optimal for fitting the data
from one particular region (on a smaller spatial scale). For instance, the success of Hurtt and
Armstrong (1999) in simultaneously fitting the biological model in Hurtt and Armstrong
(1996) to data from the Bermuda Atlantic Time-series Station (BATS – 31.67N 64.17W,
North Atlantic) and Ocean Weather Station India (OWSI – 59N 20W, North Atlantic) was
partly attributed to the inclusion of iron limitation to accommodate conditions at OWSI.
Hemmings et al. (2004) also achieved significant improvement in fit to validation data
by allowing box model parameters to take different values in different spatial ‘domains’
within the total sampled area. However, whilst such multiple-box fits, employing variable
ecologies, may address spatial variability on the broad scale (over O(1000) km or more), it
would not seem reasonable or practical to use the same approach to account for meso/sub-
mesoscale variability in ecologically homogeneous regions.

Finer scale spatial variability may be accounted for by subdividing the boxes into grid
cells, and coupling the biology to physical circulation models (since advective and diffusive
transports have significant mean effects on the meso/sub-mesoscale). For example, Schartau
and Oschlies (2003) fitted a vertically-resolved 1D ecosystem model to data sets from
3 locations (BATS, OWSI and NABE – North Atlantic Bloom Experiment, 47N 20W,
North Atlantic) using fixed physical forcing extracted from an independently fitted 3D
circulation model. The authors inferred general deficiencies in their biological model—
mainly, the use of fixed parameter values common to all three sites, and the formulation
of light limitation on photosynthesis. However, it was deemed necessary to take monthly
averages of data samples (sacrificing temporal resolution) in order to reduce the sensitivity
of the model fit to ‘small phase errors’ in the biological dynamics, arising from errors
in the physical circulation model such as misplaced eddies. This exemplifies the general
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problem that driving spatial variability with a high resolution physical model introduces a
very large number of (possibly time-varying) parameters known with finite error, which,
strictly speaking, should therefore be fitted to the total ecosystem data together with the
biological parameters. Such a model fit would be not only computationally impractical, but
the number of free parameters may be so high that overfit becomes inevitable, resulting in
poorly constrained parameter estimates with high mean-square error. On the other hand,
failing to allow any freedom in these parameters may result in optimal biological parameter
estimates which are biased and spuriously precise.

Therefore, the above methods of fitting marine ecosystem models to available data strug-
gle to robustly account for potential meso/sub-mesoscale variability, without overfitting
the free parameters or sacrificing temporal resolution. We demonstrate that if spatial vari-
ability in the phase or ‘dynamical time’ of the ecosystem is significant, then the optimal
biological trajectories and parameter sets obtained using existing techniques may be con-
sistently biased as estimates of their ‘true’, small-scale, Lagrangian counterparts. We also
demonstrate a strategy to account for this kind of unresolved (or poorly resolved) spatial
variability by assuming random between-sample time lags imposed on a common biological
dynamic (equation coefficients, and hence dynamical trajectory). The method is equivalent
to allowing all the initial conditions of the biological variables in each sampled water mass
to vary in the model fit, but only along a common dynamical trajectory, thus limiting the
free parameter : sample size ratio to the number of state variables as the number of samples
becomes large.

This study was largely inspired by a cruise data set from the eastern North Atlantic
collected after a period of unsettled weather. It was suggested that a significant proportion
of the scatter seen in the data might be accounted for by time lags, since the time series data
appeared less scattered when plotted in ‘phase space’ (the space of state variables plotted
against each other) in which scatter due to time lags is suppressed (see Fig. 1 and Srokosz
et al. (2003) for more details). In fact, the latter study showed that time lags may even
assist the trajectory delineation in phase space, compensating for any intermittency in the
sampling times. Naïvely, this may suggest that models would be better fitted to the phase
space trajectory whenever time lags are present. Doing so, however, effectively discards
all temporal information, and consequently any timescale parameter estimates (e.g. the
duration of a phytoplankton bloom) would have infinite variance. Our method is a more
general ‘middle way’ between time series and phase space fitting, relaxing constraints on
sampled time lags to a controlled extent in order to allow for this kind of variability between
sampled water masses.

In this study we do not address the issue of to what extent spatial variability in real data
can be attributed to time lags. Before answering that question it is necessary to develop
the techniques needed to diagnose the phenomenon if it is there, and assess the potential
dangers of failing to correct for it. This is done using twin tests to investigate the poten-
tial impact of between-sample time lags on standard model fits which do not account for
them, then developing a fitting technique which allows for the presence of finite, random
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between-sample time lags. This new ‘variable lag fit’ is shown to be capable, given cer-
tain assumptions, of significantly outperforming the conventional ‘zero lag fit’ for a broad
range of time lag and measurement noise levels, where performance is measured by the
ability to recover, or hindcast, the true (Lagrangian) biological dynamics from practical
(non-Lagrangian) data. The zero lag fit is shown to be biased by the confusion of temporal
and spatial variability in the data set in such a way that the inferred temporal variation of
biological variables is ‘smoothed out’. The variable lag fit incurs significantly less bias in
estimating the Lagrangian biological dynamics, assuming the true level of time lag variabil-
ity is accurately estimated prior to fitting. We also discuss a possible method of estimating
this level of variability from real oceanographic data sets, in order to realize the potential
benefits of the variable lag fit demonstrated in this paper.

The paper is structured as follows. Section 2 details our assumptions (including the
model equations), methods of generating artificial data and fitting the model to it, and how
we evaluate ‘fit performance’. Section 3 discusses results from the twin tests and their
robustness to changes in ‘truth’, ‘model’ and sampling conditions, and potential extensions
of the method for practical applications. Conclusions are drawn in Section 4.

2. Methods

a. Lagrangian biological model

We wish to make conservative assumptions about the quantity and quality of available
data in practical applications. In these circumstances, a complex model would be in danger of
overfitting the data set (fitting parameters controlling mean trends to noise variability in the
data set). For this reason, and for convenience of analysis and numerical implementation,
we choose to perform our twin tests on a simple (though potentially applicable) marine
ecosystem model. A further requirement is that the modeled mean trajectory may yield at
least some significant information about the model parameters. This rules out trajectories
for which the temporal variability is not significant relative to measurement noise over the
sampling period. Our chosen system executes free, periodic, stable nonlinear oscillations
with a frequency ω, which is some unknown function of the internal model parameters. This
behavior is observed in some more complex marine ecosystem models fitted to real data
sets (Ryabchenko et al., 1997). However it is not necessary to assume that such limit cycles
occur in reality, nor are they a prerequisite for applying our technique; they merely provide
a convenient regime for demonstration, and serve as a simple proxy for seasonal variability
in the more complex and generic case of external seasonal forcing (to be explored in later
work). The technique is essentially a ‘type II regression’ and as such may be applied to
any system of ODEs with an independent variable (in our case time) which is assumed to
be subject to finite noise variations. Whether in fact the between-sample variability in the
dynamics may be robustly described by time lags concerns the particular system of interest
(and is unlikely to be true, for instance, if the system dynamics are chaotic, or if the system
behavior varies significantly over the sampled region).
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Table 1. Model structural parameters, true values and relative sensitivities.

Parameter Symbol ‘True’ value θt
i Sensitivity

maximum P growth u0 1.0 g C m−3 day−1 high
nutrient half-saturation constant kn 0.03 g C m−3 medium
P self-shading coefficient c 2.0 g C m−3 medium
Z excretion fraction γ 0.33 medium
maximum Z grazing rate R 0.6 day−1 high
Z search efficiency Λz 20 g−1 m3 high
P recycled losses mp 0.15 day−1 medium
Z remineralization fraction rz 0.5 low
Z mortality rate mz 1.5 g−1 m3 day−1 high
cross-thermocline exchange rate k 0.05 day−1 medium
N concentration below mixed layer N0 0.6 g C m−3 medium
P sinking loss rate sp 0.04 day−1 low
Z assimilation efficiency ez 0.25 low
Nutrient initial condition N (0) 0.131 g C m−3 low
Phytoplankton initial condition P (0) 0.0398 g C m−3 medium
Zooplankton initial condition Z(0) 0.0750 g C m−3 medium

Hence we choose the following NPZ model, adapted from Edwards and Brindley (1996),
adapted in turn from the model of Steele and Henderson (1981):

dN

dt
= −u0

N

kn + N

1

1 + cP
P + γR(1 − e−ΛzP )Z + mpP + rzmzZ

2 + k(N0 − N) (1)

dP

dt
= u0

N

kn + N

1

1 + cP
P − R(1 − e−ΛzP )Z − mpP − (k + sp)P (2)

dZ

dt
= ezR(1 − e−ΛzP )Z − mzZ

2 (3)

where N , P , Z are nutrient (N), phytoplankton (P ) and zooplankton (Z) concentrations
measured in g C m−3 (carbon currency). The model parameters and their ‘true’ values are
listed in Table 1, again, adapted from Edwards and Brindley (1996), where the original set
was chosen from realistic ranges based on a review of literature sources. The functional
forms parameterize various biological processes and shall not be discussed at length here
(see Edwards and Brindley (1996) for detailed argument). Briefly, the trophic transfers are
driven by: Michaelis Menten-parameterized uptake of nutrient by phytoplankton limited by
self-shading, Ivlev-parameterized grazing of phytoplankton by zooplankton (replacing the
Hollings III function used in Edwards and Brindley (1996), which may produce excitable
behavior and hence undesirable trajectory sensitivity, with the grazing form used by Franks
et al. (1986)), and predation of zooplankton by higher trophic levels. Recycling terms
account for remineralized products of phytoplankton mortality/respiration, and zooplankton
excretion and mortality fractions. Non-recycled loss terms represent phytoplankton sinking
and vertical mixing of nutrient and phytoplankton, the latter also allowing nutrient influx
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from below the seasonal pycnocline, with the model only explicitly representing shallower
waters. The robustness of our results to changes in the choice of model formulation is
discussed in Section 3av.

The relative sensitivity of the true solution to changes in each of the parameters may be
assessed by computing the maximum increase in model-data discrepancy for a standard time
series fit to data generated by the true parameter set, incurred by varying each parameter
in turn from 90 to 110% of their ‘true’ values. Table 1 identifies the model parameters,
their true values and respective sensitivities. ‘High’ sensitivity parameters incurred more
than 103 units of ‘cost’, ‘medium’ sensitivity parameters incurred 102–103 units, and ‘low’
sensitivity parameters less than 102 units.

Note that (1–3) describe the ‘average’ dynamics over a constant mixed layer depth and
some horizontal scale, which should be reflected in the optimal parameter values. For zero
lag fits, the minimum horizontal scale represented by the optimal parameter set will be given
by the total area of fluid spanned by the samples. By allowing variable time lags, this lower
limit may be reduced to a smaller scale on which the sampled dynamics may be described a
common trajectory with variable time lags. This is a much weaker restriction on the model,
allowing the data to express a finer scale of spatial resolution in the optimal parameter set.
The model is therefore ‘Lagrangian’ on a scale determined by the data set, subject to this
restriction.

b. Between-sample variability in time lag

We assume that spatial variability imposes time lags on the non-Lagrangian data set.
These time lags are generated by a ‘true’ time lag model of independent random variables
drawn from a stationary normal distribution with mean zero and variance σ2

τ. Though moti-
vated by simplicity, this model may serve as a good first approximation in arguably realistic
circumstances. The assumption of normality is justified by a Central Limit Theorem argu-
ment, considering the net effect of the many independent time lagging mechanisms on the
biological dynamics of Lagrangian water masses, such as fluxes of material due to meteoro-
logical disturbance, mixed layer depth variation, and between-sample disturbance (weather)
events. The assumption of a stationary distribution requires that the sampling interval be
small relative to possible changes in time lag variance, which seems reasonable for data sets
spanning O(month), but may be unrealistic over a seasonal cycle. The assumption of sam-
pled time lag independence is a reasonable approximation if the interval between successive
samples is longer than the time for the largest coherent fluid structure (eddy) to pass through
the sampler. For spatial surveys sampling from a cruise vessel (such as produced the data
in Fig. 1, see Srokosz et al. (2003)), the interval of 1 day used in this study should be ade-
quate at mid-latitudes (where eddies are less than ∼100 km in size), although lower-latitude
surveys may require a lower sampling frequency for this model to be realistic.

To choose a realistic range of time lag variability to use in our twin tests, we gain a very
rough estimate from Figure 1 by examining the vertical scatter about the mean value over
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Figure 1. Data from RRS Discovery cruise D227 (with permission, from Srokosz et al. (2003))
displayed as time series (left), and in state variable phase space (right). Mixed layer concentrations
of chlorophyll (chl) and two size classes of zooplankton (BV1 = 250–500 µm and BV2 = 500–
1000 µm biovolume) are shown, with different symbols used for different sampling subintervals.

a short interval of one of the sampled variables (e.g. the circles), and estimating the time
interval over which this mean value changes by an equal amount (cf. the triangles). We
thereby estimate 10 days as an approximate upper limit to the time lag standard deviation
relevant to the ocean. A more precise estimate would seem to require fitting an ecosystem
model without allowing distortion due to time lags, which begs the question of this study.
A possible method to allow estimation of this parameter, which is treated as fixed in this
study, is discussed in Section 3biii.

Note that even if these assumptions are not strictly met in reality, they may yet prove
adequate as assumptions in estimating the Lagrangian trajectory and biological parameters
from the data (see Section 2f). We return to this question in Section 3bvi.

c. Measurement and model errors

To generate the data, we adopt the ‘true’ error model that all measurement errors are inde-
pendent random variables sampling from a normal distribution with zero mean and standard
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deviation proportional to the modeled mean value (after time lagging). Negative sampled
values are disallowed, effectively truncating the true error distribution, although this was
a rare occurrence for our chosen trajectories and noise levels. No covariance is assumed
between measurement errors in different state variables in the same sample, between the
same state variables in different samples, or between measurement errors and time lags. This
is an extension of a standard model for measurement error often assumed in fitting (cf. Hurtt
and Armstrong, 1996). The assumption of normality is justified again by the Central Limit
Theorem; the stationarity, independence and zero mean assumptions imply that the mea-
suring instruments perform consistently and without significant systematic error over the
course of the sampling survey, which is a plausible (if slightly optimistic) assumption. The
lack of covariance between measurement errors in state variables in the same sample effec-
tively assumes independent measurements. Model error is assumed to be indistinguishable
from measurement error viz. no covariance or non-Gaussianity contribution is included in
the total error. This latter assumption might be challenged, since stochastic model errors
may induce correlation between total errors and between these and the time lags. The error
model assumed in fitting (Section 2f) is identical to the true error model barring the (small)
truncation effect. Though this model may be questionable as a realistic true error model,
yet again we argue that its use in fitting may not significantly impair the estimation method
when the assumptions fall short of truth (see Section 3bvi).

d. Generating a noisy, non-Lagrangian data set

The ‘true’ biological dynamics used to generate the data are specified by (1–3) and the
‘true’ parameter set θt shown in Table 1. Note that the superscript t will be used to denote
the ‘true’ value throughout. The equations are integrated using fourth order Runge-Kutta
with a step size of 1/128 days. The initial conditions [N(0), P (0), Z(0)] result from running
the model for 710 days from an arbitrary but fixed set of starting values to eliminate any
transient, so that the model is executing repeated limit cycles of period roughly 40 days.
The model is run for a further integration time of TI = 80 days and the output is recorded at
intervals of 1/8 days, producing a stable trajectory over the sampling interval Ts = 40 days,
with 20 days of integration either side to allow for time lagging. A data set of observations
for each field is then generated by sampling the model output at a sequence of Ns = 40 true
‘dynamical times’ given by:

t ′t = t − τt (4)

where t is a 40-dimensional vector of sampling times as measured by the sampler, starting
at 20 days of integration time and advancing uniformly at intervals of 1 day, τt is the
vector of true time lags drawn from a Gaussian probability distribution with mean zero
and standard deviation στ at a resolution of 1/8 day, and t ′t is the resultant vector of true
sampled dynamical times. Time lags of magnitude greater than 20 days are disallowed,
effectively truncating the distribution to a range of roughly one period. Note that we assume
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simultaneous measurements of all modeled variables at each sampling time, which will allow
time lagging to be most easily distinguished from other sources of noise, albeit this may be
difficult to obtain from real data sets. To simulate measurement error, we add independent
Gaussian noise to each variable datum, with constant proportional variance (sj y

t
j (t

′t
i ))2

where yt
j (t

′t
i ) is the true mean value of the j th variable at true sampled dynamical time t ′ti

and sj is the true fractional error in the j th variable (following the measurement error model
of Hurtt and Armstrong (1996)). There is no correlation between state variable measurement
errors or between measurement errors and the time lag random variables.

e. Trajectory and parameter estimation

We start with a noisy, non-Lagrangian artificial data set where the spatial variability in
biological dynamics is generated by time lags. Our problem is to use it to obtain optimal
estimates of the true Lagrangian trajectory yt and associated parameters θt starting with
plausible initial guesses θi , assuming that we have the correct biological model formulation
given by (1–3), the correct level of a priori uncertainty in the dynamical time of samples
represented by the modeled variance σ2

τ and the correct a priori fractional uncertainty sj . We
assume no prior information about yt and θt except that all trajectory values and parameters
are non-negative.

First, we attempt to fit the data using a standard time series fitting technique, which we
call the Zero Lag Fit (hereafter ZLF). This implicitly assumes the null hypothesis that there
is no significant between-sample variability in time lag, hence the modeled time lag vector
τm is set to zero, and the fit is independent of the a priori uncertainty στ. Then we repeat
the procedure using the new technique, which we call the Variable Lag Fit (hereafter VLF).
This assumes that τm = τ, where τ is a (possibly non-zero) time lag vector constrained
by the data and the a priori uncertainty στ. The ZLF must interpret the scatter in the data
set generated by time lags as measurement errors in the state variables, which are, by
hypothesis, uncorrelated between state variables. The VLF can potentially distinguish time
lags from measurement error, using the fact that time lags produce correlated changes in the
state variables (along the phase space trajectory), and thereby achieve a better estimate of
the Lagrangian dynamics. However, optimizing the VLF does involve added complications
beyond those of optimizing the ZLF, as will be seen below.

We employ Bayesian Estimation (BE) in this study as a general method to infer model
parameters from the data. We maximize the ‘posterior probability’ of the model parameter
set by maximizing a product of the Likelihood, the probability of the data given the parameter
set (hypothesis), and the ‘prior probability’ of the parameter set. The latter prior probability
density is assumed to be uniform in all parameters except the time lags (see below). Thus we
obtain Bayesian estimates θ̂ of the ‘true’ parameter values θt . An alternative interpretation of
our method is as Maximum Likelihood Estimation where the Likelihood function includes
errors in the regressor variable (time)—hence it is a ‘nonlinear model II regression’ type with
‘controlled’ regressor errors in the terminology of Laws (1997), or a ‘functional relationship
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without replication’ in the formal statistical terminology (Seber and Wild, 2003). For the
ZLF, our estimates will be classical Maximum Likelihood (ML) estimates. For the VLF,
our Bayesian estimates may sacrifice some of the desirable properties of ML estimates as
we now discuss.

Assuming that the model parameter set for the ZLF is minimal (containing no two param-
eters with identical effects), then the ML estimates should be unique, or ‘identifiable’ (Stuart
et al., 1999). As we are using the correct model formulation, these ML estimates will also
be ‘consistent’, meaning that as the number of observations becomes large, we can expect
them to converge on the true values. However, ML estimates are not in general ‘unbiased’
(bias being defined as the expected difference between the ML estimates and the true values
given a finite data set). We would also like our estimates to be ‘efficient’, meaning that
they have minimal variance over different data sets. For the ZLF, fitted to data without
time lags, the ML estimates will be asymptotically (as sample size n → ∞) efficient and
normally distributed (with variance decreasing as n−1) (Stuart et al., 1999). In fact, the
parameter variance-covariance matrix is given asymptotically by the inverse of the ‘Fisher
information matrix’, which may be estimated in practice by the Hessian matrix for parameter
perturbations about the ML solution for a single data set (Matear, 1995).

For the VLF, fitted to data with time lags, many of the above desirable properties are not
guaranteed. The difficulties stem from the fact that as the number of observations increases,
so does the number of ‘incidental’ free parameters (dimension of τm), thus theoretical
results associated with large sample size may not be applicable. The incidental parameter
estimates comprising τ̂ may not be consistent, since each of the components only occurs in
a finite number of observable variables (Neyman and Scott, 1948). The structural parameter
estimates comprising θ remain consistent, but only if the ratio of error variance coefficients
s/στ is assumed known (Seber and Wild, 2003). Even if the structural estimates retain con-
sistency, their asymptotic variance-covariance matrix is not necessarily given by the inverse
information matrix (Seber and Wild, 2003), and even if it is, the ML estimates may yet not be
asymptotically efficient (Neyman and Scott, 1948). Therefore, the VLF parameter estimates
may incur larger biases, and lose efficiency and accuracy of confidence interval estimates
using the Hessian matrix method (although the latter technique is problematic in practice
anyway due to ill-conditioning of the Hessian matrix for underdetermined parameter sets
(Fennel et al., 2001; Schartau and Oschlies, 2003), and breakdown of the linearity assump-
tion due to inadequate data). Problems with the Bayesian estimates initially obtained by the
VLF eventually prompted the use of a modified maximization function, as detailed below.

f. Maximization functions

The posterior probability quantifies the probability of a parameter set given the model
formulation and the data set. It is a measure of the success of the model in fitting the data
set for ‘reasonable’ parameter values, and is maximized by tuning the model parameters
(adjusting the ‘hypothesis’). This process is called ‘calibration’. The two ‘submodels’ in this
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study—the ZLF and VLF—are calibrated using ‘calibration cost’ functions which assume
that the model explains the dynamics of the noisy, non-Lagrangian data set described in
Section 2a, and which are specified formally in this section. The calibrated models are then
evaluated in terms of their ability to reproduce the noise-free, Lagrangian data set. This is
quantified by a different ‘validation cost’ function described in Section 2h.

In order to construct the calibration cost functions, we specify a general hypothesis
defining the VLF, of which the ZLF submodel is a restriction. Our composite hypothesis
H asserts the following:

H(1): The observational vector of (fixed) sampling times is given by t = t ′m + τm where
t ′m is a vector of modeled dynamical times (dimension Ns = 40) and τm is the vector of
modeled time lags, assumed to be independent Gaussian random variables with mean zero
and variance σ2

τ.

AND

H(2): The j th observed variable at sampling time ti is given by xij = ym
j (t ′mi |θm) + εm

ij ,
where ym

j (t ′mi |θm) is the output of model (1–3) at time t ′mi = ti − τm
i given the set of

parameters and initial conditions θm, and εm
ij is an independent Gaussian random variable

with mean zero and variance (sj y
m
j (t ′mi |θm))2, representing measurement noise and model

error.
Note that the time lags are ‘controlled’ in this study because the sampling times com-

prising t are fixed, advancing uniformly at intervals of 1 day with negligible error, as one
might expect in a plausible sampling strategy.

For the VLF, since the time lags are by-assumption random variables, their values inferred
from one data set cannot be used to predict another. Rather, we should aim to fit the model
such that it is a ‘best bet’ for any future set of time lags, viz. we should maximize the
posterior probability density integrated (or ‘marginalized’) over all values of τm:

P(θm|D) =
∫

p(1)(τ)p(2)(D|τ, θm)dτ (5)

where D denotes the observational data, and the assumed independence of τ and the εm
ij

allows the product decomposition of the integrand. However, integrating over the space of
allowed time lags is computationally impractical even at coarse resolution for more than a
few lags. Therefore, we make the standard step of approximating the integral by its maximal
value (over τm) multiplied by some constant:

P(θm|D) ∝ p(1)(τ̂)p(2)(D|τ̂, θm) (6)

Note, the ZLF restricts the optimization to (τm = 0), whilst the VLF allows (τm = τ̂) for
τ̂ within the allowed range of ±20 days for each component (see Section 2d).

Therefore, our calibration cost function for the standard ZLF is given by Eq. (6), fixing
τ̂ = 0:

M
(C)
ZLF = p

(1)
ZLF.p

(2)
ZLF (7)
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where

p
(1)
ZLF =

N∏
i=1

1√
2πσ2

τ

(8)

is the (restricted) prior probability density function of the time lags (a constant), and

p
(2)
ZLF =

N∏
i=1

m∏
j=1

1√
2π(sj y

m
j (tmi ))2

e
− (xij −ym

j
(tm
i

))2

2(sj ym
j

(tm
i

))2 (9)

is the Likelihood function, combining Likelihoods of the data over the m (independent)
variables and over the N (independent) simultaneous samples of these variables. For the
new VLF, the calibration cost function, derived from (6), is first formulated as:

M
(C)
VLF = p

(1)
VLF.p

(2)
VLF (10)

where

p
(1)
VLF =

N∏
i=1

1√
2πσ2

τ

e
− (τm

i
)2

2σ2
τ (11)

is the (variable) prior probability density function of the time lags, and

p
(2)
VLF =

N∏
i=1

m∏
j=1

1√
2π(sj y

m
j (t ′mi ))2

e
− (xij −ym

j
(t ′m
i

))2

2(sj ym
j

(t ′m
i

))2 (12)

is the Likelihood function, now evaluating the model at the modeled dynamical times:

t ′mi = ti − τm
i (13)

In this study, we make no attempt to optimize the statistical structural parameters s and
στ. In all optimizations, we use the same value of s during fitting as that used to generate
the data. For fitting to data ‘generated on the null’ (τt = 0) we set στ equal to some
fixed (possibly wrong) value for each optimization. For data generated ‘on the alternative’
(τt �= 0) we use the same value of στ as that used to generate the data. Whilst it may be
unrealistic to set these a priori estimates equal to the true values given the difficulties of
estimating these quantities in practice (especially στ), it serves as a starting point which
ensures consistent a posteriori estimates of θt for the VLF (Seber and Wild, 2003), and
which may later be generalized to include consistent a posteriori estimates of s and στ,
perhaps using replicated data or an iterative fitting technique (see Section 3biii).

Now, maximizing M
(C)
VLF in (10–13) yields consistent structural parameter estimates given

accurate a priori estimates of the error parameters (s, στ), but these are not necessarily the



894 Journal of Marine Research [64, 6

‘best’ as regards bias and efficiency. The problem is that by relaxing constraints on the
sampled time lags we increase variance in the estimated frequency of oscillation, especially
given the finite number of iterations in practical numerical optimization routines. To suppress
this variance, we multiply the VLF maximization function by a ‘lag drift penalty’ term S

which measures the probability, assuming independent Gaussian time lags with variance
σS

τ , of obtaining a persistent ‘drift’ in the time lags:

S(τ|σS
τ ) = max(p′

(0)(τ|σS
τ ))

max(p′
(A)(τ|σS

τ ))
(14)

where p′(A), p′(0) are the maximum Likelihoods for fitting τ(t) = at + b and τ = c

respectively to the series of time lags plotted against sampling time. With this penalty term
our calibration cost function for the VLF becomes:

M
′(C)
VLF = p

(1)
VLF.p

(2)
VLF.S(τ|σS

τ ) (15)

Ŝ → 1 as number of sampling times Ns → ∞, so the consistency of the structural param-
eter estimates is not spoilt by the maximization of M

′(C)
VLF. Note that M

′(C)
VLF is not strictly

(proportional to) a probability, since we have used each datum twice in p
(1)
VLF and S; nev-

ertheless, maximizing M
′(C)
VLF using the entire data set in both p(1) and S was found to give

lower validation cost (see Section 2h) and better frequency constraint than partitioning the
data set between p(1) and S. Similarly a first choice of σS

τ might be στ; yet we obtained
better performance using a ‘weighted’ S by reducing the value of σS

τ to 0.1.στ. We will see
that the use of S with the aforementioned weighting improves validation fit and reduces
the bias and variance of the structural parameter estimates. Note that such ‘Likelihood
modifiers’ are nothing new in random regressor problems (e.g. Neyman and Scott, 1948).
A possible alternative would be to fit a model with the timescales effectively fixed by non-
dimensionalization, then estimate the timescales separately (Froda and Colativa, 2005).
Our method, however, aims to constrain all structural parameters in a single estimation
procedure.

In summary, our maximization functions are M
(C)
ZLF defined in (7–9) for the ZLF and

M
′(C)
VLF defined in (10–15) for the VLF. Unless otherwise stated, we used σS

τ = 0.1.στ as a
weighting for S in the VLF.

g. Optimization

Our task is to maximize (7) with respect to the θm free parameter vector for the ZLF (13
rate constants + 3 initial conditions), and (15) with respect to the (θm, τm) free parameter
vectors for the VLF (13 rate constants + 3 initial conditions + 40 time lags). The data
set consists of 40 simultaneous measurements of each of 3 variables (hence sample size
n = 120). For the purposes of optimization, it is more convenient to minimize the ‘cost
functions’: costZLF = − log M

(C)
ZLF and costVLF = − log M

′(C)
VLF. In the ZLF, the 16 free
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parameters are all varied by the search algorithm. However, for the 56 free parameters of
the VLF we obtain a massive computational saving by performing a nested optimization
(similar to ‘concentrating the Likelihood’) over the 40 incidental time lag parameters at
each iteration. This is facilitated by the fact that the costVLF decomposes (except for the
small contribution of − log S) into a sum of contributions from each sample time, allowing
each τi to be optimized by choosing the value from the allowed range for which the cost
increment is minimal. The contribution of − log S is then calculated and added to give the
(partially) optimized cost for the trial value of θm.

The search algorithm varies the 16 structural parameters comprising θ in order to (fully)
minimize the cost. We use the ‘Downhill Simplex with Simulated Annealing’ algorithm
of Press et al. (1999). Simulated Annealing (SA) algorithms attempt to avoid trapping in
local minima by adding random cost fluctuations chosen from a Gibbs distribution with a
certain ‘temperature’ (rms fluctuation). The temperature is then cooled as the optimization
proceeds on the expectation that the global minimum is being approached and less fluctua-
tion is required. Given any Markovian transition matrix for exploring the parameter space,
if the SA rule for accepting ‘uphill’ moves with a probability ∝ e−∆(cost)/T is applied, the
equilibrium probability state vector will be a Gibbs distribution over cost . It follows that for
a slow ‘cooling schedule’ that varies as 1/ log k for k iterations, the search remains ergodic
even as T → 0, implying that the global minimum will be approached with certainty as
k → ∞. Unfortunately, such cooling schedules are found to be too slow for practical
applications (Matear (1995)—although there may be ways to enable a speed-up without
sacrificing ergodicity—see Ingber (1993)) and in any case would not necessarily work for
our simplex algorithm since it is not a Markovian search (next position dependent at most on
last position). After trial-and-error testing, the schedule we found most practically effective
was to set T (k) = max (cost, T0e

−k/γ), so that the temperature adapts to any improvements
in cost beyond a baseline exponential cooling rate of 1/γ.

The optimizations were all limited by a maximum number of iterations. This number was
set by the criterion that the maximal ‘optimization error’ due to finite iterations be much less
than the typical between-data set variation for our chosen test statistic Λ(V ) (see Section 2h
for definition). The maximal optimization error was estimated by comparing with a single
long optimization of 5×105 iterations. It was found that, for model fits to data generated
by the alternative hypothesis (τt �= 0), 105 iterations safely satisfied this criterion for initial
guesses with 10% error in every parameter and στ of up to 8 days. For model fits on the
null (τt = 0), we found that 104 iterations were sufficient as long as the initial guess was
close to the optimum, i.e. at θi = θt . Note that because we have finite data with finite noise,
the exact optimal (ML) solution θ0 is in general not coincident with the ‘true’ generating
solution θt , since inevitably some of the noise is fitted by the modeled mean variability in
the exact optimal solution. For cases where we were not trying to demonstrate efficiency
of the search algorithm for realistically ‘wrong’ initial guesses, but rather trying to make
our numerically approximated optimal solution θ̂ as close as possible to the exact optimal
solution θ0, we used θi = θt for speed of convergence. The practical convergence time was
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finite for the ZLF and VLF in all cases. On the alternative (τt �= 0), the ZLF was slower
(necessitating 105 iterations) as a result of a larger discrepancy between θt and θ0, leading,
as will be seen, to larger biases on the parameter estimates.

h. Evaluation of model fit

Our principal measure of fit performance is the expected accuracy in recovering (hindcast-
ing) the true (Lagrangian) biological trajectory. Thus we estimate the relative fit performance
using the test statistic:

Λ(V ) = max (log p
(V )
VLF) − max (log p

(V )
ZLF) (16)

where − log p
(V )
ZLF/VLF is the ‘validation cost’ of the ZLF/VLF. The function p

(V )
ZLF/VLF is

identical in form to p
(2)
ZLF (equation (9)), but here the data are generated by θt with zero

measurement noise and no time lags (the true (Lagrangian) trajectory sampled at times
t), and the fitted model trajectory is generated by the estimates θ̂ZLF/VLF obtained by the
ZLF/VLF in calibration without the inclusion of time lags. The validation cost is therefore a
measure of a total squared predictive error, weighted to give greater importance to predictive
error where the true values (and hence measurement errors) are low. Note that since (16) is
evaluated over an independent (noise-free) validation data set, it does not require correction
for the different noise-fitting capacities of the ZLF and VLF (the latter having Ns more free
parameters), therefore we use Λ(V ) = 0 as our threshold for selecting the submodel with
the highest fit performance.

It is also of interest to compare the accuracy and precision, as determined by the bias
and variance, of the fitted parameter vector θ̂ for each of the two fits. This defines a set of
performance measures for hypothesis testing purposes. We generally avoid combining the
biases and variances into single performance measures, since according equal importance
to each parameter is an essentially arbitrary, subjective choice (whereas Λ(V ) weights them
somewhat more objectively by their sensitivities in determining the true trajectory).

3. Results and discussion

a. Visual model fit assessment

i. Dependence on time lag variance and measurement noise. For a visual assessment of
fit performance, we ran zero and variable lag fits to several data sets generated with time
lag standard deviations of στ = 0, 4 and 8 days and measurement error coefficients of
s = 0.05 and 0.15, using θi = 0.9 and 1.1 × θt as ‘plausibly wrong’ initial guesses. Two
examples are shown, with s = 0.05 in Figure 2a and s = 0.15 in Figure 2b. In both cases,
the generating trajectory is well recovered when στ = 0 days, but the VLF clearly does
a better job when στ = 4 or 8 days. The effect of the time lag variance is in general to
cause underestimates of the (N, P, Z) temporal variability when fitted using the standard
ZLF technique, whilst the VLF seems to accurately recover the extent of variability even at
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Figure 2. (a) Best fit trajectories to data (+) generated by ‘true’ (Lagrangian) trajectory (solid line)
using standard zero lag method (ZLF, dotted) and using the new variable lag method (VLF, dashed),
generating data with time lag standard deviations στ = 0 days (upper), 4 days (middle), and 8 days
(lower) and 5% measurement noise imposed on each variable (s = 0.05). N = Nutrient (left),
P = Phytoplankton (middle), and Z = Zooplankton (right). Initial guess parameter error was
−10% in each model parameter (see Eqs. (1–3) and Table 1 for specification of the true model).
(b) As in Figure 2a but with 15% measurement noise (s = 0.15) imposed on each state variable,
and initial guess parameter error of +10% in every parameter.
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στ = 8 days and s = 0.15. The distortion of the ZLF first becomes noticeable over intervals
when the (N, P, Z) trajectory curvature

(
d2N

dt2 , d2P

dt2 , d2Z

dt2 respectively
)

is high i.e. at the
peaks and troughs (see the fits for στ = 4 days in Figs. 2a, b). This suggests that intervals in
the seasonal cycle such as spring/autumn blooms and subsequent troughs due to flourishing
grazers may be ‘smoothed out’ or underestimated in magnitude by standard model fits.

Note that at στ = 8 days the smoothing effect appears to result in a decaying oscillation
in the ZLF rather than the true stable limit cycle, and indeed this was confirmed by running
the ZLF solution over a longer integration time. It is clear that such mistaken decays to
equilibrium would seriously impair the forecast accuracy for the true dynamics after the
sampling interval—and may perhaps help to explain the dearth of free oscillations found in
models fitted to real data sets in the literature. These errors in the topology/stability of the
dynamics are shown more clearly in Figure 3, where the results for στ = 0, 4 and 8 days

Figure 3. Phase space cross-sections showing best fit trajectories to data (+) generated by ‘true’
Lagrangian trajectory (solid line) using standard zero lag method (ZLF, dotted) and using the new
variable lag method (VLF, dashed), generating data with time lag standard deviations στ = 0 days
(upper), 4 days (middle), and 8 days (lower) and 15% measurement noise imposed on each variable
(s = 0.15).
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and s = 0.15 shown in Figure 2b are replotted in phase space cross-sections. Viewed in this
way, dynamical transience is much more apparent: the ZLF seems to produce smaller, yet
stable limit cycles at στ = 4 days, and spirals towards equilibrium at στ = 8 days, whilst
the VLF maintains stable limit cycles with a small amount of transience at both στ = 4 and
στ = 8 days.

Comparing Figures 2a and 2b, the increase in measurement noise increases the deviation
of the inferred trajectory from the true trajectory of both fits at στ = 0 days, whilst it
does not appear to significantly alter the trajectories at στ = 4 and 8 days. Thus the relative
importance of errors due to spatial time lag variability must be a function of the measurement
noise level as well as the amount of time lag variation. For high enough measurement noise
level, the benefit of using the VLF will be insignificant for realistic levels of time lag
variability (although from Figs. 2a, b this does not seem to be the case at s ≤ 0.15 for
4 ≤ στ ≤ 8 days). For any level of time lag variability, the improvement yielded by the
VLF will be insignificant when measurement errors become comparable with the extent of
mean temporal variability in the data set—in which case any kind of time-dependent model
fit is a questionable exercise.

ii. Optimization vs. fit-by-eye. Looking at the data for στ = 8 days in Figures 2a, b, one
might wonder how the optimizer is able to extract any information at all from such a
scattered set. Note, however, that the optimizer considers the model-data discrepancy in all
three state variables simultaneously, whilst the eye tends not to do this when examining a
set of time series (although this is partly achievable by displaying 2D phase space cross-
sections as in Fig. 3, perhaps using symbols or colors to retain some temporal information
as in Fig. 1). Thus, in any of the optimizations, at least the correct patterns of variability
and phase relationships between N , P and Z are robustly recovered (these being absent
in the ‘initial guess’ trajectory), whilst the extent of variability is underestimated by the
ZLF, which tries to follow a smoothed variation over sampling time (within the constraints
imposed by the model formulation (1–3)). The VLF has the additional freedom to effectively
shift data points forwards and backwards in time (left and right in Figs. 2a, b) to an extent
roughly proportional to στ in order to achieve a better fit. Crucially, however, the temporal
shift applied to each sample must be the same for all three state variables (which, again, is
difficult to perceive by eye in time series data sets).

b. Quantitative model fit evaluation

i. Recovery of the Lagrangian biological trajectory. First, we assess the potential benefits of
the new technique when finite time lags are present in the data set. This is done by computing
Λ

(V )
(alt) over 5 different data sets, each requiring 105 iterations, for στ = 0, 0.5, 1, 2, 4 and

8 days and s = 0.05 and 0.15 (see Figs. 4a, b). Here the subscript ‘alt’ denotes use of the
alternative hypothesis to generate the data (τt �= 0), and recall that we use the correct value
of στ as an a priori estimate to explore the maximum potential benefit of the VLF. Also, we
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set θi = θt for speed of convergence (note: convergence time is still non-zero for the VLF,
since the ‘true’ solution is generally not equivalent to the optimal solution for finite data
fitting). As στ increases, the mean Λ

(V )
(alt) increases as worsening performance of the ZLF,

due to negative bias on the estimated extent of variability (the smoothing effect), outweighs
the deterioration in the VLF due to timescale variance. This bias arises as the ZLF tries
to minimize vertical scatter and hence fit to the smoothed variability over sampling time,
which is a convolution of the true trajectory with the true time lag distribution.

From Figures 4a, b, we estimate that the maximum mean saving in validation cost
achieved by the VLF (at στ = 8 days) is about 450 units for s = 0.05 and about 350 units

Figure 4. (a) Validation cost savings yielded by new technique Λ
(V )
(alt)

(triangles) vs. time lag standard

deviation στ when time lags in calibrating data set are non-zero (the ‘alternative’ hypothesis τt �= 0)
and 5% measurement noise is imposed on all three state variables (s = 0.05). (b) As in Figure 4a
but with 15% measurement noise imposed (s = 0.15).



2006] Wallhead et al.: Variable lag fit in marine ecosystems 901

for s = 0.15—or 750% and 580% respectively of the expected true validation cost due to
measurement noise (n/2 = 60 units). The mean Λ

(V )
(alt) strays beyond one standard deviation

of zero (VLF performs better in more than 70% of cases) at σc
τ ≈ 1 days for s = 0.05 and

σc
τ ≈ 4 days for s = 0.15. It seems, therefore, that the minimum lag variability required

for significant improvement in fit performance with the VLF scales roughly in proportion
to the measurement noise level (at low s) and that these conditions are not unrealistic for
marine ecosystem sampling.

Second, we assess the potential dangers of using the new technique by comparing with the
ZLF when time lags are in fact absent in the data set (τt = 0). This was done by computing
Λ

(V )

(null) over 100 different data sets (each requiring 104 iterations) for στ = 0, 0.5, 1, 2, 4
and 8 days and s = 0.05 and 0.15 (see Figs. 5a, b). Here the subscript ‘null’ denotes data
generated on the null hypothesis (τt = 0). We see from the means and standard deviations
that the VLF performs persistently worse and is less robust than the ZLF when time lags are
not present. This is to be expected, since in this case the ZLF suffers no smoothing effects
whilst the VLF produces increasingly variable timescale estimates as στ is increasingly
overestimated.

From Figures 5a and 5b, we estimate that the maximum mean increase in validation cost
incurred by using the VLF (at στ = 8 days) is about 1.2 units for s = 0.05 and about
35 units for s = 0.15—or 2% and 60% respectively of the true cost due to measurement
noise. Thus the expected error of the VLF in recovering the true Lagrangian trajectory is a
strong function of measurement noise s, which increases the tendency of the VLF to give
distorted timescale estimates.

Note also, that since the variance in Λ
(V )

(null) increases roughly in proportion to the decrease
in the mean, the mean stays within one standard deviation of zero (over our realistic range
of στ), which implies that the ZLF never performs better in more than roughly 70% of data
sets, even when time lags are truly absent.

Now we can summarize the potential risks vs. benefits of using a VLF in the more
realistic circumstances where στ is only known to be some value less than ∼8 days. At
5% measurement noise (s = 0.05), we stand to incur an increase of roughly 2% but save
potentially 750% on average of the true validation cost due to measurement error alone
(= n/2), assuming (τt = 0) is a ‘worst case scenario’ for the VLF. At 15% measurement
noise (s = 0.15), we stand to incur an increase of roughly 60% but save potentially 580%
on average. In summary, the risks appear to be outweighed by the potential benefits of using
the VLF, although to fully realize this potential, one must accurately estimate στ, which we
will discuss in Section 3biii.

We found that qualitatively similar plots to Figures 4a, b were obtained using the logarithm
of the ratio of the optimal Likelihoods p

(2)
ZLF/VLF (the Likelihood Ratio Test LRT) as a test

statistic (see Figs. 6, 7):

ΛC = max
(

log p
(2)
VLF

) − max
(

log p
(2)
ZLF

)
(17)
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Figure 5. (a) Validation cost savings yielded by new technique Λ
(V )
(null)

vs. modeled time lag stan-

dard deviation στ when time lags in calibrating data set are zero (the null hypothesis τt = 0)
and 5% measurement noise is imposed on all three state variables (s = 0.05). Means (triangles)
and standard deviations (error bars) are shown from 100 optimizations over different calibrating
data sets for each value of στ. (b) As in Figure 5a but with 15% measurement noise imposed
(s = 0.15).

Comparing Figures 6 and 7 allows rejection of the null hypothesis (τ = 0) at similar
threshold values of the time lag standard deviation σc

τ as those quoted above (and roughly
agrees, for high στ, with the classical result that the mean of the distribution of the LRT
statistic on the null (Fig. 7) should lie near K/2 where K is the number of extra parameters
in the ‘alternative’ model—in our case the 40 time lags (Stuart et al., 1999)). Note also
that calculating ΛC does not require prior knowledge of the true Lagrangian trajectory, thus
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Figure 6. Calibration cost savings yielded by new technique Λ
(C)
(alt)

vs. time lag standard deviation

στ when time lags in calibrating data set are non-zero (the ‘alternative’ hypothesis τt �= 0). Means
(triangles/circles) and standard deviations (error bars) are shown for s = 0.05/0.15.

it is applicable to testing for the presence of time lags in real data sets. For our purposes,
however, it is not as appropriate an evaluation statistic as Λ(V ) (equation (16)), because it
does not specifically test for accurate recovery of the noise-free Lagrangian trajectory (and
in particular, the correct oscillation frequency), which is the goal of our twin tests. We shall
however find further use for ΛC when estimating στ (see Section 3biii).

Figure 7. Calibration cost savings yielded by new technique Λ
(C)
(null)

vs. time lag standard deviation στ

when time lags in calibrating data set are zero (the null hypothesis τt = 0). Means (triangles/circles)
and standard deviations (error bars) are shown for s = 0.05/0.15.
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ii. Bias and variance in structural parameter estimates. Here we seek to compare VLF vs.
ZLF structural parameter estimates in terms of their bias, defined as the expected error in a
parameter estimate over all data sets, and their variance, defined as the mean square deviation
of the estimate from its expected value. These quantities are estimated by performing 100
optimizations using στ = 8 days and s = 0.15 to generate and fit the data (see Table 2),
initializing the optimization with θi = θt . This latter choice may lead to underestimation
of optimal parameter variances, if the cooling is insufficiently gradual to prevent search
localization near θi . Note, however, our main aim is not to assess the absolute performance
of the model fits—rather the relative performance of the VLF vs. the ZLF, and we expect
any search localization in θ-space to affect the VLF and ZLF equally.

First, note from Table 2 that the VLF has yielded smaller bias than the ZLF in almost
all parameter estimates (except rz, sp and N0, which are all low sensitivity parameters in
determining the model trajectory), and smaller estimator variance in all cases. Therefore
the VLF estimates of all the biological parameters to which the Lagrangian trajectory is
sensitive (‘high’ and ‘medium’ sensitivity parameters) are both more accurate and robust
than those of the ZLF, as one might have expected from Figure 4b. The improvement in
parameter constraint is, we expect, a result of the fact that as sample size grows large, the
VLF may fit to the true trajectory, which lies within the (τ, θ) search space, whilst the ZLF
fits asymptotically to the convolution of the true trajectory with the time lag distribution,

Table 2. Bias and variance in structural parameter estimates using the (standard) zero lag fit (ZLF),
variable lag fit (VLF), and variable lag fit with no lag drift penalty S (VLF(no S)), expressed as
percentages of the true values. The data were generated with time lag standard deviation and frac-
tional measurement noise levels of στ = 8 days and s = 0.15 respectively. Estimates highlighted
in bold have biases more than three standard errors above or below zero.

Estimator Bias (%) Estimator Stdev (%)

Parameter Sensitivity ZLF VLF VLF(no S) ZLF VLF VLF(no S)

u0 high −0.8 0.0 0.6 4.8 1.4 0.6
R high −1.0 0.2 −0.1 6.4 1.1 0.4
Λz high −18.8 0.1 −0.5 12.5 1.5 0.6
mz high 7.8 −0.3 0.0 16.0 2.3 1.4
kn medium 67.1 0.2 42.8 62.0 16.7 29.8
c medium 17.6 −12.3 −34.4 65.3 24.1 22.3
γ medium −6.5 1.3 −16.4 48.0 19.1 25.8
mp medium 11.1 0.4 −24.9 40.8 8.1 21.4
k medium 10.4 −0.9 0.1 32.4 6.1 10.2
N0 medium 9.1 2.8 −1.9 21.9 4.5 4.2
P (0) medium 54.7 8.3 56.5 52.6 30.0 45.0
Z(0) medium −4.8 0.8 8.5 21.0 8.6 8.9
rz low −4.0 14.8 49.3 48.2 42.7 46.3
sp low −2.0 9.9 25.9 64.4 41.8 49.3
ez low 6.2 0.5 1.9 15.1 2.6 2.2
N (0) low 4.2 −8.1 −25.2 46.7 36.5 35.9



2006] Wallhead et al.: Variable lag fit in marine ecosystems 905

Table 3. ‘Derived parameters’ (functions of the parameters in Table 1) and true values, where ‘mean’
denotes average over the sampling interval (roughly one cycle).

Derived Parameter Symbol ‘True’ value

Oscillation frequency ω 0.175 rad s−1

Mean gross primary production GPP 0.0507 g C m−3 day−1

Mean net nutrient export rate NNE −0.0161 g C m−3 day−1

which is a smaller signal relative to the measurement noise, and may not lie exactly in the
θ search space.

We can use Table 2 to infer the parameter biases that are likely most responsible for persis-
tent distortion effects. Highlighted in bold are the significantly biased parameter estimates,
defined by those with a bias more than three standard errors from zero. The ZLF produces
several more significantly biased estimates than the VLF, including two among the high
sensitivity parameters. This suggests that the persistent smoothing effect is achieved by a
general slow-down in ecosystem conversion rates—decreasing grazer search efficiency Λz

and increasing uptake saturation constant kn—whilst mean concentrations over the sam-
pling interval are roughly maintained by increasing diapycnal influx of nutrient (increasing
k and N0) and adjusting the initial conditions (N(0), P(0), Z(0)).

Tables 3 and 4 show true values and biases/variances for a few interesting ‘derived
parameters’ i.e. functions of the structural parameters in Table 1, again for στ = 8 days,
s = 0.15. First, we estimate the bias and variance in oscillation frequency ω by calculating
the peak-to-trough separations in the true and optimal zooplankton trajectories (zooplankton
showing the most symmetrical oscillation—see Figs. 2a, b) over the 100 optimizations. The
bias in the VLF estimated frequency is very low (less than 1%) the standard deviation is
significant (≈15 %), the latter being responsible for significant increase in validation cost
as the estimated trajectory drifts out of phase with the true Lagrangian trajectory (see e.g.
Fig. 2a, lower). The estimated bias and variance in ZLF oscillation frequency is very poor,
as we would expect since many of the ZLF trajectories are decaying to equilibrium (see
Figs. 2a, b and Fig. 3).

Table 4. Bias and variance in ‘derived parameter’ estimates using the (standard) zero lag fit (ZLF),
variable lag fit (VLF), and variable lag fit with no lag drift penalty S (VLF(no S)), expressed as
percentages of the true values. The data were generated with time lag standard deviation and frac-
tional measurement noise levels of στ = 8 days and s = 0.15 respectively. Estimates highlighted
in bold have biases more than three standard errors above or below zero.

Estimator Bias (%) Estimator Stdev (%)

Parameter ZLF VPF VPF(no S) ZLF VPF VPF(no S)

ω 24.2 −0.6 −6.7 166 14.7 32.8
GPP 8.5 −1.3 −4.6 11.4 4.0 5.6
NNE −3910 −4460 −5860 −2100 −1740 −1860
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Second, we consider estimates of mean (over sampling interval) gross primary production
(GPP ), defined by the uptake term in equation (2). Here, the ZLF performs much worse
(+9% bias, 11% standard deviation) than the VLF (bias -1%, standard deviation 4%). Note
that underestimation of the extent of variability in biological variables (N, P, Z etc.) does
not necessarily imply underestimation of fluxes between them, since errors in multiple
fluxes may compensate each other. The net nutrient export rate NNE, defined by the
sum of sinking and mixing terms in equations (1) and (2), was poorly estimated by both
methods—we suspect, because of its small absolute true value of −0.0161 g C m−3 day−1

(indicating a delicate balance), and because the parameters which determine it (k, N0 and
s) are not highly sensitive for the chosen true trajectory (see Table 2).

Finally, we briefly illustrate the importance of using the time lag drift penalty S (see
Section 2f) by comparing the VLF parameter estimates with those obtained by maximizing
M

(C)
VLF in (10) which has no lag drift penalty S (‘VLF(no S)’) for στ = 8 days, s = 0.15 (see

Tables 2 and 4). For almost all parameters, the bias and variance is significantly increased
by not using S, the main effect of which is to allow more variance in estimated oscillation
frequency. In fact the variance almost entirely offsets any improvement in fit performance
relative to the ZLF due to lack of smoothing and we get similar validation cost using the
ZLF and the VLF(no S). The VLF(no S) also incurs about a factor of 10 larger bias, and
roughly twice the standard deviation, in ω̂ relative to the VLF. The mean gross primary
production estimate GPP is also impaired relative to estimates obtained using S.

iii. Methods of estimating time lag variance. Though we have not tested any methods for
estimating time lag variance σ2

τ in this study, here we suggest a method for doing so in
practical applications. The idea is to exploit asymmetry in regard to under/over-estimation
of στ in calibration statistics. An example is the LRT statistic (equation 17). The results
for Λ

(C)
(alt) and Λ

(C)

(null) are plotted in Figure 6 and Figure 7 respectively, showing sets for
s = 0.05 and s = 0.15 together on both plots. The key observation is that increasingly
overestimating στ on the null, as in Figure 7, results in a small increase in Λ(C) (O(10) units)
relative to the values of Λ

(C)
(alt) on the alternative (O(103) units—see Fig. 6), for most realistic

values of στ. We expect this result to carry over to different models, sampling conditions
etc. as long as there is enough temporal variability in the Lagrangian dynamics that the
decrease in p

(2)
ZLF due to the smoothing effect of the ZLF, when στ is underestimated, is

large compared to the increase in p
(2)
VLF due to fitting measurement noise in the VLF when

στ is overestimated (roughly Ns/2 units—cf. Fig. 7). As such the LRT has a high probability
of rightly rejecting the null and is therefore a ‘powerful’ statistical test in this context (Stuart
et al., 1999). When the σm

τ used in fitting is decreased below the true value σt
τ, Λ(C) should

vary smoothly between a large value when σm
τ ≈ σt

τ (see Fig. 6) and zero when σm
τ = 0.

Therefore there should be a marked change in the gradient of ΛC with respect to σm
τ at close

to the true value (σm
τ ≈ σt

τ), coinciding roughly with the onset of significant smoothing
effect and the ‘release’ of the fit improvement potential of the time lags. Thus στ might be
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roughly estimated from successive trial fits, allowing some practical realization of the VLF
benefits discussed above.

Alternatively, if sufficient replicated data are available (multiple, independent samples at
the same sampling time), as might be accumulated from multiple years of data (carefully
chosen to minimize interannual variability), the nonlinear optimization methods detailed
here may be extended to consistently estimate both the measurement error s and time lag
variability στ simultaneously (Seber and Wild, 2003). We can say nothing, however, about
the relative biases and variances that might be incurred by this method, which could be a
topic for future investigation.

iv. Robustness of results to different data sets/initial parameter guesses. In Figure 8 we
illustrate the robustness of the results in Figure 2a (στ = 8 days, s = 0.05) to different
realizations of the data set and to different initial guesses θi = 0.9 or 1.1 × θt . We show
examples obtained from data sets/initial guesses for which errors in the optimal frequency

Figure 8. Variance associated with poor convergence in the variable lag fit for στ = 8 days, s =
0.05. Upper panel reproduces Figure 2a lower. Middle and lower panels show examples of poor
convergence in estimated frequency and phase of the oscillation respectively.
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and phase of oscillation resulted in the worst fit performance by the VLF, using 105 iterations
of the optimizer for convergence of the calibration cost. We see evidence that for high levels
of assumed time lag variability (στ = 8 days) the VLF may incur high variance in both
the estimated oscillation frequency ω̂ and overall oscillation phase despite use of the lag
drift penalty S. This was mitigated to some extent by increasing the number of iterations,
or using θi = θt , as with the results in Tables 2 and 3.

Diagnosing error due to poor convergence of frequency and phase estimates may be
problematic in practical applications, but it is important as regards ensuring accurate hind-/
forecasts and robust hypothesis tests. With the fits illustrated in Figure 8, for example, the
final calibration cost − log M

′(C)
VLF was not especially high, nor was there significant time

lag drift measured by the S term. It may be possible to infer a frequency/phase deviation
by comparison with the ZLF or a VLF with tighter timescale constraints (lower στ), or
perhaps subdividing the sampling interval to detect significant trends in the fitted time lags.
Alternatively, convergence (and other) issues might be addressed by averaging estimated
parameters over an ensemble of optimizations, using different initial guesses, or different
data sets generated by replicated surveys, subsampling, or Bootstrap methods (e.g. see
Schartau and Oschlies, 2003).

Given accurate estimation of ω, we found that τ was well-estimated on the whole, except
for some occasional ‘slip’ in the estimated time lags away from their true values (see Fig. 9
upper). We expect this result to depend on accurate specification of the measurement noise :
time lag variability ratio (s/στ) prior to fitting, in order to maintain consistency of τ̂ as
discussed in Section 2e. In Figure 9 we also see the effect on τ̂ of VLF overestimation of ω.
Here, the optimal time lags are accurate only over the second half of the sampling interval,
when the fitted oscillation is roughly in phase with the true cycle (Fig. 8 middle). As we
look further back in time the estimated and true time lags become increasingly divergent,
resulting in overall loss of fit performance as discussed above.

v. Robustness of results to different Lagrangian ‘truth’/models. The potential benefits of the
VLF may be extended to a broad range of Lagrangian models by changing the assumptions
of Section 2a (namely, the N , P , Z dynamics specified by (1–3)), whilst maintaining the
assumption that the model formulation is a good approximation to the ‘truth’. Consider
varying the number m of simultaneously sampled state variables (ODEs) in the model. The
VLF is more likely to be expedient for higher values (m = 3 gave substantial benefits in our
example) because each time lag incurs errors in m state variables, and hence, if neglected,
makes a larger contribution to the total cost for higher m. For the same reason, we would
also expect the time lags to be better constrained for higher m.

Regarding the complexity of the model formulation, the VLF may only be expedient if the
model produces nonlinear temporal variability. For linear models, because the errors in the
random regressors are controlled (t is the same for all data sets) the ZLF will yield consistent
estimates of all structural parameters (Laws, 1997), as long as the ratios of measurement
error : time lag variability are assumed known (Seber and Wild, 2003). For higher complexity
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Figure 9. Best fit time lags (dashed) compared to true values (solid) for (στ = 8 days, s = 0.05), for
optimizations with good convergence (upper) and poor convergence (lower) in estimated frequency
and phase of oscillation (corresponding to fits shown in Figure 8 upper and middle panels).

models, with more free parameters, we expect VLF expediency to increase. This is because
the higher complexity model trajectory may be distorted even further from the Lagrangian
trajectory by fitting structural parameters to the measurement error inherited from neglected
time lag variability. Consequently, we expect there will also be more total parameter bias
and variance due to the fitting of structural parameters to random variables which change
between data sets.

If we vary θt , maintaining significant temporal variability relative to measurement noise
(as required to fit any dynamical model), we argue that the VLF will remain expedient as
long as the errors due to neglected time lag variability in the true dynamics are statistically
significant relative to measurement noise. It follows that values of θt which generate rapid
Lagrangian changes in biological variables increase the potential benefit of using a VLF.

Finally, consider increasing the discrepancy between the true dynamics (‘truth’) and the
approximating model formulation used to fit the data, which was zero in our simulation study
(a somewhat unrealistic scenario). This introduces the risk of using modeled time lags to
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compensate for deficiencies in the Lagrangian model. The VLF may substitute time lags for
true rate variations in order to fit the data (the p

(2)
VLF part), as long as no persistent rate change

is imposed over the entire sampling interval (which would result in high lag drift penalty
S). Model formulations which are insufficiently flexible in their rates of temporal variation
may thereby escape penalty under the VLF, although one might hope to diagnose this by
varying the sampling interval (subsampling the data set), so that persistent compensatory
lag drifts may be detected by marked changes in S.

vi. Robustness of results to different spatial variability and sampling conditions. Consider
relaxing the assumptions made in Sections 2a, b, c—namely: that the model of independent
Gaussian time lags and measurement errors is accurate, and the sampling strategy of 40
samples at one-day intervals. In general, an estimation method fails not if its underlying
assumptions are inaccurate, but if their inaccuracy spoils convergence on the true parameter
values—in our case, if it fails to give the true model the minimum calibration cost (an
important distinction). Suppose, for example, that there were significant correlation between
successive time lags (e.g. due to mixing). Then our method would tend to over-penalize
low-frequency and under-penalize high-frequency lag variations from the mean, because
correlations would favor the occurrence of the former over the latter, whilst the independence
assumption penalizes variations of all frequencies equally. Since only low frequency false
time lag variations are likely to result in significant trajectory distortion, the assumption of
zero correlation seems to be the safest in lieu of reliable a priori information. Similarly, one
might argue that although correlated model error, non-Gaussian instrumental or time lag
noise may in practice compromise our ability to estimate the true Likelihood of the data,
they are yet unlikely to seriously impair the estimation method.

In realistic cruise sampling surveys, the interval between samples may be as short as a
few minutes (e.g. see Fig. 1). Clearly using all these samples would violate the time lag
independence assumption made in Section 2c. In case this does increase estimate biases,
one might sub-sample the data using an interval of 1 day (or enough time for the largest
coherent fluid structure to pass through the sampler), to generate a sub- data set for the
VLF. Thus an ensemble of sub- data sets with different t vectors and corresponding model
fits may be built up. This may also allow iterative estimation of στ, in a similar fashion to
‘replicated’ data. On the other hand, if the between-sample interval is too long to track the
temporal variability in the model (the ecosystem is undersampled, or the model is ill-suited)
then all parameters will tend to be underconstrained, and probably more would be gained
from a better sampling strategy (or new model, motivated by different questions) than from
a new estimation method as described here.

In practical applications, one may of course expect a certain amount of model error (in
addition to measurement error), due to unresolved spatial variability in the extent/pattern of
variability (phase space trajectory, and hence θt ); in such cases the optimal VLF trajectory
should be interpreted as a ‘mean Lagrangian trajectory’. Nevertheless, the total model error
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will be smaller for the VLF than for the ZLF if between-sample time lags do describe a
significant portion of the unresolved spatial variability.

Another consideration is the effect of varying the number of sampling times Ns for fixed
sampling interval Ts . As Ns is increased we expect the benefit yielded by the VLF to increase
as the structural parameter estimates become better constrained, in spite of the increased risk
of violating time lag independence (see above). Also, increasing the total survey interval
Ts for constant sampling frequency would likely improve timescale constraints imposed by
the data and the lag drift penalty S.

vii. Alternative methods. We do not claim that our method is the only sensible method
by which one may attempt to allow for time lagging in a marine ecosystem data set. We
do claim, however, that there is no obviously superior alternative at present. One might
envisage a method based on decomposing the time series into (e.g. sinusoidal) component
signals, filtering the unwanted components arising from phase modulation (time lagging),
and then fitting an ecosystem model to the resulting ‘de-modulated’ time series. However,
we expect that such methods will face difficulties owing to the fact that significant time
lags may occur as frequently as between consecutive samples (as in this study), and the fact
that the time series may not resolve many periods of the underlying signal (if indeed it is
periodic, which our method does not require). Both of these factors, we suspect, may make
it difficult to distinguish wanted and unwanted components. In any case, fitting to a filtered
trajectory would sacrifice the ability to assess the importance or extent of time lagging in a
real data set from a Bayesian or hypothesis-testing viewpoint.

4. Conclusions

We performed a simulation study to compare the effects of time lags in simultaneously
sampled ecosystem variables, due to unresolved spatial variability, on two methods of fitting
a simple marine ecosystem model to data. The first (standard) method did not account for
time lags; the second was a new method which allows for time lags from an assumed
statistical distribution. Our findings are:

1) Fitting a model using the standard time series approach leads to a ‘smoothing out’
or underestimation of ecosystem temporal variability when spatial variability in the form
of random time lags is significant. This is because the practical, non-Lagrangian data set
effectively samples from the true Lagrangian trajectory smoothed out by the distribution
of random time lags. The smoothing first becomes apparent (as the level of time lag vari-
ability is increased) around periods of high temporal curvature, hence peaks and troughs
are underestimated in magnitude. For large enough time lags, the estimated variability may
be damped out entirely, such that periodic oscillations in the true dynamics are misfitted as
exponential decays.

Though our twin tests used a free predator-prey oscillating system, we expect that sim-
ilar smoothing out and associated parameter biases in standard model fits may occur in
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the more generic case of fitting models to seasonal data, where phytoplankton blooms and
subsequent troughs due to grazing may be underestimated as a result. In general the most
serious underestimation is liable to occur in the high frequency components of the tempo-
ral variability, therefore the standard fit biases on the seasonal trajectory, characterized by
sudden blooms, may be larger than estimated for the (roughly sinusoidal) monthly oscil-
lation used in this study. Consequently, gross and net primary production rates may also
be significantly underestimated during blooms. Although we cannot predict the impact on
estimates of annual averages of these rates, it is clear that the effects of neglected time lags
on standard model fits may be serious, and warrant further investigation.

2) A new ‘variable lag’ model fitting technique performs significantly better in recovering
the ‘Lagrangian’ biological dynamics, when spatial time lag variability is large enough
relative to measurement noise. The new technique was estimated to perform better in more
than 70% of cases (data sets) when the standard deviation in the time lag distribution was
1 day or more with 5% measurement noise imposed on all three state variables, and when the
lag standard deviation was 4 days or more with 15% measurement noise, provided that the
level of time lag variability was accurately estimated prior to fitting. Given only a realistic
range of possible time lag variances, the potential losses/gains in recovery performance
from using the new method were estimated as 2%/750% with 5% measurement noise and
60%/580% with 15% measurement noise.

Correspondingly, the biases and variances in most parameter estimates were significantly
reduced using the new technique. The bias and variance of several ‘derived estimates’
(functions of the model parameters) such as time-averaged gross primary production were
also reduced, although a certain amount of variance in oscillation frequency could not be
avoided. We proposed a method of estimating the time lag standard deviation, assumed
known in this study, by exploiting asymmetric effects of under/over-estimating the time
lag variability on the relative model-data misfit in calibration. Given many years-worth of
data with negligible interannual variability (a ‘replicated’ data set), we expect that the new
method might be extended to optimize both time lag and measurement error variances, which
otherwise may need to be fixed in optimization to help constrain the parameter estimates.

The expediency of the new method shown by our results should be robust to variations
in the assumed biological model, as long as this remains a good approximation of the
true Lagrangian dynamics. Accounting for time lags should be important in the general
circumstances that the Lagrangian dynamics produce rapid, nonlinear changes in state
variables, resulting in large changes relative to the measurement noise over the duration of
typical time lags.

In summary, we argue that the optimal ‘Lagrangian’ parameter sets obtained by our new
method may reflect a robust mean dynamics on a smaller scale of spatial averaging than
standard model fits, without explicitly resolving those scales. This may help to improve
estimation of the biological components (and hence the performance) of models with a
wide range of resolutions, including the more complex, spatially-resolved marine ecosystem
models.
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